provided by Elsevier - Publisher

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 1969 – 1974

Note

www.elsevier.com/locate/disc

Kernels in quasi-transitive digraphs

Hortensia Galeana-Sánchez^a, Rocío Rojas-Monroy^b

^a*Instituto de Matemáticas, UNAM, Ciudad Universitaria, Circuito Exterior, 04510 México D.F., Mexico*

^b*Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario No. 100, Centro 50000, Toluca,*

Edo. de México, Mexico

Received 18 June 2004; received in revised form 25 November 2005; accepted 3 February 2006 Available online 14 June 2006

Abstract

Let *D* be a digraph, $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of *D*, respectively.

A kernel *N* of *D* is an independent set of vertices such that for every $w \in V(D) - N$ there exists an arc from *w* to *N*. A digraph is called *quasi-transitive* when $(u, v) \in A(D)$ and $(v, w) \in A(D)$ implies $(u, w) \in A(D)$ or $(w, u) \in A(D)$. This concept was introduced by Ghouilá–Houri [Caractérisation des graphes non orientés dont on peut orienter les arrêtes de maniere à obtenir le graphe d' un relation d'ordre, C.R. Acad. Sci. Paris 254 (1962) 1370–1371] and has been studied by several authors. In this paper the following result is proved: Let *D* be a digraph. Suppose $D = D_1 \cup D_2$ where D_i is a quasi-transitive digraph which contains no asymmetrical infinite outward path (in D_i) for $i \in \{1, 2\}$; and that every directed cycle of length 3 contained in *D* has at least two symmetrical arcs, then *D* has a kernel. All the conditions for the theorem are tight.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Kernel; Kernel-perfect digraph; Quasi-transitive digraph

1. Introduction

For general concepts we refer the reader to [\[4\].](#page-5-0) In the paper we write digraph to mean 1-digraph in the sense of Berge [\[4\].](#page-5-0) In this paper *D* will denote a possibly infinite digraph with $V(D)$ and $A(D)$ being the sets of vertices and arcs of *D*, respectively. Often we shall write u_1u_2 instead of (u_1, u_2) . An arc $u_1u_2 \in A(D)$ is called asymmetrical (resp. symmetrical) if $u_2u_1 \notin A(D)$ (resp. $u_2u_1 \in A(D)$). If *S* is a nonempty subset of $V(D)$ then the subdigraph $D[S]$ induced by *S* is the digraph with vertex set *S* and whose arcs are those arcs of *D* which join vertices of *S*.

A directed path is a finite or infinite sequence (x_1, x_2, \ldots) of distinct vertices of *D* such that $(x_i, x_{i+1}) \in A(D)$ for each *i*. When *D* is infinite and the sequence is infinite we call the directed path an infinite outward path. Let S_1 and S_2 be subsets of $V(D)$. A finite directed path (x_1, \ldots, x_n) will be called an S_1S_2 -directed path whenever $x_1 \in S_1$ and $x_2 \in S_2$, in particular when the directed path is an arc, we will call it an S_1S_2 -arc.

Definition 1.1. A set $I \subseteq V(D)$ is independent if $A(D[I]) = \emptyset$. A kernel *N* of *D* is an independent set of vertices such that for each $z \in V(D) - N$ there exists a *zN*-arc in *D*.

A digraph *D* is called a kernel-perfect digraph when every induced subdigraph of *D* has a kernel.

E-mail address: hgaleana@matem.unam.mx (H. Galeana-Sánchez).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.02.015

The concept of kernel was introduced by Von Neumann and Morgenstern [\[15\]](#page-5-0) in the context of Game Theory. The problem of the existence of a kernel in a given digraph has been studied by several authors in particular by Richardson [16,17], Duchet and Meyniel [\[9\],](#page-5-0) Duchet [7,8], Galeana-Sánchez and Neumann-Lara [\[10\].](#page-5-0)

A digraph *D* is transitive whenever $(u, v) \in A(D)$ and $(v, w) \in A(D)$ implies $(u, w) \in A(D)$. A digraph is called *quasi-transitive* if whenever $(u, v) \in A(D)$ and $(v, w) \in A(D)$, then $(u, w) \in A(D)$ or $(w, u) \in A(D)$.

Quasi-transitive digraphs were introduced by Ghouilá-Houri [\[12\]](#page-5-0) and have been studied by several authors for example Bang-Jensen and Huang $[1-3]$, Huang $[13]$, Skrien $[19]$. It was proved by Ghouilá-Houri $[12]$ that an undirected graph can be oriented as a quasi-transitive digraph if and only if it can be oriented as a transitive digraph, namely a comparability graph. More information about comparability graphs can be found in [11,14].

In [\[6\]](#page-5-0) Boros and Gurvich proved that if *G* is a perfect graph then any orientation of *G* in which each complete subdigraph has a kernel is kernel-perfect. It is well known that comparability graphs are perfect graphs (see for example [\[5\]\)](#page-5-0). Meyniel [\[9\]](#page-5-0) observed that if *D* is a digraph such that every directed cycle of length 3 has at least two symmetrical arcs, then each complete subdigraph of *D* has a kernel.

We can conclude the following result.

Theorem 1.2. *If D is a finite quasi-transitive digraph such that every directed cycle of length* 3 *has at least two symmetrical arcs*, *then D is a kernel-perfect digraph*.

The result proved in this paper generalizes Theorem 1.2 and the following result of Sands et al. [\[18\].](#page-5-0)

Theorem 1.3 (*Sands et al. [\[18\]](#page-5-0)*). *Let D be a digraph whose arcs are colored with two colors. If D contains no monochromatic infinite outward path*, *then there exists a set S of vertices of D such that no two vertices of S are connected by a monochromatic directed path and for every vertex x not in S there is a monochromatic directed path from x to a vertex in S*.

We include the following definitions in order to understand Theorem 1.3 in terms of kernels.

We call the digraph *D* an *m*-colored digraph if the arcs of *D* are colored with *m* colors. A directed path is called monochromatic if all of its arcs are colored alike. A kernel by monochromatic paths in an *m*-colored digraph *D* is a set of vertices *N* which satisfies the following two conditions: (i) for every pair of different vertices $u, v \in N$ there is no monochromatic directed path between them; and (ii) for every vertex $x \in V(D) - N$ there is a vertex $y \in N$ such that there is an *xy*-monochromatic directed path.

If *D* is an *m*-colored digraph then the closure of *D*, denoted $\mathcal{C}(D)$ is the digraph defined as follows: $V(\mathcal{C}(D))=V(D)$ and $(u, v) \in A(\mathscr{C}(D))$ iff there exists a uv-monochromatic directed path contained in *D*.

Note that for any *m*-colored *D*, *D* has a kernel by monochromatic paths if and only if $\mathcal{C}(D)$ has a kernel.

In this terminology Theorem 1.3 asserts that if *D* is a 2-colored digraph, which contains no monochromatic infinite outward path, then $\mathcal{C}(D)$ has a kernel.

Now it is clear that Theorem 1.3 is equivalent to the following assertion. Let *D* be a digraph; D_1 and D_2 transitive subdigraphs of *D* such that $D = D_1 \cup D_2$ (recall that $D_1 \cup D_2$ is defined as follows: $V(D_1 \cup D_2) = V(D_1) \cup V(D_2)$ and $A(D_1 \cup D_2) = A(D_1) \cup A(D_2)$ and $A(D_1) \cap A(D_2) = \emptyset$. If *D* has no infinite outward path contained in D_i (i = 1, 2), then *D* has a kernel.

Finally, we will introduce some notation. Two subdigraphs D_1 and D_2 of D are given (possibly $A(D_1) \cap A(D_2) \neq \emptyset$). For distinct vertices x, y of D, $x \stackrel{i}{\rightarrow} y$ will mean that the arc $(x, y) \in A(D_i)$ and $x \stackrel{i}{\rightarrow} S$ will mean that there exists an arc in D_i from *x* to a vertex in *S*, the negation of $x \stackrel{i}{\rightarrow} y$ (resp. $x \stackrel{i}{\rightarrow} S$) will be denoted by $x \stackrel{i}{\rightarrow} y$ (resp. $x \stackrel{i}{\rightarrow} S$), for $i = 1, 2$. When we do not know if the arc is in D_1 or in D_2 we write simply $x \to y$; and $x \to y$ will mean that $(x, y) \notin A(D)$. A directed cycle of length 3 will be called a triangle.

2. Kernels in the union of two quasi-transitive digraphs

The main result of this section is Theorem 2.3. The proof is similar to that in Sands et al. [\[18\].](#page-5-0)

Lemma 2.1. Let D be a digraph such that every triangle has at least two symmetrical arcs. If D_1 is a quasi*transitive subdigraph of* D *and* (v_1, v_2, \ldots, v_n) *is a sequence of vertices of* D_1 *such that* $(v_i, v_{i+1}) \in A(D_1)$ *and* $(v_{i+1}, v_i) \notin A(D)$, then the sequence is an asymmetrical directed path of D contained in D_1 , and for each $i \in$ ${1, \ldots, n-1}, (v_i, v_j) \in A(D_1)$ *and* $(v_j, v_i) \notin A(D)$ *for every* $j \in \{i+1, \ldots, n\}.$

Proof. We proceed by induction on *n*. The result is obvious for $n \le 2$. Assume the result is true for a sequence (v_1,\ldots,v_n) which satisfies the hypothesis of Lemma 2.1. Consider a sequence $T = (v_1,\ldots,v_n,v_{n+1})$ such that for each $i \in \{1,\ldots,n\}$, $(v_i, v_{i+1}) \in A(D_1)$ and $(v_{i+1}, v_i) \notin A(D)$. Since $T' = (v_1,\ldots,v_n)$ satisfies the inductive hypothesis, we have that T' is an asymmetrical directed path contained in D_1 and for each $i \in \{1, \ldots, n-1\}$ $(v_i, v_j) \in A(D_1)$ and $(v_j, v_i) \notin A(D)$ for every $j \in \{i+1, \ldots, n\}$. So we only need to prove that for each $i \in \{1, \ldots, n-1\}$, $v_i \neq v_{n+1}$, $(v_i, v_{n+1}) \in A(D_1)$ and $(v_{n+1}, v_i) \notin A(D)$.

First assume by contradiction that $v_{n+1} = v_i$ for some $i \in \{1, ..., n-1\}$. It follows from the inductive hypothesis on T' that $(v_i, v_n) = (v_{n+1}, v_n) \in A(D_1)$ and thus $(v_{n+1}, v_n) \in A(D)$ contradicting our hypothesis on T. We conclude that *T* is an asymmetrical directed path of *D* contained in D_1 . Now, we have from the inductive hypothesis on T' that for each $i \in \{1, ..., n-1\}$, $(v_i, v_n) \in A(D_1)$ and since $(v_n, v_{n+1}) \in A(D_1)$ and D_1 is a quasi-transitive digraph, we have that $(v_i, v_{n+1}) \in A(D_1)$ or $(v_{n+1}, v_i) \in A(D_1)$. If $(v_{n+1}, v_i) \in A(D)$ then $C_3 = (v_i, v_n, v_{n+1}, v_i)$ is a triangle and from the hypothesis on *D*, C₃ has at least two symmetrical arcs which is impossible as $(v_{n+1}, v_n) \notin A(D)$ (hypothesis on *T*) and $(v_n, v_i) \notin A(D)$ (inductive hypothesis). Thus $(v_{n+1}, v_i) \notin A(D)$ and $(v_i, v_{n+1}) \in A(D_1)$. \Box

Lemma 2.2. Let D be a digraph such that every triangle has at least two symmetrical arcs, and D_1 be a quasi-transitive *subdigraph of D which contains no asymmetrical (in D) infinite outward path. If* $\emptyset \neq U \subseteq V(D)$ *then there exists* $x \in U$ such that for all $y \in U(x, y) \in A(D_1)$ implies $(y, x) \in A(D)$.

Proof. Suppose by contradiction that for each $x \in U$, there exists $y \in U$ such that $(x, y) \in A(D_1)$ and $(y, x) \notin A(D)$. Consider some $x_1 \in U$. Then there exists $x_2 \in U$ such that $(x_1, x_2) \in A(D_1)$ and $(x_2, x_1) \notin A(D)$. So for each $n \in \mathbb{N}$, given $x_n \in U$, there exists $x_{n+1} \in U$ such that $(x_n, x_{n+1}) \in A(D_1)$ and $(x_{n+1}, x_n) \notin A(D)$. It follows from Lemma 2.1 that $T_{n+1} = (x_1, x_2, \ldots, x_{n+1})$ is an asymmetrical directed path of *D* contained in D_1 . Consider the sequence $T = (x_n)_{n \in \mathbb{N}}$; for each $n \in \mathbb{N}$, $(x_n, x_{n+1}) \in A(D_1)$, and for $n < m$ we have $\{x_n, x_m\} \subseteq V(T_m)$ and since T_m is a directed path we obtain $x_n \neq x_m$; hence *T* is an asymmetrical infinite outward path of *D* contained in D_1 , a contradiction. \Box

Theorem 2.3. *Let D be a digraph such that* $D = D_1 \cup D_2$ (*possibly* $A(D_1) \cap A(D_2) \neq \emptyset$ *), where* D_i *is a quasi-transitive subdigraph of D which contains no asymmetrical* (*in D*) *infinite outward path. If every triangle contained in D has at least two symmetrical arcs*, *then D is a kernel-perfect digraph*.

Proof. It suffices to prove that *D* has a kernel, as any induced subdigraph of *D* satisfies the hypothesis of Theorem 2.3. For independent sets *S*, *T* of *D*, we write $S \le T$ if and only if for each $s \in S$ there exists $t \in T$ such that either $s = t$

or $(s \to t$ and $t \to s)$. Note that in particular $S \subseteq T$ implies $S \leq T$.

(1) The collection of all independent sets of vertices of *D* is partially ordered by \leq .

 $(1.1) \leq$ is reflexive.

This follows from the fact $S \subseteq S$.

 $(1.2) \leqslant$ is transitive.

Let S, T and R be independent sets of vertices of D, such that $S \le T$ and $T \le R$, and let $s \in S$. Since $S \le T$ there exists $t \in T$ such that either $s = t$ or $(s \to t$ and $t \to s$) and $T \le R$ implies that there exists $r \in R$ such that either $t = r$ or $(t \to r \text{ and } r \to t)$. If $s = t \text{ or } t = r$, then $s = r \text{ or } (s \to r \text{ and } r \to s)$ with $r \in R$. So we can assume $s \neq t$, $t \neq r$, $(s \to t \text{ and } t \to s)$ and $t\to s$) and $(t\to r$ and $r\to t)$. Since D_1 is a quasi-transitive digraph it follows from Lemma 2.1 on the sequence (s, t, r) that $(s \stackrel{1}{\rightarrow} r$ and $r \rightarrow s$).

 $(1.3) \leq$ is antisymmetrical.

Let *S* and *T* be independent sets of vertices of *D* such that $S \le T$ and $T \le S$, and let $s \in S$. Since $S \le T$ there exists $t \in T$ such that either $s = t$ or $(s \to t$ and $t \to s)$. Suppose that $s \neq t$. The fact $T \leq S$ implies that there exists $s' \in S$ such that either $t = s'$ or $(t \to s'$ and $s' \to t)$. When $t = s'$ we obtain $s \to s'$ contradicting that *S* is an independent set; so $t \neq s'$ and $(t \stackrel{1}{\rightarrow} s'$ and $s' \nightharpoonup t$). Now applying Lemma 2.1 on the sequence (s, t, s') , we have $s \stackrel{1}{\rightarrow} s'$ contradicting that *S* is an independent set. We conclude $s = t$ and consequently $s \in T$ and $S \subseteq T$. Analogously it can be proved $T \subseteq S$.

Let F be the family of all nonempty independent sets S of vertices of D such that $S \to y$ implies $y \to S$ for all vertices *y* of *D*.

(2) (\mathcal{F}, \leq) has maximal elements.

 $(2.1) \mathscr{F} \neq \emptyset$.

Since D_2 is a quasi-transitive digraph which contains no asymmetrical infinite outward path, it follows from Lemma 2.2 (taking $U = V(D)$ and D_2 instead of D_1) that there exists a vertex $x \in V(D)$ such that $x \stackrel{2}{\rightarrow} y$ implies $y \rightarrow x$, for all vertices *y* of *D*, so $\{x\} \in \mathcal{F}$.

(2.2) Every chain in (\mathcal{F}, \leq) is upper bounded.

Let C be a chain in (\mathscr{F}, \leq) , and define $S^{\infty} = \{s \in \bigcup_{S \in \mathscr{C}} S | \text{ there exists } S \in \mathscr{C} \text{ such that } s \in T \text{ whenever } T \in \mathscr{C} \text{ such that } S \in \mathscr{C} \text{ such$ and $T \ge S$. (S[∞] consists of all vertices of *D* that belong to every member of *C* from some point on.)

We will prove that S^{∞} is an upper bound of \mathscr{C} .

(2.2.1) $S^{\infty} \neq \emptyset$, and for each $S \in \mathscr{C}$, $S^{\infty} \geq S$.

Let $S \in \mathscr{C}$ and $t_0 \in S$. We will prove that there exists $t \in S^{\infty}$ such that either $t_0 = t$ or $(t_0 \to t$ and $t \to t_0)$. If $t_0 \in S^{\infty}$ we are done. So assume $t_0 \notin S^{\infty}$. We proceed by contradiction; suppose that if $t \in V(D)$ with $(t_0 \stackrel{1}{\to} t$ and $t \to t_0$), then $t \notin S^{\infty}$. Take $T_0 = S$. Since $t_0 \notin S^{\infty}$ we have that there exists $T_1 \in \mathscr{C}$, $T_1 \geq T_0$ such that $t_0 \notin T_1$. Hence there exists $t_1 \in T_1$ such that $t_0 \to t_1$ and $t_1 \to t_0$. And our assumption implies $t_1 \notin S^{\infty}$. The fact $t_1 \notin S^{\infty}$ implies $t_1 \notin T_2$ for some $T_2 \in \mathscr{C}, T_2 \ge T_1$. Hence there exists $t_2 \in T_2$ such that $t_1 \stackrel{1}{\to} t_2$ and $t_2 \nightharpoonup t_1$. Since D_1 is a quasi-transitive digraph, it follows from Lemma 2.1 on the sequence $\tau_2 = (t_0, t_1, t_2)$ that τ_2 is an asymmetrical directed path of *D* contained in D_1 , $(t_0 \to t_2 \text{ and } t_2 \to t_0)$; and $t_2 \notin S^{\infty}$. We may continue this way and we obtain, for each $n \in \mathbb{N}$, $T_n \in \mathscr{C}$, $t_n \in T_n$, $(t_0 \to t_n)$ and $t_n \to t_0$) and $t_n \notin S^\infty$. Hence there exists $T_{n+1} \in \mathscr{C}$ such that $T_{n+1} \geq T_n$ and $t_n \notin T_{n+1}$. So there exists $t_{n+1} \in T_{n+1}$. with $(t_n \stackrel{1}{\rightarrow} t_{n+1}$ and $t_{n+1} \rightarrow t_n$).

Since D_1 is a quasi-transitive digraph, and $(t_n \to t_{n+1}$ and $t_{n+1} \to t_n)$ for each $n \in \mathbb{N}$, it follows from Lemma 2.1 (on the sequence $\tau_{n+1} = (t_0, t_1, \ldots, t_{n+1})$ that τ_{n+1} is an asymmetrical directed path contained in D_1 and in particular $(t_0 \to t_{n+1}$ and $t_{n+1} \to t_0$). Our assumption implies $t_{n+1} \notin S^{\infty}$. Now consider the sequence $\tau = (t_n)_{n \in \mathbb{N}}$. For each $n \in \mathbb{N}$ we have $(t_n \to t_{n+1}$ and $t_{n+1} \to t_n)$, and observe that for $n < m$, $\{t_n, t_m\} \subseteq V(\tau_m)$, and since τ_m is a directed path we have $t_n \neq t_m$. Hence τ is an asymmetrical infinite outward path contained in D_1 , a contradiction. We conclude that there exists $t \in S^{\infty}$ such that $(t_0 \stackrel{1}{\to} t$ and $t \to t_0)$.

(2.2.2) S^{∞} is an independent set.

Let $s_1, s_2 \in S^{\infty}$ and suppose without loss of generality that $S_1, S_2 \in \mathscr{C}$ are such that $s_1 \in S_1$, $s_2 \in S_2$, $S_1 \le s_2$, since $s_1 \in S^{\infty}$ we have $s_1 \in S$ whenever $S \in \mathscr{C}$ and $S \ge S_1$, so $s_1 \in S_2$, and since S_2 is independent, there is no arc in *D* between s_1 and s_2 .

 $(2.2.3)$ $S^{\infty} \in \mathscr{F}$.

Suppose $S^{\infty} \xrightarrow{2} y$ with $y \in V(D)$, so there exists $s \in S^{\infty}$ with $s \xrightarrow{2} y$. Let $S \in \mathscr{C}$ such that $s \in T$ for all $T \in \mathscr{C}$, $T \ge S$. Since $S \in \mathcal{F}$ we have $y \to S$, so there exists $s' \in S$ with $y \to s'$. When $s' \in S^{\infty}$ we are done. When $s' \notin S^{\infty}$ we analyze the two possibilities; $y \stackrel{1}{\rightarrow} s'$ or $y \stackrel{2}{\rightarrow} s'$. First suppose $y \stackrel{2}{\rightarrow} s'$. Since $s \stackrel{2}{\rightarrow} y$ and D_2 is a quasi-transitive digraph it follows that $s \stackrel{2}{\rightarrow} s'$ or $s' \stackrel{2}{\rightarrow} s$ which is impossible as *S* is an independent set and $\{s, s'\} \subseteq S$. Now suppose $y \stackrel{1}{\rightarrow} s'$. Since $s' \in S$, $S \le S^{\infty}$ by (2.2.1) and $s' \notin S^{\infty}$, there exists $t \in S^{\infty}$ such that $s' \stackrel{1}{\to} t$ and $t \to s'$. So we obtain $y \stackrel{1}{\to} t$ or $t \to y$ (as $y \to s'$, $s' \to t$ and D_1 is a quasi-transitive digraph). If $y \to t$ then $y \to s^{\infty}$ and we are done. If $t \to y$ then we obtain the triangle (y, s', t, y) and it follows from the hypothesis that it has two symmetrical arcs and since $t \rightarrow s'$ we have $s' \rightarrow y$ and $y \rightarrow t$, so $y \rightarrow S^{\infty}$.

We have proven that any chain in $\mathcal F$ has an upper bound in $\mathcal F$, and so by Zorn's Lemma, $(\mathcal F, \leqslant)$ contains maximal elements. Let *S* be a maximal element of (\mathscr{F}, \leq) .

(3) *S* is a kernel of *D*.

Since $S \in \mathcal{F}$, *S* is an independent set of vertices of *D*.

(3.1) For each $x \in (V(D) - S)$ there exists an *xS*-arc.

Suppose by contradiction there exists $x \in (V(D) - S)$ such that $x \rightarrow S$.

(3.1.1) There exists a vertex $x_0 \in V(D)$ such that $x_0 \to S$ and x_0 satisfies: $x_0 \stackrel{2}{\to} y$ and $y \to S$ imply $y \to x_0$ for all vertices $y \in V(D)$. Let $U = \{z \in V(D_2) - S | z \rightarrow S \}$. When $U \neq \emptyset$, it follows from Lemma 2.2 (applied on D_2 and *U*) that there exists x_0 with the required properties. When $U = \emptyset$ it follows from our assumption that $z \rightarrow S$, for some vertex *z* in $V(D_1) - (S \cup V(D_2))$, and we take x_0 to be any such vertex.

Note that the choice of x_0 implies $x_0 \to S$ and since $S \in \mathcal{F}$, we also have $S \stackrel{2}{\to} x_0$. Let $T = \{s \in S | s \stackrel{1}{\to} x_0\}$, it follows from above that $T \cup \{x_0\}$ is an independent set of vertices of *D*.

 $(3.1.2)$ $T \cup \{x_0\} \in \mathscr{F}$.

Suppose $T \cup \{x_0\} \stackrel{2}{\rightarrow} y$ and $y \nrightarrow T$. We will prove $y \rightarrow x_0$. First we make the following observation.

(3.1.2.1) If
$$
y \stackrel{1}{\rightarrow} (S - T)
$$
 then $y \rightarrow x_0$.

Let $s \in (S-T)$ such that $y \stackrel{1}{\to} s$. Since $s \in (S-T)$ we have $s \stackrel{1}{\to} x_0$. Now the fact that D_1 is a quasi-transitive digraph implies $y \to x_0$ or $x_0 \to y$. If $x_0 \to y$ then (y, s, x_0, y) is a triangle which by the hypothesis has two symmetrical arcs, and since $x_0 \rightarrow s$ it follows that $y \rightarrow x_0$.

We proceed to prove $(3.1.2)$ by considering the two following cases:

Case a: $T \stackrel{2}{\rightarrow} y$.

Since $T \subset S$ we have $S \stackrel{2}{\to} y$ and the fact $S \in \mathcal{F}$ implies $y \to S$. So $y \to (S - T)$ (as we are assuming $y \to T$).

When $y \rightarrow (S - T)$ it follows from (3.1.2.1) that $y \rightarrow x_0$.

When $y \stackrel{2}{\rightarrow} (S-T)$, since we have $T \stackrel{2}{\rightarrow} y$ and D_2 is a quasi-transitive digraph, we obtain $T \stackrel{2}{\rightarrow} (S-T)$ or $(S-T) \stackrel{2}{\rightarrow} T$ and this is impossible as $T \subseteq S$ and *S* is an independent set.

Case b: $x_0 \stackrel{2}{\rightarrow} y$.

We consider two possible subcases:

Case b.1: $v \rightarrow S$.

Since $x_0 \stackrel{2}{\rightarrow} y$ and $y \rightarrow S$, the choice of x_0 (see (3.1.1)) implies $y \rightarrow x_0$.

Case b.2: $y \rightarrow S$.

In this case we have $y \rightarrow (S - T)$ (as we are assuming $y \rightarrow T$).

When $y \stackrel{2}{\rightarrow} (S - T)$, since $x_0 \stackrel{2}{\rightarrow} y$ and D_2 is a quasi-transitive digraph, we have $x_0 \stackrel{2}{\rightarrow} (S - T)$ or $(S - T) \stackrel{2}{\rightarrow} x_0$. Now recalling $x_0 \to S$, we obtain $(S - T) \stackrel{2}{\to} x_0$ and since $S \in \mathcal{F}$ it follows $x_0 \to S$ which is impossible.

When $y \rightarrow (S - T)$ it follows from (3.1.2.1) that $y \rightarrow x_0$. **(3.1.3)** $S < T \cup \{x_0\}.$

For $s \in (S-T)$ we have $s \stackrel{1}{\to} x_0$ and we have noted $x_0 \nrightarrow S$; hence $S \leq T \cup \{x_0\}$. Moreover since $x_0 \notin S$ (by construction in (3.1.1)) we have $S < T \cup \{x_0\}$.

Clearly propositions (3.1.2) and (3.1.3) contradict that *S* is a maximal element of (\mathscr{F}, \leqslant) . \Box

Remark 2.4. The condition that D_i has no infinite outward path in Theorem 2.3 is necessary.

Consider the following digraph D' with $V(D') = \{u_n | n \in \mathbb{N}\}\$ and $A(D') = \{(u_n, u_m) | n, m \in \mathbb{N}\}\$ and $n < m\}$, $D_1 = D', D_2 = D'$ and $D = D_1 \cup D_2$.

Remark 2.5. The following digraph *D* is the union of two quasi-transitive finite digraphs; each triangle in *D* has at least one symmetrical arc and *D* has no kernel.

 $V(D_1) = \{u_0, u_1, u_2, u_3\},\$ $V(D_2) = V(D_1) \cup \{w\},\$ $A(D_1) = \{(u_i, u_{i+1}) | i \in \{0, 1, 2, 3\} \pmod{4}\} \cup \{(u_0, u_2), (u_2, u_0), (u_1, u_3), (u_3, u_0)\},\$ $A(D_2) = \{(w, u_i)|i \in \{0, 1, 2, 3\}\},\$ $D = D_1 \cup D_2$.

Remark 2.6. Clearly \vec{C}_5 the directed cycle of length 5 is the union of two finite digraphs, \vec{C}_5 has no triangle and \vec{C}_5 has no kernel.

We conclude that the conditions on Theorem 2.3 are tight.

Acknowledgments

The authors wish to thank the referees for many suggestions which improved the rewriting of this paper.

References

- [1] J. Bang-Jensen, J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (2) (1995) 141–161.
- [2] J. Bang-Jensen, J. Huang, Kings in quasi-transitive digraphs, Discrete Math. 185 (1–3) (1998) 19–27.
- [3] J. Bang-Jensen, J. Huang, Strongly connected spanning subdigraphs with the minimum number of arcs in quasi-transitive digraphs, SIAM J. Discrete Math. 16 (2) (2003) 335–343.
- [4] C. Berge, Graphs, North-Holland Mathematical Library, vol. 6, North-Holland, Amsterdam, 1985.
- [5] C. Berge, V. Chvatal, Editors, Topics on perfect graphs, Ann. Discrete Math. vol. 21, North-Holland, Amsterdam, 1985. ´
- [6] E. Boros, V. Gurvich, Perfect graphs are kernel solvable, Discrete Math. 159 (1996) 35–55.
- [7] P. Duchet, Graphes Noyau-Parfaits, Ann. Discrete Math. 9 (1980) 93–101.
- [8] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1) (1987) 81–85.
- [9] P. Duchet, H. Meyniel, A note on kernel–critical graphs, Discrete Math. 33 (1981) 103–105.
- [10] H. Galeana-Sánchez, V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67–76.
- [11] T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25–66.
- [12] A. Ghouilá-Houri, Caractérisation des graphes non orientés dont on peut orienter les arrêtes de maniere à obtenir le graphe d' un relation d'ordre, C.R. Acad. Sci. Paris 254 (1962) 1370–1371.
- [13] J. Huang, Tournament-like oriented graphs, Ph.D. Thesis, Simon Fraser University, 1992.
- [14] D. Kelly, Comparability graphs, in: I. Rival (Ed.), Graphs and Order, Nato ASI Series C 147, D. Reidel, Dordrecht, 1985, pp. 3–40.
- [15] J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ, 1944.
- [16] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (2) (1953) 573-580.
- [17] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Natl. Acad. Sci. USA 39 (1953) 649–651.
- [18] B. Sands, N. Sauer, R. Woodrow, On monochromatic paths in edge-colored digraphs, J. Combin. Theory B 33 (1982) 271–275.
- [19] D.J. Skrien, A relationship between triangulated graphs, comparability graphs, proper interval graphs proper circulant graphs and nested interval graphs, J. Graph Theory 6 (1980) 309–316.