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Abstract

Let D be a digraph, V (D) and A(D) will denote the sets of vertices and arcs of D, respectively.
A kernel N of D is an independent set of vertices such that for every w ∈ V (D) − N there exists an arc from w to N. A digraph

is called quasi-transitive when (u, v) ∈ A(D) and (v, w) ∈ A(D) implies (u, w) ∈ A(D) or (w, u) ∈ A(D). This concept was
introduced by Ghouilá–Houri [Caractérisation des graphes non orientés dont on peut orienter les arrêtes de maniere à obtenir le
graphe d’ un relation d’ordre, C.R. Acad. Sci. Paris 254 (1962) 1370–1371] and has been studied by several authors. In this paper
the following result is proved: Let D be a digraph. Suppose D = D1 ∪ D2 where Di is a quasi-transitive digraph which contains no
asymmetrical infinite outward path (in Di ) for i ∈ {1, 2}; and that every directed cycle of length 3 contained in D has at least two
symmetrical arcs, then D has a kernel. All the conditions for the theorem are tight.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For general concepts we refer the reader to [4]. In the paper we write digraph to mean 1-digraph in the sense of
Berge [4]. In this paper D will denote a possibly infinite digraph with V (D) and A(D) being the sets of vertices and
arcs of D, respectively. Often we shall write u1u2 instead of (u1, u2). An arc u1u2 ∈ A(D) is called asymmetrical
(resp. symmetrical) if u2u1 /∈ A(D) (resp. u2u1 ∈ A(D)). If S is a nonempty subset of V (D) then the subdigraph D[S]
induced by S is the digraph with vertex set S and whose arcs are those arcs of D which join vertices of S.

A directed path is a finite or infinite sequence (x1, x2, . . .) of distinct vertices of D such that (xi, xi+1) ∈ A(D) for
each i. When D is infinite and the sequence is infinite we call the directed path an infinite outward path. Let S1 and
S2 be subsets of V (D). A finite directed path (x1, . . . , xn) will be called an S1S2-directed path whenever x1 ∈ S1 and
x2 ∈ S2, in particular when the directed path is an arc, we will call it an S1S2-arc.

Definition 1.1. A set I ⊆ V (D) is independent if A(D[I ])=∅. A kernel N of D is an independent set of vertices such
that for each z ∈ V (D) − N there exists a zN-arc in D.

A digraph D is called a kernel-perfect digraph when every induced subdigraph of D has a kernel.
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The concept of kernel was introduced by Von Neumann and Morgenstern [15] in the context of Game Theory. The
problem of the existence of a kernel in a given digraph has been studied by several authors in particular by Richardson
[16,17], Duchet and Meyniel [9], Duchet [7,8], Galeana-Sánchez and Neumann-Lara [10].

A digraph D is transitive whenever (u, v) ∈ A(D) and (v, w) ∈ A(D) implies (u, w) ∈ A(D). A digraph is called
quasi-transitive if whenever (u, v) ∈ A(D) and (v, w) ∈ A(D), then (u, w) ∈ A(D) or (w, u) ∈ A(D).

Quasi-transitive digraphs were introduced by Ghouilá-Houri [12] and have been studied by several authors for
example Bang-Jensen and Huang [1–3], Huang [13], Skrien [19]. It was proved by Ghouilá-Houri [12] that an undirected
graph can be oriented as a quasi-transitive digraph if and only if it can be oriented as a transitive digraph, namely a
comparability graph. More information about comparability graphs can be found in [11,14].

In [6] Boros and Gurvich proved that if G is a perfect graph then any orientation of G in which each complete
subdigraph has a kernel is kernel-perfect. It is well known that comparability graphs are perfect graphs (see for
example [5]). Meyniel [9] observed that if D is a digraph such that every directed cycle of length 3 has at least two
symmetrical arcs, then each complete subdigraph of D has a kernel.

We can conclude the following result.

Theorem 1.2. If D is a finite quasi-transitive digraph such that every directed cycle of length 3 has at least two
symmetrical arcs, then D is a kernel-perfect digraph.

The result proved in this paper generalizes Theorem 1.2 and the following result of Sands et al. [18].

Theorem 1.3 (Sands et al. [18]). Let D be a digraph whose arcs are colored with two colors. If D contains no
monochromatic infinite outward path, then there exists a set S of vertices of D such that no two vertices of S are
connected by a monochromatic directed path and for every vertex x not in S there is a monochromatic directed path
from x to a vertex in S.

We include the following definitions in order to understand Theorem 1.3 in terms of kernels.
We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. A directed path is called

monochromatic if all of its arcs are colored alike. A kernel by monochromatic paths in an m-colored digraph D is a set
of vertices N which satisfies the following two conditions: (i) for every pair of different vertices u, v ∈ N there is no
monochromatic directed path between them; and (ii) for every vertex x ∈ V (D) − N there is a vertex y ∈ N such that
there is an xy-monochromatic directed path.

If D is an m-colored digraph then the closure of D, denotedC(D) is the digraph defined as follows: V (C(D))=V (D)

and (u, v) ∈ A(C(D)) iff there exists a uv-monochromatic directed path contained in D.
Note that for any m-colored D, D has a kernel by monochromatic paths if and only if C(D) has a kernel.
In this terminology Theorem 1.3 asserts that if D is a 2-colored digraph, which contains no monochromatic infinite

outward path, then C(D) has a kernel.
Now it is clear that Theorem 1.3 is equivalent to the following assertion. Let D be a digraph; D1 and D2 transitive

subdigraphs of D such that D =D1 ∪D2 (recall that D1 ∪D2 is defined as follows: V (D1 ∪D2)=V (D1)∪V (D2) and
A(D1 ∪ D2) = A(D1) ∪ A(D2)) and A(D1) ∩ A(D2) = ∅. If D has no infinite outward path contained in Di (i = 1, 2),
then D has a kernel.

Finally, we will introduce some notation. Two subdigraphs D1 and D2 of D are given (possibly A(D1)∩A(D2) �= ∅).

For distinct vertices x, y of D, x
i→ y will mean that the arc (x, y) ∈ A(Di) and x

i→ S will mean that there exists an arc

in Di from x to a vertex in S, the negation of x
i→ y (resp. x

i→ S) will be denoted by x
i

� y (resp. x
i

� S), for i = 1, 2.
When we do not know if the arc is in D1 or in D2 we write simply x → y; and x�y will mean that (x, y) /∈ A(D). A
directed cycle of length 3 will be called a triangle.

2. Kernels in the union of two quasi-transitive digraphs

The main result of this section is Theorem 2.3. The proof is similar to that in Sands et al. [18].

Lemma 2.1. Let D be a digraph such that every triangle has at least two symmetrical arcs. If D1 is a quasi-
transitive subdigraph of D and (v1, v2, . . . , vn) is a sequence of vertices of D1 such that (vi, vi+1) ∈ A(D1) and
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(vi+1, vi) /∈ A(D), then the sequence is an asymmetrical directed path of D contained in D1, and for each i ∈
{1, . . . , n − 1}, (vi, vj ) ∈ A(D1) and (vj , vi) /∈ A(D) for every j ∈ {i + 1, . . . , n}.

Proof. We proceed by induction on n. The result is obvious for n�2. Assume the result is true for a sequence
(v1, . . . , vn) which satisfies the hypothesis of Lemma 2.1. Consider a sequence T =(v1, . . . , vn, vn+1) such that for each
i ∈ {1, . . . , n}, (vi, vi+1) ∈ A(D1) and (vi+1, vi) /∈ A(D). Since T ′ = (v1, . . . , vn) satisfies the inductive hypothesis,
we have that T ′ is an asymmetrical directed path contained in D1 and for each i ∈ {1, . . . , n−1} (vi, vj ) ∈ A(D1) and
(vj , vi) /∈ A(D) for every j ∈ {i + 1, . . . , n}. So we only need to prove that for each i ∈ {1, . . . , n − 1}, vi �= vn+1,
(vi, vn+1) ∈ A(D1) and (vn+1, vi) /∈ A(D).

First assume by contradiction that vn+1 = vi for some i ∈ {1, . . . , n − 1}. It follows from the inductive hypothesis
on T ′ that (vi, vn) = (vn+1, vn) ∈ A(D1) and thus (vn+1, vn) ∈ A(D) contradicting our hypothesis on T. We conclude
that T is an asymmetrical directed path of D contained in D1. Now, we have from the inductive hypothesis on T ′ that
for each i ∈ {1, . . . , n − 1}, (vi, vn) ∈ A(D1) and since (vn, vn+1) ∈ A(D1) and D1 is a quasi-transitive digraph, we
have that (vi, vn+1) ∈ A(D1) or (vn+1, vi) ∈ A(D1). If (vn+1, vi) ∈ A(D) then C3 = (vi, vn, vn+1, vi) is a triangle and
from the hypothesis on D, C3 has at least two symmetrical arcs which is impossible as (vn+1, vn) /∈ A(D) (hypothesis
on T) and (vn, vi) /∈ A(D) (inductive hypothesis). Thus (vn+1, vi) /∈ A(D) and (vi, vn+1) ∈ A(D1). �

Lemma 2.2. Let D be a digraph such that every triangle has at least two symmetrical arcs, and D1 be a quasi-transitive
subdigraph of D which contains no asymmetrical (in D) infinite outward path. If ∅ �= U ⊆ V (D) then there exists
x ∈ U such that for all y ∈ U(x, y) ∈ A(D1) implies (y, x) ∈ A(D).

Proof. Suppose by contradiction that for each x ∈ U , there exists y ∈ U such that (x, y) ∈ A(D1) and (y, x) /∈ A(D).
Consider some x1 ∈ U . Then there exists x2 ∈ U such that (x1, x2) ∈ A(D1) and (x2, x1) /∈ A(D). So for each
n ∈ N, given xn ∈ U , there exists xn+1 ∈ U such that (xn, xn+1) ∈ A(D1) and (xn+1, xn) /∈ A(D). It follows from
Lemma 2.1 that Tn+1=(x1, x2, . . . , xn+1) is an asymmetrical directed path of D contained in D1. Consider the sequence
T =(xn)n∈N; for each n ∈ N, (xn, xn+1) ∈ A(D1), and for n < m we have {xn, xm} ⊆ V (Tm) and since Tm is a directed
path we obtain xn �= xm; hence T is an asymmetrical infinite outward path of D contained in D1, a contradiction. �

Theorem 2.3. Let D be a digraph such that D=D1∪D2 (possibly A(D1)∩A(D2) �= ∅), where Di is a quasi-transitive
subdigraph of D which contains no asymmetrical (in D) infinite outward path. If every triangle contained in D has at
least two symmetrical arcs, then D is a kernel-perfect digraph.

Proof. It suffices to prove that D has a kernel, as any induced subdigraph of D satisfies the hypothesis of Theorem 2.3.
For independent sets S, T of D, we write S�T if and only if for each s ∈ S there exists t ∈ T such that either s = t

or (s
1→ t and t�s). Note that in particular S ⊆ T implies S�T .

(1) The collection of all independent sets of vertices of D is partially ordered by � .
(1.1) � is reflexive.
This follows from the fact S ⊆ S.
(1.2) � is transitive.
Let S, T and R be independent sets of vertices of D, such that S�T and T �R, and let s ∈ S. Since S�T there

exists t ∈ T such that either s = t or (s
1→ t and t�s) and T �R implies that there exists r ∈ R such that either t = r or

(t
1→ r and r�t). If s = t or t = r , then s = r or (s

1→ r and r�s) with r ∈ R. So we can assume s �= t , t �= r , (s
1→ t

and t�s) and (t
1→ r and r�t). Since D1 is a quasi-transitive digraph it follows from Lemma 2.1 on the sequence

(s, t, r) that (s
1→ r and r�s).

(1.3) � is antisymmetrical.
Let S and T be independent sets of vertices of D such that S�T and T �S, and let s ∈ S. Since S�T there exists

t ∈ T such that either s = t or (s
1→ t and t�s). Suppose that s �= t . The fact T �S implies that there exists s′ ∈ S

such that either t = s′ or (t
1→ s′ and s′

�t) . When t = s′ we obtain s
1→ s′ contradicting that S is an independent set; so

t �= s′ and (t
1→ s′ and s′

�t). Now applying Lemma 2.1 on the sequence (s, t, s′), we have s
1→ s′ contradicting that

S is an independent set. We conclude s = t and consequently s ∈ T and S ⊆ T . Analogously it can be proved T ⊆ S.
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Let F be the family of all nonempty independent sets S of vertices of D such that S
2→ y implies y → S for all

vertices y of D.
(2) (F, �) has maximal elements.
(2.1) F �= ∅.
Since D2 is a quasi-transitive digraph which contains no asymmetrical infinite outward path, it follows from Lemma

2.2 (taking U = V (D) and D2 instead of D1) that there exists a vertex x ∈ V (D) such that x
2→ y implies y → x, for

all vertices y of D, so {x} ∈ F.
(2.2) Every chain in (F, �) is upper bounded.
Let C be a chain in (F, �), and define S∞ = {s ∈ ⋃

S∈C S| there exists S ∈ C such that s ∈ T whenever T ∈ C
and T �S}. (S∞ consists of all vertices of D that belong to every member of C from some point on.)

We will prove that S∞ is an upper bound of C.
(2.2.1) S∞ �= ∅, and for each S ∈ C, S∞ �S.

Let S ∈ C and t0 ∈ S. We will prove that there exists t ∈ S∞ such that either t0 = t or (t0
1→ t and t�t0). If t0 ∈ S∞

we are done. So assume t0 /∈ S∞. We proceed by contradiction; suppose that if t ∈ V (D) with (t0
1→ t and t�t0), then

t /∈ S∞. Take T0 = S. Since t0 /∈ S∞ we have that there exists T1 ∈ C, T1 �T0 such that t0 /∈ T1. Hence there exists

t1 ∈ T1 such that t0
1→ t1 and t1�t0. And our assumption implies t1 /∈ S∞. The fact t1 /∈ S∞ implies t1 /∈ T2 for some

T2 ∈ C, T2 �T1. Hence there exists t2 ∈ T2 such that t1
1→ t2 and t2�t1. Since D1 is a quasi-transitive digraph, it

follows from Lemma 2.1 on the sequence �2 = (t0, t1, t2) that �2 is an asymmetrical directed path of D contained in D1,

(t0
1→ t2 and t2�t0); and t2 /∈ S∞. We may continue this way and we obtain, for each n ∈ N, Tn ∈ C, tn ∈ Tn, (t0

1→ tn
and tn�t0) and tn /∈ S∞. Hence there exists Tn+1 ∈ C such that Tn+1 �Tn and tn /∈ Tn+1. So there exists tn+1 ∈ Tn+1

with (tn
1→ tn+1 and tn+1�tn).

Since D1 is a quasi-transitive digraph, and (tn
1→ tn+1 and tn+1�tn) for each n ∈ N, it follows from Lemma 2.1 (on

the sequence �n+1 = (t0, t1, . . . , tn+1)) that �n+1 is an asymmetrical directed path contained in D1 and in particular

(t0
1→ tn+1 and tn+1�t0). Our assumption implies tn+1 /∈ S

∞
. Now consider the sequence � = (tn)n∈N. For each n ∈ N

we have (tn
1→ tn+1 and tn+1�tn), and observe that for n < m, {tn, tm} ⊆ V (�m), and since �m is a directed path we

have tn �= tm. Hence � is an asymmetrical infinite outward path contained in D1, a contradiction. We conclude that

there exists t ∈ S
∞

such that (t0
1→ t and t�t0).

(2.2.2) S∞ is an independent set.
Let s1, s2 ∈ S∞ and suppose without loss of generality that S1, S2 ∈ C are such that s1 ∈ S1, s2 ∈ S2, S1 �S2, since

s1 ∈ S
∞

we have s1 ∈ S whenever S ∈ C and S�S1, so s1 ∈ S2, and since S2 is independent, there is no arc in D
between s1 and s2.

(2.2.3) S∞ ∈ F.

Suppose S∞ 2→ y with y ∈ V (D), so there exists s ∈ S
∞

with s
2→ y. Let S ∈ C such that s ∈ T for all T ∈ C,

T �S. Since S ∈ F we have y → S, so there exists s′ ∈ S with y → s′. When s′ ∈ S
∞

we are done. When s′ /∈ S
∞

we

analyze the two possibilities; y
1→ s′ or y

2→ s′. First suppose y
2→ s′. Since s

2→ y and D2 is a quasi-transitive digraph

it follows that s
2→ s′ or s′ 2→ s which is impossible as S is an independent set and {s, s′} ⊆ S. Now suppose y

1→ s′.
Since s′ ∈ S, S�S∞ by (2.2.1) and s′ /∈ S∞, there exists t ∈ S∞ such that s′ 1→ t and t�s′. So we obtain y

1→ t or

t
1→ y (as y

1→ s′, s′ 1→ t and D1 is a quasi-transitive digraph). If y
1→ t then y

1→ S∞ and we are done.If t
1→ y then

we obtain the triangle (y, s′, t, y) and it follows from the hypothesis that it has two symmetrical arcs and since t�s′
we have s′ → y and y → t , so y → S∞.

We have proven that any chain in F has an upper bound in F, and so by Zorn’s Lemma, (F, �) contains maximal
elements. Let S be a maximal element of (F, �).

(3) S is a kernel of D.
Since S ∈ F, S is an independent set of vertices of D.
(3.1) For each x ∈ (V (D) − S) there exists an xS-arc.
Suppose by contradiction there exists x ∈ (V (D) − S) such that x�S.
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(3.1.1) There exists a vertex x0 ∈ V (D) such that x0�S and x0 satisfies: x0
2→ y and y�S imply y → x0 for all

vertices y ∈ V (D). Let U = {z ∈ V (D2) − S|z�S}. When U �= ∅, it follows from Lemma 2.2 (applied on D2 and
U) that there exists x0 with the required properties. When U = ∅ it follows from our assumption that z�S, for some
vertex z in V (D1) − (S ∪ V (D2)), and we take x0 to be any such vertex.

Note that the choice of x0 implies x0�S and since S ∈ F, we also have S
2

� x0. Let T = {s ∈ S|s 1
� x0}, it follows

from above that T ∪ {x0} is an independent set of vertices of D.
(3.1.2) T ∪ {x0} ∈ F.

Suppose T ∪ {x0} 2→ y and y�T . We will prove y → x0. First we make the following observation.

(3.1.2.1) If y
1→(S − T ) then y → x0.

Let s ∈ (S−T ) such that y
1→ s. Since s ∈ (S−T ) we have s

1→ x0. Now the fact that D1 is a quasi-transitive digraph

implies y
1→ x0 or x0

1→ y. If x0
1→ y then (y, s, x0, y) is a triangle which by the hypothesis has two symmetrical arcs,

and since x0�s it follows that y → x0.
We proceed to prove (3.1.2) by considering the two following cases:

Case a: T
2→ y.

Since T ⊂ S we have S
2→ y and the fact S ∈ F implies y → S. So y → (S − T ) (as we are assuming y�T ).

When y
1→(S − T ) it follows from (3.1.2.1) that y → x0.

When y
2→(S−T ), since we have T

2→ y and D2 is a quasi-transitive digraph, we obtain T
2→(S−T ) or (S−T )

2→ T

and this is impossible as T ⊆ S and S is an independent set.

Case b: x0
2→ y.

We consider two possible subcases:
Case b.1: y�S.

Since x0
2→ y and y�S, the choice of x0 (see (3.1.1)) implies y → x0.

Case b.2: y → S.
In this case we have y → (S − T ) (as we are assuming y�T ).

When y
2→(S −T ), since x0

2→ y and D2 is a quasi-transitive digraph, we have x0
2→(S −T ) or (S −T )

2→ x0. Now

recalling x0�S, we obtain (S − T )
2→ x0 and since S ∈ F it follows x0 → S which is impossible.

When y
1→(S − T ) it follows from (3.1.2.1) that y → x0.

(3.1.3) S < T ∪ {x0}.
For s ∈ (S−T ) we have s

1→ x0 and we have noted x0�S; hence S�T ∪{x0}. Moreover since x0 /∈ S (by construction
in (3.1.1)) we have S < T ∪ {x0}.

Clearly propositions (3.1.2) and (3.1.3) contradict that S is a maximal element of (F, �). �
Remark 2.4. The condition that Di has no infinite outward path in Theorem 2.3 is necessary.

Consider the following digraph D′ with V (D′) = {un|n ∈ N} and A(D′) = {(un, um)|n, m ∈ N and n < m},
D1 = D′, D2 = D′ and D = D1 ∪ D2.
Remark 2.5. The following digraph D is the union of two quasi-transitive finite digraphs; each triangle in D has at
least one symmetrical arc and D has no kernel.

V (D1) = {u0, u1, u2, u3},
V (D2) = V (D1) ∪ {w},
A(D1) = {(ui, ui+1)|i ∈ {0, 1, 2, 3} (mod 4)} ∪ {(u0, u2), (u2, u0), (u1, u3), (u3, u0)},
A(D2) = {(w, ui)|i ∈ {0, 1, 2, 3}},
D = D1 ∪ D2.

Remark 2.6. Clearly �C5 the directed cycle of length 5 is the union of two finite digraphs, �C5 has no triangle and �C5
has no kernel.

We conclude that the conditions on Theorem 2.3 are tight.
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