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Abstract

This paper provides a new simple version of Noether’s theorem. From symmetries of dy
optimal programs, this theorem gives invariant quantities along optimal paths. It is suited to o
control programs especially for economic models. Applications in growth economics are give
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The existence of symmetries helps to reduce the dimension of analytic problems
method has been extensively used in physics or mechanics (e.g., to solve systems o
differential equations; see [1] or [21]). It has also potential applications in economic
example, Russell and Farris [14] discuss the integrability of some classes of functi
good demand, exploiting symmetries (actually Lie groups) that act on these func
Samuelson [15] and Sato [17] study symmetries of technical change and optimal g
models.

The Noether theorem is the main tool to exploit symmetries of dynamic optimal
grams. This theorem gives conservation laws, i.e., invariant quantities along optimal
As in physics, conservation laws can add necessary conditions of optimality for eco
problems; they can thus reduce the dimension of optimal dynamical systems (of c
and state variables). From an econometric viewpoint, because they offer stationary
ties instead of dynamic differential equations, they can help to validate some theorie
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Finally, conservation laws can have direct interpretations such as the income/wealth
economics (cf. [18] or [24]) or the conservation of energy in physics.

In economics, optimal control methods with the maximum principle of Pontry
et al. [12] are preferred to variational approaches because it is more general and
adapted to a modeling of optimization under constrained and control variables.
ever, standard versions of Noether’s theorem sometimes used for economic pr
(cf. [17,19]) only apply in the approach of calculus of variation and primary version
optimal control can seem complex [20]. The aim of this note is thus twofold: to pro
a tractable and operational version of Noether’s theorem in an optimal control fram
and to give first applications in economics.

The outline of the note will be the following. Section 2 presents basic notions of g
etry. The basic optimal control version of Noether’s theorem is given in Section 3
paper concludes with direct applications in growth economics.

2. A simple program and basic notions

We take a very simple program (P) as a benchmark:

max

T∫
0

U
(
s(t), c(t), t

)
dt, (1)

where the state variables takes its values inS, an open subset ofRn, the control variable
c takes its values in a subsetC of R

m, and the functionU is continuous and continuous
differentiable with respect tos andt . The dynamical constraint is

ṡ(t)= f
(
s(t), c(t), t

)
, (2)

wheref is continuously differentiable overS and [0, T ], and continuous as well as i
partial derivatives with respect tos andt overS ×C × [0, T ]. Finally, the initial and final
constraints are simply

s(0)= s0, s(T )= sT . (3)

We will denote byH(s, c, λ, t)= p0U(s, c, t)+λf (s, c, t) the Hamiltonian of program
(P), whereλ is the co-state variable (of dimensionn).

Remark 1. For normal programs (in the sense used by Clarke [7]),p0 can be normalized
p0 = 1. This is generally the case for economic programs, but it is not always po
(see [6] for examples).

The results presented in this note can be extended to more general program
latter maintain a minimum of regularity that guarantees the use of the maximum prin
Thus, one could soften some regularity constraints by using the extensions of Pontr
theorem developed by Warga [23] or Clarke [7]. Boundary constraints can also be re
by inequalities, can be free. . . , if they verify the constraint qualifications (cf. [8]). Finall
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one can (and we will do it in the last section) apply Noether’s theorems to infinite ho
programs (see [6] for correct assumptions that give a maximum theorem in this case

We will give a set of definitions of standard geometric notions, necessary for the
sentation of the Noether theorem. Let us consider a differential manifoldM and its tangen
spaceTM. The reader can takeM as the Euclidian spaceRn or S; then,TM is identified
as the space of the partial derivatives overR

n, which is isomorphous toRn × R
n.

Definition 1. A vector fieldX is a map which associates tos ∈ M, an element of the
tangent spaceTM such that the natural projection of this element onM is s.

Let us takeM = R
n. Let (s1, . . . , sn,X1(s1, . . . , sn), . . . ,Xn(s1, . . . , sn)) denote the

canonical coordinates of the vector fieldX in R
n × R

n. If g is a differentiable function
of s ∈M, we defineXg as

Xg =
∑

i=1,...,n

Xi
∂g

∂si
; (4)

in this caseX(s) identifies with a derivation.

Definition 2. We call an integral curve ofX, from p ∈ M, any trajectory defined over
maximal temporal domain such that∀i, ṡi (t)=Xi(s(t)) ands(0)= p.

Assume henceforth that there existsε > 0 such that for allp ∈M, there is an integra
curves(t) of X from p, defined at least fort ∈]−ε,+ε[. Let us takeΨt(p) = s(t). We
thus define a family of mapsΨu, u ∈]−ε,+ε[ from M into M. It is straightforward tha
this family forms a localu-parameter group of maps onM. The local group(Ψu) is said to
be generated byX.

Conversely, if we consider a sufficiently regular one-parameter group of maps(Ψu),
then

X(p)= dΨu

du
(p)

∣∣∣∣
u=0

(5)

defines a vector field onM that generates(Ψu).
Finally, T Ψu will denote the tangent map ofΨu. Let us recall that forM = S or R

n,
T Ψ is the map that associates to a tangent vector(x1, . . . , xn) at a points of M, the vector
(y1, . . . , yn) tangent atΨ s,

yi =
n∑

j=1

∂Ψi

∂sj
(s)xj . (6)

Example 1. ConsiderM = R
n. Let X be the vector field onRn generated by the matri

n× n A, i.e.,X(s) = As for all s ∈M. The one-parameter group generated byX is thus
the set of the endomorphisms ofR

n, Ψu = exp(uA), u ∈ R. If x is a tangent vector at th
point s thenTΨux = exp(uA)x.
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3. Noether’s theorem in optimal control

Let us first consider the autonomous version of the program (P), i.e., we maximiz

V =
T∫

0

U
(
s(t), c(t)

)
dt (7)

under the dynamical constraint

ṡ(t)= f
(
s(t), c(t)

)
, c(t) ∈C. (8)

Getting inspiration from the notion of symmetry (or invariance) for a Lagran
(cf. [21]), we will define a “symmetry” for a problem in optimal control.

Definition 3. We call a symmetry for the autonomous program, a local one-param
group(Ψu) (generated by the vector fieldX) acting onS such as∀u, ∀c ∈ C and∀s ∈ S,

(1) there existscu such that

TΨu
(
f (Ψ−us, c)

)= f (s, cu), (9)

and
(2) U(Ψus, cu)=U(s, c). (10)

We are now able to give Noether’s theorem in optimal control.

Theorem 1 (Noether’s theorem in optimal control).If the local group (Ψu) is a symmetry
for the autonomous optimal program, then along the optimal path (s∗, c∗, λ∗),∑

i

λ∗
i Xi (11)

is invariant.

Proof. The derivative of (10) with respect tou gives

dU(Ψus, cu)

du
= 0. (12)

Using the chain rule foru= 0, it comes that∑
i

{
Xi
∂U

∂si

(
s(t), c(t)

)+
∑
l

∂U

∂cl

(
s(t), c(t)

)d(cu)l
du

(t)

}
= 0. (13)

Therefore

dU

du

(
s(t), cu(t)

)∣∣∣∣
u=0

= −(XU)(s(t), c(t)). (14)

Let us take the vector

(T Ψu)
(
f (Ψ−us, c)

)= f (s, cu).
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Its derivation with respect tou shows that

df

du

(
s(t), cu(t)

)∣∣∣∣
u=0

=
(∑

j

∂Xi

∂sj

(
s(t)

)
fj
(
s(t), c(t)

)− ∂fi

∂sj

(
s(t), c(t)

)
Xj

(
s(t)

))
i

.

(15)

Indeed,

d

du
f (Ψ−us, c)=

(
d

du

[∑
j

∂Ψ i
u

∂sj
× fj (Ψus, c)

])
i

=
(∑

j

[
d

du

(
∂Ψ i

u

∂sj

)
× fj (Ψus, c)+ ∂Ψ i

u

∂sj
× d

du
fj (Ψus, c)

])
i

,

(16)

and

d

du

(
∂Ψ i

u

∂sj

)∣∣∣∣
u=0

= ∂

∂sj

(
d

du
Ψ i
u

)∣∣∣∣
u=0

= ∂

∂sj
Xi, (17)

d

du
fj (Ψus, c)

∣∣∣∣
u=0

=
∑
k

−Xk

∂fj

∂sk
(s, c). (18)

The second member of (15) is the Lie bracket ofX and off 1 noted[X,f ](s(t), c(t))
(see [21] or [4]). The reader can consider here that this is just a notation. Now,
take place on the optimal path(s∗, c∗, λ∗) at a given datet . Consider the function ofu,
H(u)= p0U(s

∗, c∗
u)+ λ∗f (s∗, c∗

u). According to the previous derivatives atu= 0,

dH(u)
du

∣∣∣∣
u=0

= −p0(XU)
(
s∗(t), c∗(t)

)+ λ∗(t)[X,f ](s∗(t), c∗(t)
)
. (19)

But the left member of this relation is merely the temporal derivative att of
∑

i Xiλ
∗
i

along the optimal path. Indeed, the maximum principle implies that

λ̇∗
i = −∂H

∂si
= −∂U

∂si
p0 − λ∗ ∂f

∂si
. (20)

Besides

Ẋi =
n∑

j=1

∂Xi

∂si
ṡj =

n∑
j=1

∂Xi

∂si
fj . (21)

And therefore, using the chain rule, it comes that

d

dt
λ∗
i Xi = −p0

∂U

∂si
Xi −Xiλ

∗ ∂f
∂si

+ λ∗
i

(
n∑
j

∂Xi

∂sj
fj

)
, (22)

1 Becausef is equal to the temporal derivative of the state variable,f should be seen not as a function but
an element of the tangent space.
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dH(u)
du

∣∣∣∣
u=0

= d

dt

n∑
i

Xiλ
∗
i . (23)

Finally, in order to prove the theorem, it is sufficient to show that(dH(u)/du)|u=0 = 0.
The maximum theorem states that the optimal control variable maximizes almost

where the Hamiltonian. One has therefore a.e.

p0U(s
∗, c∗)+ λ∗f (s∗, c∗)� p0U(s

∗, cu)+ λ∗f (s∗, cu). (24)

BecauseH(0)=H(s∗, c∗, λ∗), H(u) reaches its maximum atu= 0, i.e.,

dH(u)
du

∣∣∣∣
u=0

= 0. ✷ (25)

Before giving some economic examples in Section 4, we will see how the theore
be generalized for non-autonomousprograms. The method is inspired by the approa
in [21] or [2, p. 95, Exercise 4], for the extension of Noether’s theorem to non-autono
Lagrangian systems.

Take the non-autonomous program (P) described in Section 2. We parameteriz
and consider that it is a new state variable (next tos). Consider the program (P′):

max

T∫
0

U
(
s(z), c(z), t (z)

)
v dz (26)

under
ds

dz
= vf

(
s(z), c(z), t (z)

)
(27)

and
dt

dz
= v (28)

with the new control variablev ∈]1/2,2[ (one could take any open set around 1); and
constraintst (z = 0) = 0 andt (z = T )= T . Program (P′) is thus autonomous. Now, no
that if (s∗(t), c∗(t)) is an optimal solution of program (P), then necessarily((s∗(z), t = z),
(c∗(z),1)) is an optimal solution of (P′). Therefore, if a symmetryΨu exists for program
(P′), with generatorsX = ((Xi)i=1,...,n,Xn+1), then, by applying Noether’s theorem alo
the optimal path, one finds the invariance of

∑
i=1,...,n Xiλ

∗
i + Xn+1λ

∗
n+1, whereλi are

for i = 1, . . . , n the co-state variables for (P′) identical to those of (P) along the optim
path and whereλn+1 is the co-state variable associated with time in program (P′). An one-
parameter group of symmetries for (P′) will be said a symmetry for the non-autonomo
program (P).

The Hamiltonian of the autonomous program (P′) is

H̃
(
(s, t), (c, v), (λ,λn+1)

)= p0vU(s, c, t)+ λf (s, c, t)v + λn+1v

= v
{
p0U(s, c, t)+ λf (s, c, t)+ λn+1

}
. (29)
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It is thereforev-linear. But the maximum principle applied to (P′) induces that this Hamil
tonian is maximal when the controlv is equal to 1 on the optimal path. HencẽH is
necessarily null along this path. Consequently,

U(s∗, c∗, t)+ λ∗p0f (s
∗, c∗, t)+ λ∗

n+1 = 0, (30)

i.e.,

λ∗
n+1(t)= −H (s∗(t), c∗(t), λ∗, t

)
, (31)

whereH is the Hamiltonian of program (P). The invariant quantity can be rewr∑
i=1,...,n Xiλ

∗
I −Xn+1H(s

∗(t), c∗(t), λ∗, t). A corollary of Noether’s theorem for a non
autonomous program follows.

Corollary 1. If Ψu is a symmetry for the non-autonomous program (P) then along the
optimal path (s∗, c∗, λ∗),{ ∑

i∈[1,n]
λ∗
i Xi

}
−H(s∗, c∗, λ∗, t)Xn+1 (32)

is invariant, where H is the Hamiltonian of program (P).

4. Applications in economics

We will now give applications of the previous version of the Noether theorem to b
models of economic growth.

4.1. Ramsey’s program without preference for present

The Ramsey model is the first step of the analyses of optimal economic growth (c
Consider a central planner that maximizes welfare of a representative consumer d
period[0, T ],

T∫
0

U
(
c(t)

)
dt, (33)

wherec is the consumption andU is the current utility of the consumer. The accumulat
of production capitalk is

k̇(t)= f
(
k(t)

)− δk(t)− c(t), (34)

wheref is the production function andδ is the depreciation of capital. This equati
basically expresses that total net output is split between consumption and inve
I (t) = k̇(t). The functionsf andU are taken sufficiently regular. We can interpret t
program as a non-autonomous program and parameterize time withz,
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max

T∫
0

U
(
c(z)

) dt
dz

dz, (35)

dk(z)

dz
= v

[
f
(
k(z)

)− δk(z)− c(z)
]
, (36)

and

dt

dz
= v, v ∈]1/2,2[. (37)

Let us consider the one-parameter groupG acting onR
2,

∀u ∈ R, u · t = t + u and u · k = k.

The groupG is a symmetry for the parameterized program. The non-autono
version of Noether’s theorem induces the well-known result that the HamiltonianH is
constant along the optimal path. Recall thatH can be interpreted as the income in terms
welfare (cf. [22]).

4.2. N -dimensional optimal growth

We will show with the following example that the Noether theorem can provide “
obvious” conservation laws and can simplify the study of optimal growth programs.

Consider an(n+ 1)-sectors economy. The sector 0 produces final consumption g
c usingn capital goods. Fori > 0, the output of the sectori is capital goods of typei (e.g.,
computers, instruments, structures, or human capital).

Let si,j 2 be the share of capital stockkj devoted to the sectori; ∀j ,
∑

i si,j = 1 and
si,j is non-negative. Letδi denote the depreciation of capital stockki . The accumulation o
capital verifies∀i > 0,

k̇i = fi(si,1k1, . . . , si,nkn)− δiki . (38)

Consumption goods are also produced using capital inputs

c= f0(s0,1k1, . . . , s0,nkn). (39)

The functionsfj are sufficiently regular (see Section 2), convex, and 1-homogen
maps.

The central planner maximizes intertemporal welfare

max

∞∫
0

e−ρt c1−σ

1− σ
dt, (40)

whereρ > 0 is the rate of time preference (or the subjective discount rate) andσ is the in-
tertemporal elasticity of substitution. The current utilityU = c1−σ /(1− σ) has a constan
relative risk aversionσ .

2 Heres does not designate state variables but controlsshares.
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This general framework includes numerous models of multi-sectors endogenous
[5,9,13] and central planner versions of growth models [3,10].

Let H(ki, si,j , λi , t) be the Hamiltonian of this program. Again, we parameterize ti
The program becomes

max

∞∫
0

e−ρt c1−σ

1− σ
v dz, (41)

under∀i > 0, dki/dz= v[f (si,j )− δiki] anddt/dz= v ∈]1/2,2[.
Consider the one-parameter group(Ψu) acting onR

n+1 by ∀u ∈ R,

Ψu · (t, (ki))= (
t + u, eρu/(1−σ)(ki)

)
. (42)

Taking vu = v and∀i, j , s(i,j),u = si,j , the group(Ψu) is a symmetry for the program
Hence, the Noether theorem yields the following conservation law

−H+ ρ

1− σ

i=n∑
i=1

kiλi is invariant along interior optimal paths.

Therefore, one dynamical variable can be expressed as a function of the other
control, co-state and state variables. Because of the symmetry(Ψu), the dimension of the
dynamical system is reduced.

For example, this result can be applied to the Mankiw et al. [10] framework. Con
an economy with the aggregated production function

Q(t)=K(t)αH(t)β
(
A(t)L(t)

)γ
,

whereK is the physical capital,H is the human capital,A is the exogenous technic
progress,L is the labor, andα + β + γ = 1. The production includes consumption goo
and investments in human or physical capital. The growth rate of the populationn.
Let us assume that the technological progress is Dixit–Stiglitz,A= θKµH 1−µ, whereθ
is a constant. Small letters will refer to values per capita. Thusq = θγ k1−β ′

hβ
′
, where

β ′ = β + γ (1−µ). Assume that the accumulations of capitals verify

k̇ = s1q − k(δK + n) (43)

and

ḣ= s2q − h(δH + n), (44)

where the parametersδ are the rates of depreciation of physical and human capitals as
are the saving rates or the shares of production devoted to physical investments and
tion or training. The amount of consumption goods is thus

c= (1− s1 − s2)q. (45)

We introduce a central planner who sets the investmentss1 ands2; he/she maximizes th
welfare

∫∞
0 e−ρt (c1−σ /(1− σ))dt . LetHMRW (k,h, s1, s2, λ1, λ2, t) be the Hamiltonian

of this program.



612 P. Askenazy / J. Math. Anal. Appl. 282 (2003) 603–613

s that

-
unted

e pro-

pital.
cks.

zero
vation

es

ts at the
In this case, the conservation law becomes−HMRW + (ρ/(1− σ))(kλ1 + hλ2) is
constant along interior optimal paths. Let us recall that the maximum principle implie
∂HMRW/∂si = 0, i.e.,λi = −e−ρt (∂U/∂qsi)= e−ρt c−σ ; therefore

HMRW − ρe−ρt

1− σ
c−σ (h+ k) (46)

is invariant.
In economic terms, the HamiltonianHMRW = e−ρtU + λ1k̇+ λ2ḣ represents the dis

counted utility measure of the sum of consumption and investment, i.e., the disco
utility measure of income. Furthermore, the marginal increase in the total value of th
gram (beginning at datet) due to a marginal increase ink or h is equal toeρtλ (see [8]);
hence, the co-state variablesλ can be interpreted as the shadow discounted price of ca
The quantityλ(h+ k) is then the discounted “value” of human and physical capital sto
This drives an economic interpretation of the conservation law (46),

discounted “income”− ρ

1− σ
× discounted “value” of capital stocks= constant.

The economic path should also verify the transversality conditions lim+∞ λ1k =
lim+∞ λ2h = 0, i.e., the discounted value of capital stocks vanishes whent tends to in-
finity (cf. [8,11]). Under this condition, the left side of the conservation law tends to
while it is constant; this quantity is thus null along the path. Consequently, the conser
law becomes

current “income”= ρ

1− σ
× current “value” of the capital stocks.

Finally, because

HMRW = e−ρt c−σ
[

c

1− σ
+ s1q + s2q − k(δK + n)− h(δH + n)

]
andc= (1− s1 − s2)q , the conservation law can be written as

c

1− σ
+ s1q + s2q − k(δK + n)− h(δH + n)= ρ

1− σ
(h+ k).

This relation gives the value of the total current saving rates̃ = s1 + s2,

σ s̃q = q − [
(1− σ)(δK + n)+ ρ

]
k − [

(1− σ)(δH + n)+ ρ
]
h. (47)

Here, the “forward looking” control variablẽs explicitly depends only on the current valu
of the capital stocks.
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