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Abstract

This paper provides a new simple version of Noether's theorem. From symmetries of dynamic
optimal programs, this theorem gives invariant quantities along optimal paths. It is suited to optimal
control programs especially for economic models. Applications in growth economics are given.
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1. Introduction

The existence of symmetries helps to reduce the dimension of analytic problems. This
method has been extensively used in physics or mechanics (e.g., to solve systems of partial
differential equations; see [1] or [21]). It has also potential applications in economics. For
example, Russell and Farris [14] discuss the integrability of some classes of functions of
good demand, exploiting symmetries (actually Lie groups) that act on these functions;
Samuelson [15] and Sato [17] study symmetries of technical change and optimal growth
models.

The Noether theorem is the main tool to exploit symmetries of dynamic optimal pro-
grams. This theorem gives conservation laws, i.e., invariant quantities along optimal paths.
As in physics, conservation laws can add necessary conditions of optimality for economic
problems; they can thus reduce the dimension of optimal dynamical systems (of control
and state variables). From an econometric viewpoint, because they offer stationary quanti-
ties instead of dynamic differential equations, they can help to validate some theories [16].
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Finally, conservation laws can have direct interpretations such as the income/wealth law in
economics (cf. [18] or [24]) or the conservation of energy in physics.

In economics, optimal control methods with the maximum principle of Pontryagin
et al. [12] are preferred to variational approaches because it is more general and better-
adapted to a modeling of optimization under constrained and control variables. How-
ever, standard versions of Noether's theorem sometimes used for economic problems
(cf. [17,19]) only apply in the approach of calculus of variation and primary versions for
optimal control can seem complex [20]. The aim of this note is thus twofold: to provide
a tractable and operational version of Noether’s theorem in an optimal control framework
and to give first applications in economics.

The outline of the note will be the following. Section 2 presents basic notions of geom-
etry. The basic optimal control version of Noether's theorem is given in Section 3. The
paper concludes with direct applications in growth economics.

2. A smple program and basic notions

We take a very simple program (P) as a benchmark:

T

max/ U(s(t), (1), 1) dt, (1)
0

where the state variabletakes its values i, an open subset @&”, the control variable
¢ takes its values in a subsétof R™, and the functiorV is continuous and continuously
differentiable with respect to andz. The dynamical constraint is

$(1) = f(s(),c(0),1), 2)

where f is continuously differentiable ove$ and [0, T'], and continuous as well as its
partial derivatives with respect toandr overS x C x [0, T]. Finally, the initial and final
constraints are simply

s(0) = s, s(T) =sr7. 3

We will denote byH (s, ¢, A, t) = poU (s, ¢, 1) + Af (s, ¢, t) the Hamiltonian of program
(P), where is the co-state variable (of dimensioh

Remark 1. For normal programs (in the sense used by Clarke pg);an be normalized
po = 1. This is generally the case for economic programs, but it is not always possible
(see [6] for examples).

The results presented in this note can be extended to more general programs if the
latter maintain a minimum of regularity that guarantees the use of the maximum principle.
Thus, one could soften some regularity constraints by using the extensions of Pontryagin’s
theorem developed by Warga [23] or Clarke [7]. Boundary constraints can also be replaced
by inequalities, can be free, if they verify the constraint qualifications (cf. [8]). Finally,
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one can (and we will do it in the last section) apply Noether’s theorems to infinite horizon

programs (see [6] for correct assumptions that give a maximum theorem in this case).
We will give a set of definitions of standard geometric notions, necessary for the pre-

sentation of the Noether theorem. Let us consider a differential mamifaad its tangent

spacel’ M. The reader can tak® as the Euclidian spad®” or S; then,T M is identified

as the space of the partial derivatives o®€r which is isomorphous t&" x R".

Definition 1. A vector field X is a map which associates to= M, an element of the
tangent spac& M such that the natural projection of this elementidris s.

Let us takeM = R”". Let (s1,...,5u, X1(s1,...,54), ..., X, (s1,...,5,)) denote the
canonical coordinates of the vector fieXdin R" x R”. If g is a differentiable function
of s € M, we defineXg as

Xg= Z Xif; (4)
1 n
in this caseX (s) identifies with a derivation.

Definition 2. We call an integral curve ok, from p € M, any trajectory defined over a
maximal temporal domain such thét, s; (1) = X, (s(¢)) ands(0) = p.

Assume henceforth that there exists- 0 such that for allp € M, there is an integral
curves(t) of X from p, defined at least for € |—e¢, +¢[. Let us take¥, (p) = s(¢). We
thus define a family of map#,, u € ]—¢, +¢[ from M into M. It is straightforward that
this family forms a local:-parameter group of maps @d. The local grougy,) is said to
be generated by.

Conversely, if we consider a sufficiently regular one-parameter group of gps
then

dw,
(p)
u

X(p)= p

(5)
u=0
defines a vector field oM that generateg?,,).
Finally, T, will denote the tangent map af,. Let us recall that fos = S or R",
TV is the map that associates to a tangent veatar. . ., x,,) at a points of M, the vector
(»y1,...,yn) tangentaWs,

n

o0v;
Vi=Y — (). (©)

as;
j=1""

Example 1. ConsiderM = R". Let X be the vector field ofR" generated by the matrix
nxnA,ie,X(s)=As forall s € M. The one-parameter group generatedibis thus
the set of the endomorphismskf, ¥, = expuA), u € R. If x is a tangent vector at the
points thenT ¥, x = expuA)x.
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3. Noether’stheorem in optimal control

Let us first consider the autonomous version of the program (P), i.e., we maximize

T
V:/U(s([),c([)) dt 7
0
under the dynamical constraint
§@t) = f(s(®),c®), c@)eC. (8)

Getting inspiration from the notion of symmetry (or invariance) for a Lagrangian
(cf. [21]), we will define a “symmetry” for a problem in optimal control.

Definition 3. We call a symmetry for the autonomous program, a local one-parameter
group(¥,) (generated by the vector field) acting onS such as/u, Vc € C andVs € S,
(1) there exists;, such that
T, (f(Y_us.c)) = f(s,cu), 9)
and
3] U(Wys, cu) =U(s, c). (10)

We are now able to give Noether’s theorem in optimal control.

Theorem 1 (Noether’s theorem in optimal control¥.the local group (¥,) isa symmetry
for the autonomous optimal program, then along the optimal path (s*, ¢*, A*),

D ONX (11)
i
isinvariant.

Proof. The derivative of (10) with respect iogives
dU (Wys, cy) _

du B

Using the chain rule for = 0, it comes that

0. (12)

oU U d(cy)i
Xi: {Xi I (s(0), c0)) + Xl: o (s0). c0) = (t)} —0. (13)
Therefore
du
d—(s(t),cu(t)) =—(XU)(s(t), c(1)). (14)
u u=0

Let us take the vector
(T (f(Pus,0)) = f(s,cu).
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Its derivation with respect te shows that

f 0X; afi
E(S(t)’ Cy (t)) L = (XJ: s, (s(t))fj (s(t), c([)) - gj(s(t), c(t))Xj (s(t)))i.
(15)
Indeed,
d v/
T Wous, o) = (E[; T f,wus,c)D[
d (W] vl d
- (S[F (G« oo+ T« L),
j J ! ’
(16)
and
i(ﬂ) =i<i¢;> - x, (17)
du\ 9sj )|,—o 0s;j \du u=0 O0S;
d af;
Efj(%sm) Y = Xk:—Xka—S]’((s,C). (18)

The second member of (15) is the Lie bracketoéind of 1 noted[ X, f1(s(¢), c(¢))
(see [21] or [4]). The reader can consider here that this is just a notation. Now, let us
take place on the optimal path*, c*, A*) at a given date. Consider the function of,
H(u) = poU (s*, c) + 1* f(s*, ci). According to the previous derivatives:at= 0,

d
T o o050, ) + 2 OLX, F1(7 0, ). (19)
u=0

But the left member of this relation is merely the temporal derivativeadt) ; X; A
along the optimal path. Indeed, the maximum principle implies that

oH _ _aU .Of

A= =——po— . 20
! 35,‘ 35,‘ po 83,’ ( )
Besides
n n
. 0X; . aX;
N 83,’ N 83,’
j=1 j=1
And therefore, using the chain rule, it comes that
d U af = 0X;
— A X =—po—X; — X; M — +Af i, 22
dt i poas,- ! ! as,» + ! (Z asj' fj ( )

1 Becausef is equal to the temporal derivative of the state varialflshould be seen not as a function but as
an element of the tangent space.
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thus

dH(u)
du

d n
=S¥ X8 (23)
u=0 dt i

Finally, in order to prove the theorem, it is sufficient to show & (1) /du)|,—0 = 0.
The maximum theorem states that the optimal control variable maximizes almost every-
where the Hamiltonian. One has therefore a.e.

pOU(S*7 C*) + )\'*f(S*a C*) 2 pOU(S*7 CM) + )\'*f(S*a Cu)' (24)
Becausg(0) = H(s*, c¢*, A*), H(u) reaches its maximum at=0, i.e.,
d
"Wl _o g (25)
du u=0

Before giving some economic examples in Section 4, we will see how the theorem can
be generalized for non-autonomous programs. The method is inspired by the approach used
in[21] or [2, p. 95, Exercise 4], for the extension of Noether’s theorem to non-autonomous
Lagrangian systems.

Take the non-autonomous program (P) described in Section 2. We parameterize time
and consider that it is a new state variable (nexftdConsider the program (P

T

max/ U(s(2),c(z),1(2))vdz (26)
0

under

ds

e vf (s(2), ¢(2), 1(2)) (27)
and

dt

o= (28)

with the new control variable €]1/2, 2[ (one could take any open set around 1); and the
constraints (z =0) =0 and¢(z = T) = T. Program (P is thus autonomous. Now, note
that if (s*(¢), c*(¢)) is an optimal solution of program (P), then necessariy(z), t = z),
(c*(z), 1)) is an optimal solution of (). Therefore, if a symmetry, exists for program
(P), with generator = ((X;)i=1...n» Xn+1), then, by applying Noether’s theorem along
the optimal path, one finds the invarianceXf_; _, XiA] + Xu11A; 4, Wherei; are
fori =1,...,n the co-state variables for (Fidentical to those of (P) along the optimal
path and wherg,, ;1 is the co-state variable associated with time in prograh # one-
parameter group of symmetries for\®ill be said a symmetry for the non-autonomous
program (P).

The Hamiltonian of the autonomous prograr) (B

ﬁ((s, 1), (c,v), (A, An+1)) = povU(s,c,t) +Af(s,c,t)v+ Apy1v
=v{poU(s,c.t) +Af(s,c, 1) + Any1}. (29)
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Itis thereforev-linear. But the maximum principle applied to'Jhduces that this Hamil-
tonian is maximal when the contrel is equal to 1 on the optimal path. Henég is
necessarily null along this path. Consequently,

UGs™, c*,t) + A pof(s*, c*, 1) + 4,1 =0, (30)

M) =—H(s*(1), c*(1), A", 1), (31)

where H is the Hamiltonian of program (P). The invariant quantity can be rewritten
Zi:l,...,n Xirj — X2 H(s*(t), c*(t), A", t). A corollary of Noether’s theorem for a non-
autonomous program follows.

Coroallary 1. If ¥, is a symmetry for the non-autonomous program (P) then along the
optimal path (s*, ¢*, A*),

{ > x;kxi}—H(s*,c*,x*,t)Xm (32)
i€[l,n]

isinvariant, where H isthe Hamiltonian of program (P).

4. Applicationsin economics

We will now give applications of the previous version of the Noether theorem to basic
models of economic growth.

4.1. Ramsey's program without preference for present

The Ramsey model is the first step of the analyses of optimal economic growth (cf. [3]).
Consider a central planner that maximizes welfare of a representative consumer during a
period[O, T],

T
/ U(c(t))dt, (33)
0

wherec is the consumption antd is the current utility of the consumer. The accumulation
of production capitak is

k(1) = f (k@) — 8k(t) — c(2), (34)

where f is the production function and is the depreciation of capital. This equation
basically expresses that total net output is split between consumption and investment
1(t) = k(1). The functionsf and U are taken sufficiently regular. We can interpret this
program as a non-autonomous program and parameterize time,with
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T
dt
max/ U(c(z))d—Z dz, (35)
0

dk

d(;) = o[£ (k@) — 8k(2) — ()], (36)

and

ar _ v, vell/2, 2. (37)
dz

Let us consider the one-parameter graupcting onR?,
YVueR, wu-t=t+u and u-k=k.

The groupG is a symmetry for the parameterized program. The non-autonomous
version of Noether’s theorem induces the well-known result that the Hamiltdfias
constant along the optimal path. Recall thatan be interpreted as the income in terms of
welfare (cf. [22]).

4.2. N-dimensional optimal growth

We will show with the following example that the Noether theorem can provide “non-
obvious” conservation laws and can simplify the study of optimal growth programs.

Consider an(n + 1)-sectors economy. The sector O produces final consumption goods
¢ usingn capital goods. Fot > 0, the output of the sectélis capital goods of type(e.g.,
computers, instruments, structures, or human capital).

Let s; ;2 be the share of capital stodgk devoted to the sectar Vj, 3, s;; = 1 and
si,j is non-negative. Lef; denote the depreciation of capital stdgkThe accumulation of
capital verifiesvi > 0,

k.,' = fi(si,1k1, ..., Sinkn) — Sik;. (38)
Consumption goods are also produced using capital inputs
¢ = fo(so,1k1, . .., s0.nkn). (39)

The functionsf; are sufficiently regular (see Section 2), convex, and 1-homogeneous
maps.
The central planner maximizes intertemporal welfare

]

1-o
max/ e P! 1C dt, (40)

— 0

0

wherep > 0 is the rate of time preference (or the subjective discount ratey asthe in-
tertemporal elasticity of substitution. The current utilify= 1= /(1 — o) has a constant
relative risk aversiow .

2 Heres does not designate state variables but constudses.
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This general framework includes numerous models of multi-sectors endogenous growth
[5,9,13] and central planner versions of growth models [3,10].

Let H(ki, si,j, Ai, t) be the Hamiltonian of this program. Again, we parameterize time.
The program becomes

® 1-o0

max/ e*p’lc—vdz, (41)

0

undervi > 0, dk; /dz = v[ f(si.;) — 8iki] anddt /dz = v €]1/2, 2].
Consider the one-parameter gro@h,) acting onR”*1 by Vi € R,

W, - (t, (k) = (t +u, ™/ (k). (42)

Taking v, = v andVi, j, sq ). = si,j, the group(¥,) is a symmetry for the program.
Hence, the Noether theorem yields the following conservation law
0 i=n
-H+— Zkiki is invariant along interior optimal paths.
l-0 v
Therefore, one dynamical variable can be expressed as a function of the other current
control, co-state and state variables. Because of the symipetyythe dimension of the
dynamical system is reduced.

For example, this result can be applied to the Mankiw et al. [10] framework. Consider
an economy with the aggregated production function

(1) =Kn*Hn (ANL®)”,

where K is the physical capitalH is the human capitald is the exogenous technical
progressL is the labor, and + g + y = 1. The production includes consumption goods
and investments in human or physical capital. The growth rate of the population is
Let us assume that the technological progress is Dixit—Stiglitz, 6 K * H1~*, whered

is a constant. Small letters will refer to values per capita. Tmuserl—/f‘/hﬁ‘/, where

B =B+ y(1— n). Assume that the accumulations of capitals verify

]%zslq—k(ak +n) (43)
and
/:lzszq—h((SH +n), (44)
where the parametessare the rates of depreciation of physical and human capitals and
are the saving rates or the shares of production devoted to physical investments and educa-
tion or training. The amount of consumption goods is thus

c=(1—-s51—152)q. (45)

We introduce a central planner who sets the investmerands,; he/she maximizes the
welfare[oo" e P (17 /(1 —0))dt. LetHarw(k, h, s1, 52, L1, A2, t) be the Hamiltonian
of this program.



612 P. Askenazy / J. Math. Anal. Appl. 282 (2003) 603-613

In this case, the conservation law becomed v gy + (0/(1—0)) (kA1 + h)2) is
constant along interior optimal paths. Let us recall that the maximum principle implies that
OHMRrW/0si =0,i.e.,4; = —e P (dU/dgs;) = e P ¢~ 7; therefore

—pt

e
Hatrw — ‘1)_ "+ k) (46)

is invariant.

In economic terms, the Hamiltonid \ )y = e ' U + A1k + A2k represents the dis-
counted utility measure of the sum of consumption and investment, i.e., the discounted
utility measure of income. Furthermore, the marginal increase in the total value of the pro-
gram (beginning at date due to a marginal increase knor % is equal toe?’ A (see [8]);
hence, the co-state variablesan be interpreted as the shadow discounted price of capital.
The quantityr (2 + k) is then the discounted “value” of human and physical capital stocks.
This drives an economic interpretation of the conservation law (46),

0

discounted “income* 1 x discounted “value” of capital stocks: constant.

The economic path should also verify the transversality conditionsJitimk =
lim;1 A2k = 0, i.e., the discounted value of capital stocks vanishes whends to in-
finity (cf. [8,11]). Under this condition, the left side of the conservation law tends to zero
while it is constant; this quantity is thus null along the path. Consequently, the conservation
law becomes

current “income” =

x current “value” of the capital stocks.
— 0

Finally, because
C
Harw =e "¢ [E + 519 + 529 —k(6x +n) —h(én + n)}
andc = (1 — s1 — s2)q, the conservation law can be written as

.
g 4529 — kB + 1) — hGy +n) = —L—(h + k).
1—-0 l1—-0

This relation gives the value of the total current saving fates; + s2,
05q=q—[(1—0)dk +n) +plk—[(L—0)u +n) + p]h. (47)

Here, the “forward looking” control variabkeexplicitly depends only on the current values
of the capital stocks.
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