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Abstract: Frequently, in applications, a function is iterated in order to determine its fixed point, which represents the
solution of some problem. In the variation of iteration presented in this paper fixed points serve a different purpose.
The sequence { F,(z)} is studied, where F\(z) = f,(z) and F,(z)=F,_,(f,(z)), with f, — f. Many infinite arithmetic
expansions exhibit this form, and the fixed point, «, of f may be u ed as a modifying factor (z = a) to influence the

convergence behaviour of these expansions. Thus one employs, rather than seeks the fixed point of the function f.
Keywords: Limit periodic iteration, continued fractions, attractive fixed points.

Introduction

The purpose of this paper is to describe an important variation of iteration that appears
frequently in the study of arithmetic infinite expansions and that may have applications in other
kinds of functional approximations, as well as in investigations of dynamical behavior.

CAancider a canniance ~f fiinectinng [ £ and noenciatad caniinmen AP engt < D o<k

LOnsials a sequeince o1 1unciions 1_],, ] anda an associateda sequence o1 regions 14/, WIETE
(i) For each n, f, is analytic in with f,(D,) contained in D, _
(i) ND, + 4@ and there is a domain D that lies in ND,.

(iii) f, (Z) - f(z) on D.

For z € D define Fy(z) = f,(z) and F,(z) = F,_,(f,(2)) for n> 1. The sequence { F,(z)} will
be designated limit periodic iteration, since it represents a generalization of the composmonal
structure of limit periodic continued fractions (see Example 2).

We shall require two additional conditions in the theory developed in the present paper:

(iv) Let f, — f uniformly on closed regions contained in D.

(v) There exists a simple closed contour I" contained in D such that f(£) is contained in

Int(§2), where 2 =1U Int(F ).

lﬂlb ldbl L()I](.llll()l'l mbures lIlC Cle[CnC@ OI at lCaS[ one p01nl a 1n ll Sucn tnat f(a) = .
Normal iteration occurs when f, =f. When, in addition, f is a contraction on £ it follows

. .
that F,(z) — «, the “attractive” fixed point of f.

We shall show that this behavior is paralleled in the more general setting in which f, — f. That
is to say, F,— A, a constant in D, for all z € . Thus, in a certain sense, the best possible
“accelerating factor” z touse in { F,(z)} is z = a.
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stronger hypotheses) a result obtained by Henrici 3, p.524].
It is of particular importance to observe that should A exist, its value is highly dependent upon
the characteristics of the f,’s. If one considers the more“natural” composition

Gl(zY=Ffof o...0f of(z)
a\<€) = Jn " Jn-1 fre Alz),

1
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/

then it is not difficult to show that frequently G,(z) — «, the attractive fixed point of f,

regardiess of the specific forms of the f,’s. Thus, with regard to variety of functional expansions

it appears the F,(z) is of considerably greater importance that G,(z), and that the limit periodic
vt smmmerr Ao annnce t4 Frinetinng that ara mara gnmmhicticoatad than thaoca that crom o avean
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in simple iterative fashion.

The following elementary examples demonstrate limit periodic and reverse limit periodic
“perturbations” of iterative expansions.
Example 1. F({)=¢—¢2+ ¢ - =¢/(1+¢)if |¢| <1. By setting f,(z)=1—{z we may

write F({)=1lm, _  F,(z) for all zeC. lLe, F(§)=¢ a({), where a({) is the attractive fixed
point of f(z)=1—{z. Now consider f,(z)=1—(1~1/n)$z for n>1 and f,(z)={z. Then
lim, _, ,,(z) =Ln(l +¢), |¢] <1, for all z€ C. However, lim, _, . G,(z)=1/(1+{)=a({) for
all such z’s. Convergence can be enhanced by using z = a({). For instance, |F5(0)—

1.95| = 8.0 X 107, whereas | Fyo(a) —Ln 1.95| = 7.6 X 107

Or, let f,(z)=1+ (1/n)§z for all n. Then lim, , F(z)=¢e
that lim, _, .,G,(z) = a(§) = 1.

Iy 11 —
e’

for all zeC Agam we find

Example 2. The approximants of the periodic continued fraction

_A L

FO) =0+ 11

can be interpreted as { F,(0)} where f,(z)=(§{/4)/(1+z)=f(z). It is well known that
F(z) > a({), where a($) =(y1+¢ —1)/2, Re {1 + { > 0, for all values of z with the exception
oz =~ D[]

+ .- =lim,  _F,.(z)={¢(Arctan )"

1 [(di shl (AN

for z =0 and z = a(¢{), and convergence is improved by using «a({), [6]. For example,

| F,(0) —F(2.8)| =12%x10"! and |F,(a)— F(2.8)|=6.1x10"*

The convergence theorem

Let us assume that conditions (i) — (v), given in the introduction, are satisfied. Thus f has at
least one fixed point in £2.
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Theorem 1. Assuming (1)—(v), if a, a fixed point of fin Q, is such that | f(z) —a| < |z — a| for
all z €T, then « is the unique fixed point of f in §2, and there exists a constant A in D, where

lim,_, F,(z,)=A forall {z,} in Q.

Comment: In order to simplify the following proof it will be assumed that z, = z. The details
can be easily adjusted for the more general case.

Proof. That a is the only fixed point of f(z) follows from Rouche’s theorem: let G(z) =f(z) — a
and F(z)=z— «. Then |G(z)| < |F(z)| forzeI. Hence, G(z)+ F(z)=f(z)~zand F(z)=
a — z each have one zero inside I'. Now, set I'*={w:w=z—a, z€T'} and 2*=IT*U Int
I'*. Then h(w) = f(w+ a) — a is analytic on £*, with #(0) =0 in £*. Also, |A(w)| < |w| on
I'*. Setting H(w) = h(w)/w for w+ 0 and H(0) = h’(0), we find that sup,, .o« | H(w)| <1, so
that | f(z) —a| <|z—a| forall z€ 2, and | f'(a)| =k, <1.

Thus, there exists K €[ 0,1) such that | f(z) —a| <K |z—«a]| for all z&€ 2. Now, 2 is
contained in D and f,(z) — f(z) uniformly on compact subsets of D. Therefore, f/(z) = f'(z)
uniformly on £. Since |f’(a)| =k, <1, there exists 8 >0 such that |f'(z)| <k,<1 if
|z —a] <8.

For all n sufficiently large

L =1 (D < (2) = f(2)| <1 = k3)/2 when |z—a <8
Hence, | £, (z)| <k,+ (1 —k,)/2=k <1 for |z—a| <8 and n large. Therefore, for z, and z,
in(|z—a| <48)and n large,

| fu(z1) = fu(22) ] < I:ZI‘fn’(Z)’ ldz| <k|zy—zy|, 0<k<l.

L.e, each f, contracts in the vicinity of a when » is large.

Next, we show that z in £ is drawn into (|z—a| <8) by F,,, .(2)=
Joc1°fuine oo o frim(2) for n and m sufficiently large.

Choose n, so large that n > n, implies f,(£2) is contained in £2,

| £, (z)—f(z)| <e=8(1—-K)/2 forall z€Q,
and

| fo(z1) = f,(2z;) | <k|z;—z,| forzyz,e(|z—a| <8).
Then

LFnem(2) =@l < | frii(Fpirpim(z

(
<e+ K I Fn+l,n+m(z

)) _f(F;1+1,n+m(Z)) | + If(Ez+l,n+m(z) ~al
) —al

<eteK+ - +eK™ '+ K" |z — af
<e/(1—K)+ K™ sup,cq|lz—al <8,

when m is sufficiently large.
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Thus, for all n > ny and all z € @ there exists m, where m > m, implies | F, ,,,,(z) — a| <8.
If ze(|z—a| <39), then
| fo(2) —al < | fu(2) = f(2) |+ f(z) —a| <8(1 - K)/2+ K§ <3,
so that f (z) € (|z — a| <39).
In other words, z € 2 can be pulled into (|z — a| < §) by certain composition chains of f,’s

and kept there by the actions of additional f,’s if n>n
We then have, for any z € £, fixing n =n, and m =m,;:

lF n+m+p( ) n+m+p+q(z)|

n,n+p71(Er+p,n+p+m(Z)) - E1,n+p—l(F;1+p,n+p+m(Et+m+p+l,n+m+p+q(z)))t
<k?(28)—>0 asp— o0.

Hence, { F, . n4,(2)},-1 converges.
Since

lEt,n+m+p(Z]) - F;z,n+m+p(22) l

n,n+p41(l:;1+p,n+m+p(zl)) - E1,n+p4l(Et+p,n+m+p(ZZ))l
<k?(28) >0 asp—o oo forz,z,eQ,

we see that lim, , F, .., (z)=w, for all z€ . Consequently, lim,_  F(z)=F(wg)=A
for all z € £, and the proof of Theorem 1 is complete.

The use of z = a in computing A is, in a sense, a best possible accelerating procedure since
E(a)=A=aif f,=f. In a more general setting it is still possible to demonstrate convergence
acceleration.

Theorem 2. If (i) The hypotheses of Theorem 1 are satisfied, (ii) f,(82) is contained in £ for all n,
(iii) there exists 0 < p <r <1 such that

pla—nl<Ifz)—flz) <rizi—2) forallnandallz, 7, €8,
and (1V) | £,(2) = f(2)| <e€(n) for all z €  and all n, where e(n)| and e(n)=o((p/r)"), then,
for ze(|z—a] >e1)/(1 — K)), we have

| F,(a) =A| <e(n+1)(r/p)"B(z) | F,(z) = Al
where

B(z)=((1~K)(|z—a|-€e1)/(1-K))) ' =((1—K)|z—a|—€(1))
Proof. We write

) (a) — }\) ,F (a) — F, (hmF+1n+m a)\

)—>\. F( )_ (hmF+1n+m(a) )
rnla- hm F+1 n+m(a)|
< Al — lhim F ()]
L I 1m tn+1, n+m\&) |

m— oo
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where
|E1+1,n+m(a) - a| < If(El+2,n+m(a)) - al + |fn+l(E1+2,n+m(a)) —f(F;H-2,n+m(a))|
SK|Fpnem(a) —al+e(n+1)
<I<[|f(1;;t+3,n+m(a))_a|
1 fe2(Franim(@) = f(E s im(@) (] +e(n+1)
SK?|F 5 im(a)—a|+Ke(n+2)+e(n+1)
S.K’”la—a|+K’"Fle(n+m)+'--+Ke(n+2)+e(n+1)
<e(n+1)/(1-K)<e(1)/(1 — K).
Hence
EF(a)—X <(£)” e(n+1)/(1-K)
E(z)=A| "\p) Tz—al=ja= lim F,.,(a)]
r\” e(n+1) ("
<(;) A=K |z—a|—<) <e(n+1) (p) B(z).

This completes the proof of Theorem 2. O

Suppose, now, that there exists a compact, connected set E contained in C such that for
S$EE, f,(2)=1,(¢, 2), f(z)=f(¢, z), and f, — f uniformly (jointly on E and §2). Under these
conditions a = a({). We shall further stipulate that | f(, z) —a({) | < |z—a({)| forall zeT
and all { € E, and f({, £2) is contained in Int(2) for all { € E.

By carefully following the proof of Theorem 1, keeping in mind that both E and @ are
compact, it is possible to infer the existence of 6 > 0 such that for all »n sufficiently large, all
z, € Ng(a({)), and all { € E,

| £ (8, 20) = £.(8, 22) | <k|zy—zy| where0<k <1.

It then follows, after a rather tedious analysis, that F, (¢, z) — A({) uniformly on E for each
z € 2, so that A({) is analytic on E. These conditions are exhibited in the following example.

Example 3. Let f(z)=1+»,/(1+z)+(1—1/{)z, where », > 0. Set £=(|z—100]| < 100)
and E=(|{—100| <10). We find that «({)=¢, and |f($, z)—a($)| < |z—a({)] for all
{ € E and z €I'. Furthermore, | f({, z) —100| < 99.3 which implies f({, 2) lies in Int(8) for
all {€E. Uniform convergence follows from |f.($, z) —f(¢, z)| < |»,|. For {=100 and
v, =1/2" computation gives | Fyyo(1) —A| = 1.8, Fypo(50) —A| = 6.7, and | F;,(100) — A | = 5.0
X 1077,

Little is known about the conversion of a function to a limit periodic form other than a simple
power series expansion (and its equivalent continued fraction), and a T-fraction expansion of a
bounded function [2,7]. There is some evidence that continued fraction expansions of functions
that satisfy certain Ricatti differential equations are limit periodic [4]. More information might
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support an argument for redefining the value of a limit periodic continued fraction: lim, , _F,(a),
rather than lim, _, _ F,(0).

Power series of functions are frequently limit periodic. Consider a function G({) analytic in
([§1 <R). Set H,=G"(0)/nG"P(0) when G D(0)#0. If G™(0)#0 for all n and
lim, , H, = L, then G({) has a limit periodic series expansion of the form G(§)y=1lim,_ F,(z),
z€C, where f,(z)=1+ H,z{ - 1+ Lz{. The expansion is valid in ( |$| < R), with possible
analytic continuation into (|{| < R*), R* > R, by using z = a({) = 1/ — L) [2].

An infinite product, G({)=Ilg(n, {), may be modified in a limit periodic setting by
converting to log G({) and writing f,(z) = zlog g(1, {), f.(z2) =1+ zP(n, ¢) for n> 1, where
P(n, {)=1og g(n, {)/log g(n—1, §). If P({)=1im,_ P(n,¢) exists and is not one, then
F,(z) has limit periodic structure with a({) =1/(1 — P({)). E.g., the function [I(1 + ¢”) when
modified with a({) shows a modest improvement in convergence of 10~2 for n < 10.

It is interesting to see the effect on the appearance of an expansion that occurs when « is used.
For example, Euler’s number vy, given by lim, , [1+1/2+ --- +1/n—log n], may be de-
termined by limit periodic analysis by setting f,(z) =1—n log(1 + 1/n) + (n/(n + 1))z. Here

f(z) =z, but a, = 1/2 which we use as a to obtain
F(a)=1+1/2+---+1/(n=1)+1/2n—log n.

Computation shows there Is some improvement in convergence, simply by using 1,/2n in place of

1/n in the standard definition of y.

The last example demonstrates convergence of a “deviant” continued fraction. If f(z)=
afB/(a+ B~ z), where |a| < |fB], then iteration of f produces a periodic continued fraction
that displays the fixed points of f(z) and converges to the attractor «. We modify the internal
structure of this continued fraction to produce a rather bizarre arithmetic expansion.

Example 4. Let f,(z) =(27"z> + aB)/(a + B — z). Then f, =/ uniformly on £ =(|z—100] <
5.5), with & = 100, 8 =110. Formally, we compute |F,;;(0) —A] =1.0 X 107> (the “continued
fraction” approximant). Whereas, under the restraints of Theorem 1, | F166(95.5) —A| =1.0 X
10 °and | Fp(a) —A| =1.0%x10"°,
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