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In this note we construct a sheaf of rings over real spectra which generalizes the common sheaf 

of Nash functions over a Nash set and we use it to get some Nullstellensatze for the geometric 

case. 

Introduction 

Writing about the ring of continuous semialgebraic functions over a constructible 

set X of the real spectrum of an arbitrary ring A (his V?(X)), Brumfield says [3]: 

“A more complicated subring of g(X) is the subring N(X) of Nash functions on 

X. Roughly, N(X) consists of sections which are locally elements of rings obtained 

by adjoining simple roots of polynomials to A. Clearly, A C [.. .] CN(X) C E?(X) 

(even though it is not clear what N(X) is precisely)“. It is however obvious that 

N(X) differs from Jv,(X), the ring of global sections over X of the structure sheaf 

for A, since in the general case, different sections give the same function over X (see 

[ill). 
In this note, we shall construct a sheaf of rings over the real spectrum of A which 

generalizes the common sheaf of Nash functions over an affine Nash set. In the first 

part we give the basic properties of this sheaf, in the second some basic properties 

of the geometric case (i.e. Nash functions over Nash sets) and in the last we deduce 

several kinds of stellensatze. 

1. Two sheaves of Nash functions over the real spectrum 

In the sequel, A denotes a commutative ring with unit, and Jv, the structural 

sheaf over Spec, A (see [l l] or [ 11). As usual, for two prime cones cl, p we shall 

write p + a if a specializes p i.e. if PC (Y, and for supp(cx) we shall understand the 

real prime ideal curl -a. 
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Definition 1. For any open constructible set UC Spec,.A let (B, a) be the objects of 

the inductive directed system where I,U : A + B is an &tale ring morphism and (T is a 

continuous section over U of the local homeomorphism w* : Spec, B + Spec,A, 

and whose maps are the A-algebra homomorphisms (D : B --t B’ such that cp * 0 o’= cr. 

The datum U---3 (I@ B)CB, Oj /rad,(O) gives us a separated presheaf and we shall 

consider its associated sheaf N, . 

Remarks 1.1. (i) It follows directly from the definition that there is a surjective sheaf 

morphism Jv, a N, . 

(ii) Since factorising by the real radical commutes with directed inductive limits, 

the stalk of NA at a is A./rad,.(O). 

(iii) For the same reason, we have that N, z NA,+ad,(0). 

(iv) The rings of global sections of N, are real rings. In particular, N, is a sub- 

sheaf of the sheaf of continuous semi-algebraic functions over Spec,A (see [3, 8 or 

131). 

Definition 2. We shall call the stalk of the sheaf N, at the point a, i.e. A./rad,(O), 

the strongly real localization of A in (Y and we shall write it ArCcr,. The canonical 

morphism from A to ArCa) will be r;lu. 

Proposition 1.2. Spec,A,(,, E (p E Spec, A ) /3 + a> with the topology induced by 
Spec,A. 

Proof. By Remark 1 .l(ii), Spec,A,(,)= Spec,A, and now we use [II, 3.71. 0 

Definition 3. We shall say that a ring A is strongly real local if A is local, henselian 

and its residue field is real closed, and in addition A is real. 

Proposition 1.3. For every morphism f from A to a strongly real local ring B, there 
is a unique point a E Spec, A and a unique local morphism h : ArCa) + B such that 
f=hoqa. 

Proof. The ring B is real closed local in the sense of [l 11, so, by [l 1, 4.31 there is 

a unique g : A, --) B such that 

f 
A-B 

commutes. 

Let us consider pa : A, + A,(,); since B is real, there is a unique local morphism 

h such that 
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commutes. 

A r(a) 

The union of these triangles gives us the desired result. 0 

Definition 4. A strongly real locally ringed space is a couple (X,lJ where X is a 

topological space and r is a sheaf of rings over X whose stalks are strongly real local 

rings. 

It is obvious that (Spec,A, NA) is a locally strongly real ringed space. 

Proposition 1.4 (Universal property of NA). Let X be a topological space, (X, r) a 
strongly real locally ringed space, and f : A + T(X) a ring homomorphism. There 
is a unique pair (9, h) with v, a continuous map from X to Spec,A and h a local 
morphism from v)*(N~) to rsuch that T(g)0 0, =f where 0, denotes the canonical 
morphism A -+ N, (Spec, A). 

Proof. The same reasoning used before with [ll, 4.81 in place of [ll, 4.31. 0 

Theorem 1.5 (Idempotence of NA). Let U be an open constructible subset of 
Spec,A; U endowed with the restriction of N, is isomorphic to Spec,(N,(U)) 

endowed with the sheaf N,,(,). 

Proof. The proof given in [ll, 5.11 remains valid in this case. q 

2. The geometric case 

In the rest of this note, R will be a real closed field, Q an open semi-algebraic 

subset of R”, N(Q) the ring of Nash functions over 52. Moreover I/ will be a Nash 

set in Q, that is the zero-set of a finite number of elements of N(Q). Also, let I be 

the ideal of the Nash functions on 52 which vanish on V, and A = N(Q)/I. 
Let us consider the sheaf N, of functions locally defined as restriction of Nash 

functions in open subsets of 52, i.e. for every open constructible set V in Spec,A, 

let us consider the ring IiFWC u N( W)/= where W is an open constructible subset 

of d containing U and f =g iff V’a E U, f(a) = g(a). The map sending each open 

constructible to this ring gives us a separated presheaf and we shall denote by N, 

its associated sheaf. If S is an open semialgebraic subset of V, we shall consider the 

ring N,,(S)=N,(S”). See [4, $41 for first properties of the - operator. 

Lemma 2.1. Let A be a commutative ring, IC A an ideal and (Y E Spec, A such that 
IC supp(a). Then (A/I), E A, /IA,. 
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Proof. Let us consider the commutative square 

w 
A/I-A.@, A/IzA,/IA, 

Since v, is ind-Ctale, I,V is also. Thus, A,/IA, is a real strict localisation of A/I with 

residue field k(a) because the triangle 

A/Z + A,/IA, 

k(a) 

commutes. We have then, that A,/ZA,=(A/Z),. 0 

Proposition 2.2. For every a E Spec, A, we have N “, a = A, /rad,(O). In particular, 
for XE V NV,,=h(A,)/rad,(0). 

Proof. 

N V,a= 15 (N(W)/=‘)= lim N(W) /=‘=N,,./=’ 
.o> W3,a Q>&a > 

where f =‘g iff EIU open neighbourhood of cr in V such that V/IE U, f(/3) =g(p). 

Using the real nullstellensatz for Nash germs in Q (adapt [2, 8.6.51 for the germs) 

we can ensure that f=‘g iff cf- g) E rad,(F) where le is the extension of Z in No,. . 
So, we have that Nv,.~NN,,./radr(l”)~(RIX,, . . ..X.,].)/rad,(F) and, by the 

lemma above, we get finally NV,, = (N(Q)/I),/rad,(O) i.e. A./rad,.(O). 0 

Corollary 2.3. The sheaf N, coincides with NV. 

Proof. There is an obvious sheaf morphism from N, to NV, and this morphism 

induces isomorphisms in the stalks by Remark l.l(ii). 0 

Remark 2.4. Proposition 2.2 answers a question posed by Roy in [ll, p. 4171 

because it is now clear that the stalk at x of the restriction of the structure sheaf 

coincides with the stalk at x of NV iff x is a quasi-regular point (see [5] for more 

details). 

Lemma 2.5. Let ScR” be an arbitrary semi-algebraic subset. 
There is a semi-algebraic partition S,, . . . , S, of S such that the Sj are Nash diffeo- 

morphic to polydisks (0, l)dim ’ J and, if Zj is the Zariski closure of Sj, Sj is an open 

subset of the set of regular points of Zj. 
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Proof. This is [2, 8.1.121. The last part of the statement does not appear there but 

is an easy consequence of the proof given. 0 

We now give a result that, following Coste, we call set-theoretic noetherianness 

of N,(U) for an open semi-algebraic subset CJ of I/. As usual, z&f) (resp. z&l)) 

denotes the zero-set off (resp. I) in U. 

Proposition 2.6. Let ZC N,(U) be an arbitrary ideal. We can find fi, . . . , fP E I such 

that zu(O=zu(fl,...,f,,). 

Proof. The result is an immediate consequence of the fact that for any finitely 

generated ideal J, such that JcI and zLi(J) -Q(Z) is contained in a semi-algebraic 

set S of dimension k, there is a finitely generated ideal J’ such that JcJ’cZ and 

zJJ’> - ~~(1) is contained in a semi-algebraic set of dimension lower than k. 

Therefore we have only to see that the fact claimed above holds true. For this, 

let S ,, . . . , S, be the partition of S given by Lemma 2.5. We can suppose that Vj 

SjQzu(Z); then, there exists gj~ Z such that gj does not vanish identically on Sj, 

thus Z(/(gj)ll SJ = Zs,(gj) is a set of dimension lower than the one of Sj, by the 

identity principle. We now take J’=J+ (g,, . . . ,g,). 0 

Corollary 2.1. The maximal ideals of N,(U) are the ideals of functions vanishing 
at points of U. In particular every ideal in N,,(U) is semi-real. 

Proof. It is enough to check that if I is a proper ideal of N,(U), then z&l) is not 

empty. For this, let fi, . . . , 
then the function ff + ... 

fpEI be such that z,,(Z)=zu(fi, . . . . f,). If z&)=0, 

+ fj is invertible in N,(U), in which case I is not proper. 

0 

Proposition 2.8. Given x E U /et m, = {f E N,,(U) / f(x) = O}. 
We have NV,,= ‘(N,,(U),,,)/rad,(O) =h(A,)/rad,(0). 

Proof. NV,,= ‘(A,)/rad,(O) by Proposition 2.2. 

Let us consider now the ring N,,(,),,. Proposition 2.2 tells us that this ring is 

h(N~(U)m,). 
Now, using the operation - (cf. [4, $41) and the idempotency of N, we see that 

Vu’c U, N,,Cu,(U’)~N,(U’), and taking inductive limits, we get N,,,(,,,,sN,,,. 

In conclusion, N,, = ‘(Nt(U),,Jrad,(O). 0 

3. The stellensltze 

We shall use the results given above in order to prove some stellensatze for 

N,(U). Some of them (real nullstellensatz, positivstellensatz), will be deduced 
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from a substitution lemma combined with a formal stellensatz, and the others 

(Hilbert’s 17th problem, central nullstellensatz), provided N,(U) is an integral 

domain with adequate Krull dimension, from the structure of the space of orders 

of its quotient field. The ideas used in this paragraph are similar to those used in 

[7] where the stellensatze quoted above are obtained for the ring Jv,(U). There is, 

however, a remarkable difference; since the sheaf Jv, behaves better than NV with 

respect to Krull dimension, no additional hypotheses are needed for the second 

group of stellensatze (see [7, Theorems 2.4 and 2.51). 

Theorem 3.1 (substitution lemma). Let L be a real closed field containing R and 
v, : N,(U) + L a ring morphism. Then 

(9 (~(~,),...,~(X,))E~L; 

Proof. We know that if @ : A + N,,(U) is the canonical morphism, @ * : Spec, NV(U) + 

ZJ is a homeomorphism (Theorem 1.5). 

(i) So, the morphism v, : N,,(U) + L determines a prime cone of Spec, N r,(U), 

and so, there is a~ U such that the following diagram commutes: 

k(a) 

Now, (u,W,), . . . , ~wn))=j”m(~,), ..-9 n, C-G )I, and since (n, (X1 1, . . . , n, (X, 1) 
belongs to UkCaj because (Y E U, this point belongs to U,. 

(ii) Let us consider the ring morphism 9’ : N,(U) + L defined by a’(g) = 

g&(X1), ... 9 wG)). 
The morphism 9’ defines a point a’ of U which makes the following diagram com- 

mutative: 

A~N,(U)~L 

k(a’) 

Now, it is evident that PO@ = ~‘oc$. Then, those morphisms define the same 

prime cone in Spec,A, i.e. a = (r’, and, of course yu = ya, and j =j’. As v, =j 0 ya and 

q’=j’o yaC we deduce CJI=~‘. 0 

Let us recall the following result: 



Nash functions over real spectra 49 

Proposition 3.2 (formal theorem). Let A be a commutative ring, and let (aj)jEJ, 

(bk)kEK and @q>qeQ be arbitrary families of elements from A. We shall write P for 

the cone spanned by the aj, A4 for the multiplicative monoid spanned by the bk and 
I for the ideal spanned by the c4. The following properties are equivalent: 

(i) There does not exist any prime cone a of A such that 

VjEJ, ajEa, VkeK, bkesupp(a) and VqEQ, c,Esupp(a). 

(ii) There does not exist any ring homomorphism v, : A + F, with F a real closed 
field such that 

Vj E J, p(aj) 2 0, Vk E K, f(bk) # 0 and Vq E Q, f (c,) = 0. 

(iii) We can findpEP, bEMand cEIsuch thatp+b2+c=0. 

Proof. [2, 4.4.11. 0 

Theorem 3.3. Let <.fj>j= I,,.., sy kkh=l,,.,, ,, (h,),=,,,..,, be finite families in N,(U). 
We shall write P for the cone spanned by the (~)j= ,,.,.,_, M for the multiplicative 
monoid spanned by the (gk)k= ,, ,,,, I, and I for the ideal spanned by the (h4& = ,, ,,, , r. 
The following properties are equivalent : 

(i) The semi-algebraic set 

S={xE VlVj=l ,...) s,fj(X)rO, Vk=l,..., t,g,(x)#OandVq=l,..., r, hq(x)=O} 

is empty. 
(ii) There are f E P, g EM, and h E I such that f + g2 + h = 0. 

Proof. (i) * (ii). It is enough to see that Proposition 3.2(ii) is valid. 

By hypothesis, we have that R satisfies 

z-lx 1, .*. ,-%I ( (x,, **. , X,)EUA /\f,(x,,...,x,)10 ( jss > 

A A &(X1, . . . , x,)#O A A h,(xl,...,x,)=O . 

ksf >( qsr 

Let us suppose that FI q : N,(U) + L such that PW;) I 0, V)(&) > 0 and yl(h,) = 0. 
Using the substitution lemma we see that, if <i = v(Xi), then (cl, . . . , 5,) E U, and in 

additionfjL(rl,...,r,)~O, &L(rl,-.-7&)>0 and hqL(S1,...,&)=O. 
But, using the Tarski’s principle we get that L satisfies 

Y-x /\J;(x,,...,x&O 
jss 

xn)#O A A h,(xl,...,x,)=O 
>( qar 

which is a contradiction. 
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(ii) * (i). Let us suppose that S#0 and let XE S. The morphism 9 : N,(U) + R 
defined by v(f) =f(x) satisfies r&f,) 2 0, &gk) #0 and I = 0 which contradicts 

(iii) * (ii) of Proposition 3.2. 0 

Corollary 3.4 (real nullstellensatz). Let f e N,(U) and IC N,(U) be an ideal. Zf 

z(f) > z(Z), then f E rad,(Z). 

Proof. Let h 1, . . . , h, be such that z,,(Z) =z&h,, . . . , h,) (Proposition 2.6). In this 

case the condition that VXE U, (XE zU(Z) *f(x) = 0) merely says that the semi- 

algebraic set 

L 
xE U 1 f(x)#On 

( 
/\ h,(x)=0 

qsr >I 
is empty. 

Because of Theorem 3.3 this turns out to be equivalent with Xm > 1, 3h EZ and 

3s~ C (NV(U))* such that f2”+s=h, i.e., ferad,(Z). 0 

Corollary 3.5. Let f E N,(U). 
(i) (Positivstellensatz). f(x) > 0 VXE U iff Xg, h E C (N v(U))* such that fg = 1 + h. 

(ii) (Nichtnegativstellensatz). f(x) 2 0 Vx E U iff lim 2 0, ;Jg, h E C (N v( U))* such 
that fg = f *In + h. 0 

Before we begin the second part of this paragraph, let us recall some definitions. 

If A is an arbitrary integral domain, with field of fractions k, ZcA an ideal, and 

Q the cone An C k*, we shall call central radical of Z the ideal rad&Z)= 

{x E A 13rn 2 0, 2y E Q such that x2” + y E Z} . The ideal Z is said to be central iff it 

coincides with its central radical. 

As usual we shall consider Spec, k as a topological sub-space of Spec,A. 

The following description of the central prime ideals is a particular case of a result 

from Saliba. 

Proposition 3.6. Let A be a integral domain with field of fractions k, and let 

p E Spec A. 

Then p is a central ideal iff BY E Spec, A, a/?~ Spec, k, such that p- a and 

supp(a) = P. 

Proof. [12, p. 28, Proposition 3.71. 0 

Examples 3.7. Given the ‘umbrellas’ with equations X3 + Z(X2 + Y2) = 0 and 

X3 + ZX2 - Y2 = 0, let A and A’ be their coordinate rings. 

In both cases 71 =(X, Y) is the ideal of the ‘stick’. Following Proposition 3.6, the 

ideal p is central in A’ but not in A. 

In the sequel we will suppose that the ring A = N(Q)/1 is an integral domain and 

we shall denote by k its field of fractions. 
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A point x of Vis a central point iff it belongs to the closure of the set of regular 

points of V. This amounts to saying that dim,(V,x) =dim, I/ or else, that x which 

is a point in Spec,A is the specialization of some point in Spec, k (cf. [2, 7.6.11). 

It is clear that the subset of central points of V, Cent(V) in the sequel, is a closed 

semi-algebraic subset of I/. 

If UC I/ is an open semi-algebraic subset, we shall write Cent(U) for the inter- 

section of U with Cent(V). We have the following result: 

Lemma 3.8. Ofl Spec, kc (Cent(U) j. 

Proof. The result is shown for algebraic sets during the course of the proof of 

[2, 7.6.31, but the same argument is valid here. q 

Let us consider an open semi-algebraic subset U of V such that Cent(U) # 0 and 

N,,(U) is an integral domain. We shall denote by K the field of fractions of 

N,(U). As Krull dimension does not behave well under quotient by the real 

radical, we shall consider the two following conditions: 

(D) dim NV(U) I dim A. 

(C) V~EN,(U), if dim(zdf))=dim U, then f=O in N,(U). 

If 0 is the canonical morphism A +N,(U), the idempotency result gives us the 

following proposition: 

Proposition 3.9. Let UC V be an open semi-algebraic set such that Cent(U)#B. 

(i) If U satisfies (C), then N,(U) is an integral domain. 
(ii) If U satisfies (D), and N,(U) is an integral domain, then U satisfies (C). 

Proof. (i) Trivial. 

(ii) Let f E N,(U) such that dim(z(f)) = dim U. We can find a nonempty semi- 

algebraic subset CT’ contained in zdf) fl Cent(U). 

Let XE U’; there is a E Spec, k such that a -+x. 

If the Krull dimension of A is d, we must have a chain of prime cones 
pe+ . . . + pd =x, with the oj belonging to 0’ (because U’ is open) and supp(&) = 

supp(a) (cf. [4, 8.71). 

Because of the idempotency of NA, we find in Spec,N,(U) a chain 

(VF(Po) -+ ... -+ (@*)Y’(Pd) = (VP(x). 

Thus, depth((@*)-l(&,))?d, and, as dim N,(U)Sd, we get that ht((@*))‘(&))=O, 

that is (@*)-‘(&) E Spec, K. Since (@*)-I(&) +x, f ((@*)-‘(&)) = 0 which implies 

that f=O. 0 

In the sequel, U satisfies Cent(U) #0 and condition (C). 
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Remark 3.10. The hypothesis that, provided Cent(U) # 0, U satisfies condition (D) 

would follow from a general extension theorem (as well as the noetherianness and 

the excellence of this ring). But Efroymson has shown that we do not have such a 

theorem (see [9]). In the proof of the last proposition we have seen that Cent(U) # 0 

implies that dim N,,(U) rdim A, but the other inequality remains unknown. 

Let us note that even if the truth of the general extension theorem for the sheaf 

MA is not known, it is still possible to prove for this sheaf the result about the 

‘good’ dimension of the rings of global sections as well as the noetherianness and 

the excellence of those rings (see [6]). As a consequence we have the same results 

for N,(U) provided that the morphism induced on the global sections rings 

pLi : Jv, (0) --t N v( U) is surjective. This is the case, for instance, for curves and for 

open subsets of quasi-regular points (for all of this see [5]). The noetherianness in 

both cases is an improvement of results given in [lo]. 

Proposition 3.11. (i) Given XE U and a E Spec, k such that a +x, then 

(Q*)-‘(a)ESpec,K. 

(ii) @*(Spec,K)C(Cent(U)j. 

Proof. It is enough to see that supp((@*)-‘(a)) = (0). For this, letfe supp((@*))‘(cr)); 

we have f((@*))‘(a))=O, which implies dim(z(f)) =dim U and then, that f =0 as 

desired. 

(ii) Let a~ @*(Spec,K). Since Cent(U)#O, U is Zariski-dense in V, and so, @ is 

injective. It follows that cr E Spec, k, so a E UnSpec, k and using Lemma 3.8, the 

result follows. 0 

We can now give the solution of Hilbert’s 17th problem. 

Theorem 3.12 (Hilbert’s 17th problem). Let f E N,(U). We have f E C K2 iff f?O 
on Cent(U). 

Proof. (-) Let us suppose that fe C K2, and let x~Cent(U). 

We know that there is BE Spec, k such that /3*x. So, following Proposition 

3.1 l(i), (@*)-l(p) E Spec, K * f E (Q*)-‘(p) (because all the orderings of K contain 

C K*) * f((@*)-‘(P))20 * f(x)lO. 
(=> If f(Cent(U)>rO * f((Cent(U))-)rO. Following Proposition 3.1 l(ii), 

f (Spec, K) 2 0, i.e. f E a Va E Spec, K. Since the intersection of the orderings on K 
is C K2, fEK*. q 

Proposition 3.13. Let p c N,(U) be a prime ideal. 
The following properties are equivalent: 
(i) p is a central ideal. 

(ii) p = 9 (z(p)nCent(U)). 
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Proof. (i) * (ii). Let f Ep and let x~(z(p)nCent(U)). It is clear that f(x)=O. 

Let now f E 9 (z(p) n Cent(U)). Since Z is a central ideal, there are (x E Spec, NV(U) 

and p E Spec, K such that supp(a) = p and p+ (x. 

Then, (Y E (z(p) (7 Cent(U))- (since z&p) = z&z, , . . . , h,) is semi-algebraic and we 

can apply the operation -), thus f(a) = 0, and hence f~ p (since supp(cx) = p). 

(ii) * (i). Let f E radcent(p), then there are m 2 0 and q E (N,(U) fl C K*) such that 

f 2m + q E p. Since q E C K2, q> 0 over Cent(U) (Theorem 3.12) and, since f 2m + q 
vanishes over z(p), f 2m must also vanish over z(p) tl Cent(U). It follows that f = 0 
over z(p)flCent(U), and this clearly implies that f E p. 0 

Theorem 3.14 (central nullstellensatz). Let ZCN,(U) an arbitrary ideal. 
The following properties are equivalent: 
(i) Z is a central ideal. 

(ii) Z= 4 (z(Z) n Cent( U)). 

Proof. For an arbitrary integral domain it is easy to verify that radcent(Z) is the in- 

tersection of the central prime ideals which contain I. Then, we proceed as usual. 0 
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