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1. Introduction

Let H and K be Hilbert spaces, let L(H, K ) denote the space of all bounded linear operators from H to K , and write
L(H) = L(H, H). If A ∈ L(H), B ∈ L(K ) and C ∈ L(K , H) are given, we denote by MC the operator acting on H ⊕ K of the
form [

A C
0 B

]
.

For T ∈ L(H, K ), let T ∗ , N(T ), R(T ), σ(T ), σp(T ) denote the adjoint, the null space, the range, the spectrum and the
point spectrum of T , respectively. The nullity and the deficiency of T are defined respectively by α(T ) = dim N(T ) and
β(T ) = dim K/R(T ). The reduced minimum modulus γ (T ) of T is defined by

γ (T ) =
{

inf{‖T x‖: dist(x, N(T )) = 1} if T �= 0,

0 if T = 0.

It is well known that γ (T ) > 0 if and only if R(T ) is closed. Moreover γ (T ) = γ (T ∗) and ‖T x‖ � γ (T )‖x‖ for every
x ∈ N(T )⊥ , where N(T )⊥ stands for the orthogonal complement of N(T ) (see [1]).

Recall that an operator T ∈ L(H) is said to be generalized invertible (g-invertible for short) if there exists an operator
T + ∈L(H) such that

TT+T = T and T +TT+ = T +.

The operator T + is known as a generalized inverse of T .
It is well known that T ∈ L(H) has a generalized inverse if and only if its range R(T ) is closed (see [4]). If there is

an operator S ∈ L(H) such that TST = T , then T is g-invertible. Indeed, let S1 = STS. Then clearly S1 satisfies TS1T = T
and S1TS1 = S1.
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We shall call T ∈L(H) Kato non-singular if it is g-invertible and satisfies the following condition:

N(T ) ⊆ R
(
T n)

for all n � 0. (1.1)

Note that the inequality in (1.1) is equivalent to

N
(
T n) ⊆ R(T ) for all n � 0. (1.2)

Given an arbitrary operator T ∈L(H), the regular region reg(T ) of T is defined by

reg(T ) = {λ ∈ C: T − λI is Kato non-singular}.
The regular spectrum σg(T ) of T is defined to be the set

σg(T ) := C \ reg(T ).

The set σg(T ) is compact and nonempty. Moreover, ∂σ (T ) ⊆ σg(T ) (see [17]), where we write ∂ K for the topologi-
cal boundary of a subset K ⊆ C. We also have from [17], σg(T ∗) = σg(T ) (the bar stands for the complex conjugates
points), and σg(T ) = σ(T ) whenever T is a normal operator. More other properties of the regular spectrum can be found
in [1,12,16,17].

Perturbations of different spectra of operator matrices have been studied by numerous authors, see for example
[2,3,5,6,8,13,14,19] and the references cited therein. This paper is concerned with the regular spectrum of 2 × 2 upper
triangular operator matrices.

Recall that a hole in a compact subset Δ ⊆ C is a bounded component. The polynomially convex hull of Δ is the
topological object obtained by filling in holes. We denote it by η(Δ). We also denote int(Δ) for the interior points of Δ.

2. Kato non-singularity of MC

In this section we investigate the Kato non-singularity of the matrix MC . We begin with the following theorem.

Theorem 2.1. Let A ∈L(H) and B ∈ L(K ) be given operators. Suppose that A is Kato non-singular, R(B) is closed and α(B) � β(A).
Then, there exists an operator C ∈L(K , H) such that MC is Kato non-singular.

Proof. Since α(B) � β(A), there exists an isometry J : N(B) → R(A)⊥ . Define an operator C ∈L(K , H) by

C =
[

J 0
0 0

]
:

[
N(B)

N(B)⊥
]

→
[

R(A)⊥

R(A)

]
. (2.1)

We claim that MC is Kato non-singular. Let
( x

y

) ∈ N(MC ). Then

MC

(
x
y

)
=

(
0
0

)
⇒

{
Ax + C y = 0,

B y = 0,
⇒

{
x ∈ N(A),

y = 0,

where the second implication follows from the fact that R(C) ∩ R(A) = {0} and N(C) ⊆ N(B)⊥ . Hence

N(MC ) = N(A) ⊆ R
(

An) ⊆ R
(
Mn

C

)
,

for all n because A is Kato non-singular.
Next we prove that R(MC ) is closed. To do this, let

( x
y

) ∈ N(MC )⊥ . Then x ∈ N(A)⊥ and

∥∥∥∥MC

((
x
y

))∥∥∥∥
2

= ‖Ax + C y‖2 + ‖B y‖2 = ‖Ax‖2 + ‖C y‖2 + ‖B y‖2.

Write y := u + v , where u ∈ N(B) and v ∈ N(B)⊥ . Then ‖C y‖ = ‖u‖ and ‖B y‖ = ‖B v‖ � γ (B)‖v‖ since R(B) is closed.
Hence∥∥∥∥MC

((
x
y

))∥∥∥∥
2

� ‖Ax‖2 + ‖u‖2 + γ 2(B)‖v‖2

� γ 2(A)‖x‖2 + ‖u‖2 + γ 2(B)‖v‖2

� min
(
γ 2(A), γ 2(B),1

)∥∥∥∥
(

x
y

)∥∥∥∥
2

.

Thus γ (MC ) > 0. Consequently MC is Kato non-singular. This ends the proof. �
Corollary 2.1. If A is Kato non-singular with β(A) = ∞ and R(B) is closed, then there exists an operator C such that MC is Kato
non-singular.
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Corollary 2.2. For a given pair (A, B) of operators, we have⋂
C∈L(K ,H)

σg(MC ) ⊆ σg(A) ∪ σ f (B) ∪ {
λ ∈ C: β(A − λI) < α(B − λI)

}
,

where σ f (B) = {λ ∈ C: R(B − λI) is not closed}.

In the case where the range R(B) is not closed we have the following results:

Theorem 2.2. Let A ∈ L(H) and B ∈ L(K ) be given operators such that R(B) is not closed. If A is Kato non-singular and β(A) = ∞,
then there exists C ∈L(K , H) such that MC is Kato non-singular.

Proof. Since R(B) is not closed and β(A) = ∞, there exists an isomorphism J : K → R(A)⊥ . Define an operator C : K → H
in the following way:

C := ( J 0) : K →
[

R(A)⊥

R(A)

]
. (2.2)

We claim that MC is Kato non-singular. As in the proof of Theorem 2.1, we check easily that N(MC ) = N(A) and γ (MC ) > 0.
Next, we claim that N(MC ) ⊆ R(Mn

C ) for all n. Indeed, let
( x

y

) ∈ N(M2
C ); then we have

{
A2x + AC y + C B y = 0,

B2 y = 0.

Since R(C) is orthogonal to R(A), we derive that

A2x + AC y = C B y = 0.

Hence

Ax + C y ∈ N(A) ⊆ R(A),

because A is Kato non-singular. It follows then that C y ∈ R(A), so y = 0. Therefore

N
(
M2

C

) = N
(

A2) ⊕ {0} ⊆ R(A) ⊕ {0} ⊆ R(MC ).

Then, using an induction argument, we deduce that

N
(
Mn

C

) = N
(

An) ⊕ {0} ⊆ R(MC ),

for all n � 1. That is, MC is Kato non-singular. �
To prove the next theorem we need a lemma.

Lemma 2.1. Let S, U and T ∈ L(H) be given such that U is invertible. If dim N(S) is finite and R(SUT) is closed, then R(T ) is also
closed.

Proof. Since R(SUT) is closed, it follows from [10, Theorem 1] that N(S) + R(UT) is closed. But dim N(S) < ∞, hence we
deduce that R(UT) is closed. Using again [10, Theorem 1] and the fact that U is invertible, we conclude that R(T ) is
closed. �
Theorem 2.3. Suppose that B is injective and R(B) is not closed. Then there exists C ∈ L(K , H) such that MC is Kato non-singular if
and only if A is Kato non-singular and β(A) = ∞.

Proof. Assume that MC is Kato non-singular for some C ∈ L(K , H). Since B is injective, we easily check that N(Mn
C ) =

N(An) ⊕ {0} ⊆ R(MC ) for every n � 1. From this we deduce that N(An) ⊆ R(A) for all n. On the other hand, we have

MC =
[

I 0
0 B

][
I C
0 I

][
A 0
0 I

]
,

hence, by virtue of Lemma 2.1, we conclude that R(
[ A 0

0 I

]
) is closed, that is, R(A) is closed. Therefore A is Kato non-singular.

Next, suppose in the contrary that β(A) < ∞. Then

dim N

([
A∗ 0

])
= dim N(A∗) = β(A) < ∞.
0 I
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Since R(M∗
C ) is closed and

[ I 0
C∗ I

]
is invertible, we have by Lemma 2.1 that R(

[ I 0
0 B∗

]
) is closed, that is, R(B∗) is closed.

This contradicts our assumption. Therefore we must have β(A) = ∞.
The reverse implication is proved in Theorem 2.2. �
As a consequence of Theorem 2.3, we have

Corollary 2.3. Suppose that R(B) is not closed. If σp(B) is empty, then⋂
C∈L(K ,H)

σg(MC ) = σg(A) ∪ {
λ ∈ C: β(A − λ) < ∞}

.

Remark 2.1. One might guess that if MC is Kato non-singular, then R(B) is closed. But this is not the case. By [11, Exam-
ple 3], there are Hilbert space operators A, B and C such that MC is bounded below and such that R(B) is not closed.

We known that σ(MC ) ⊆ σ(A) ∪ σ(B) for every C ∈ L(K , H), however this inclusion fails to be true for the regular
spectrum in a general setting. To see this, consider the following example:

Example 2.1. Let H be a Hilbert space with an orthonormal basis {ei, j} where i and j are integers such that i j � 0. Define
operators A and B ∈L(H) by

Aei, j =
{

0 if j = 0, i > 0,

ei, j+1 otherwise

and

Bei, j =
{

0 if i = 0, j > 0,

ei+1, j otherwise.

Then N(A) = ∨{ei,0, i > 0} ⊆ Rn(A) and N(B) = ∨{e0, j, j > 0} ⊆ Rn(B) for all n, and both R(A) and R(B) are closed
(see [18]). Thus A and B are Kato non-singular.

Define an operator C ∈L(H) by

C := −e0,1 ⊗ e0,1 + e0,0 ⊗ e−1,1 − e−1,0 ⊗ e−1,1.

We have
( e0,0

e0,1

) ∈ N(MC ), but
( e0,0

e0,1

)
/∈ R(MC ). Indeed, suppose that there exists a vector

( x
y

)
such that

( e0,0
e0,1

) = MC
( x

y

)
. Then

a straightforward computation shows that y = e−1,1 and Ax = e−1,0, which is a contradiction since e−1,0 /∈ R(A). Therefore
N(MC ) � R(MC ), so that MC is not Kato non-singular.

In [1, Lemma 1.4], it was shown that, for given operators A, B and C , the operator MC is Kato non-singular whenever A
is surjective and B is bounded below. In the sequel we give a generalization of this result.

Lemma 2.2. Suppose that A ∈ L(H) and B ∈ L(K ) have generalized inverses A+ and B+ respectively. If an operator C ∈ L(K , H)

satisfies the equation C = A A+C − A A+C B+B + C B+B then, the operator MC is g-invertible. If, in particular, either A is right
invertible and B is g-invertible or A is g-invertible and B is left invertible, then MC is g-invertible for every C ∈L(K , H).

Proof. A simple computation shows that

MC

[
A+ −A+C B+

0 B+
]

MC = MC .

So it follows that MC is g-invertible. �
Theorem 2.4. Let A ∈L(H), B ∈L(K ) be given Kato non-singular operators. If either A is surjective or B is injective, then MC is Kato
non-singular for every C ∈L(K , H).

Proof. We claim that MC is Kato non-singular. We consider two cases.

Case 1. Assume that B is injective. If
( x

y

) ∈ N(MC ), then x ∈ N(A) and y = 0. Thus N(MC ) ⊆ N(A). It follows then from
the Kato non-singularity of A that

N(MC ) ⊆ R
(

An) ⊆ R
(
Mn

C

)
for all n.

Next, we will show that R(MC ) is closed. Since B is injective and R(B) is closed, we conclude that B is left invertible.
Hence Lemma 2.2 implies that MC is g-invertible. Consequently, we have that MC is Kato non-singular.
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Case 2. Assume that A is surjective. Hence A∗ is injective. Since[
0 I
I 0

][
A∗ 0

C∗ B∗
][

0 I
I 0

]
=

[
B∗ C∗

0 A∗
]

, (2.3)

we conclude that

σg

([
A∗ 0

C∗ B∗
])

= σg

([
B∗ C∗

0 A∗
])

. (2.4)

Since 0 /∈ σg(A) ∪ σg(B), it follows from the first case that

0 /∈ σg

([
B∗ C∗

0 A∗
])

.

Using (2.4), we conclude that 0 /∈ σg(M∗
C ). Thus MC is Kato non-singular, which completes the proof. �

From the above theorem we obtain the following consequence.

Corollary 2.4. If A, B and C are given operators, then

σg(MC ) ⊆ σg(A) ∪ σg(B) ∪ (
σp(A∗) ∩ σp(B)

)
. (2.5)

The inclusion in (2.5) may be proper. To see this, consider the following example.

Example 2.2. Let {ei}∞i=1 and { f i}∞i=1 be orthonormal basis for H and K respectively. Define the operators A and B by
Aei = ei+1, i = 1,2, . . . , and{

B f1 = 0,

B fi = f i−1, i = 1,2, . . . .

It is well known that

σp(A∗) = σp(B) = {
λ ∈ C: |λ| < 1

}
and that

σg(A) = σg(B) = {
λ ∈ C: |λ| = 1

}
.

Define an operator C from K into H by

C := e1 ⊗ f1: x ∈ K �→ 〈x, f1〉e1.

It is not hard to show that MC is a unitary operator. So, by [17, Theorem 1.5], we have

σg(MC ) = σ(MC ) ⊆ {
λ ∈ C: |λ| = 1

}
.

Hence, we see that the inclusion

σg(MC ) ⊆ σg(A) ∪ σg(B) ∪ (
σp(A∗) ∩ σp(B)

)
is proper.

Theorem 2.5. Let A ∈L(H) and B ∈L(K ). For every C ∈L(K , H), we have(
σg(A) \ σp(B)

) ∪ (
σg(B) \ σp(A∗)

) ⊆ σg(MC ).

Proof. It suffices to claim that σg(A) \ σp(B)) ⊆ σg(MC ), then as in the above we deduce from (2.3) that σg(B) \ σp(A∗)) ⊆
σg(MC ).

Suppose λ ∈ σg(A) \ σp(B) and λ /∈ σg(MC ). Without loss of generality we may take λ = 0. Since 0 /∈ σp(B), we must
have N(MC ) = N(A). Thus, it follows from the Kato non-singularity of MC that N(A) ⊆ R(An) for all n. On the other hand,
since 0 /∈ σg(MC ), there is an operator M = [ X1 X2

X3 X4

] ∈L(H ⊕ K ) such that MC MMC = MC . Hence, we obtain

{
A X1 A + C X3 A = A,

B X3 A = 0.

Since B is injective, we get X3 A = 0. Hence A X1 A = A, and then A is g-invertible. Consequently, we deduce 0 /∈ σg(A),
which contradicts our assumption. This completes the proof. �
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3. The passage from σg(A) ∪ σg(B) ∪ (σp(A∗) ∩ σp(B)) to σg(MC )

In this section we give a description of the passage from σg(A) ∪ σg(B) ∪ (σp(A∗) ∩ σp(B)) to σg(MC ) for a given
operators A, B and C . We shall prove that this passage is accomplished by removing certain subsets of σp(A∗)∪σp(B) from
the former.

Theorem 3.1. For a given pair (A, B) of operators there is equality, for every C ∈L(K , H),

η
(
σ(A) ∪ σ(B)

) = η
(
σg(A) ∪ σg(B)

) = η
(
σg(MC )

)
.

More precisely,

σg(A) ∪ σg(B) ∪ (
σp(A∗) ∩ σp(B)

) = σg(MC ) ∪ W ,

where W is the union of certain of the holes in σg(MC ) which happen to be subsets of σp(A∗) ∪ σp(B).

Proof. We first claim that, for every C ∈L(K , H),

η
(
σ(A) ∪ σ(B)

) = η
(
σg(MC )

)
. (3.1)

We know by [17] that ∂σ (MC ) ⊆ σg(MC ) and σg(MC ) ⊆ σ(MC ), hence it follows that

η
(
σ(MC )

) = η
(
σg(MC )

)
. (3.2)

By [9, Theorem 6] and (3.2), we deduce that

η
(
σ(A) ∪ σ(B)

) = η
(
σg(MC )

)
. (3.3)

On the other hand, we have by virtue of [17] and Theorem 2.4

∂(σ (A) ∪ σ(B)) ⊆ ∂
(
σ(A)

) ∪ ∂
(
σ(B)

)
⊆ σg(A) ∪ σg(B)

⊆ σg(A) ∪ σg(B) ∪ (
σp(A∗) ∩ σp(B)

)
⊆ σ(A) ∪ σ(B).

Hence using (3.3), we conclude that

η
(
σ(A) ∪ σ(B)

) = η
(
σg(A) ∪ σg(B)

)
= η

(
σg(A) ∪ σg(B) ∪ (

σp(A∗) ∩ σp(B)
))

= η
(
σg(MC )

)
. (3.4)

Eq. (3.4) says that the passage from σg(MC ) to σg(A) ∪ σg(B) ∪ (σp(A∗) ∩ σp(B)) is filling in certain of the holes in
σg(MC ). But by Theorem 2.5, we have for every C ∈L(K , H),

(
σg(A) ∪ σg(B)

) \ (
σp(A∗) ∪ σp(B)

) ⊆ σg(MC ).

Therefore, the filling in certain of the holes in σg(MC ) should occur in σp(A∗) ∪ σp(B). This ends the proof. �
Corollary 3.1. If σp(A∗) ∪ σp(B) has no interior points (if in particular A and B are compact), then

σg(MC ) = σg(A) ∪ σg(B) ∪ (
σp(A∗) ∩ σp(B)

)
for every C ∈L(K , H).

Proof. This follows at once from Theorem 3.1. �
Recall that an operator A ∈ L(H) is said to be hyponormal if the commutator A∗ A − A A∗ � 0. The operator A is com-

pletely non-normal hyponormal if it has no reducing subspace on which it is normal.

Corollary 3.2. Let A ∈L(H) and B ∈L(K ). If A∗ and B are completely non-normal hyponormal, then

σg(MC ) = σg(A) ∪ σg(B), for every C ∈L(K , H).
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Proof. This follows from Theorem 3.1 and the general fact that σp(T ) = ∅ for every completely non-normal hyponormal
operator T on a Hilbert space, see for instance [15, p. 70]. �

In the remainder of this section consider operators C ∈L(K , H) for which there is equality σg(MC ) = σg(A) ∪ σg(B).
For A ∈L(H) and B ∈L(K ) let δA,B denote the generalized derivation defined by δA,B(X) = A X − X B (X ∈L(K , H)).

Theorem 3.2. Let A ∈L(H) and B ∈L(K ), and let C ∈ N(δAB) + R(δAB). Then

σg(MC ) = σg(A) ∪ σg(B).

Proof. Since C ∈ N(δAB) + R(δAB), there exist X, Y ∈L(K , H) such that C = Y + A X − X B and AY = Y B . Hence[
I X
0 I

][
A C
0 B

][
I −X
0 I

]
=

[
A Y
0 B

]
.

Therefore

σg

([
A C
0 B

])
= σg

([
A Y
0 B

])
, (3.5)

where the equality in (3.5) follows from the well-known fact that, if T is a bounded operator on a Hilbert space E , then
σg(STS−1) = σg(T ) for every invertible operator S on E .

Write[
A Y
0 B

]
=

[
A 0
0 B

]
+

[
0 Y
0 0

]
.

Since the operator
[ 0 Y

0 0

]
is nilpotent and commutes with

[ A 0
0 B

]
, we derive from (3.5) and [17, Theorem 4.8] that

σg(MC ) = σg

([
A 0
0 B

])
.

But it is easy to see that

σg

([
A 0
0 B

])
= σg(A) ∪ σg(B).

Hence

σg(MC ) = σg(A) ∪ σg(B),

which completes the proof. �
Remark 3.1. If σg(MC ) = σg(A) ∪ σg(B), then σg(MC+D) = σg(A) ∪ σg(B) for every operator D ∈ N(δAB). Indeed, we have
MC+D = MC + [ 0 D

0 0

]
and the operator

[ 0 D
0 0

]
is nilpotent and commutes with MC . Thus [17, Theorem 4.8] applies.

As a corollary of Theorem 3.2, we have

Corollary 3.3. Let A ∈L(H) and B ∈L(K ) such that σr(A) ∩ σl(B) = ∅, then

σg(MC ) = σg(A) ∪ σg(B) for every C ∈L(K , H).

Proof. Since δA,B is surjective (see [7]), the result follows from Theorem 3.2. �
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