J. Math. Anal. Appl. 347 (2008) 315-322

I. Math. Anal. Appl.

Contents lists available at ScienceDirect

www.elsevier.com/locate/jmaa

On the perturbations of spectra of upper triangular operator matrices

Mohamed Barraa^a, Mohamed Boumazgour^{b,*}

^a Département de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390 Marrakech, Morocco ^b Faculté des Sciences Juridiques, Economiques et Sociales, B.P. 8658 Cité Dakhla, Agadir 80000, Morocco

ARTICLE INFO

Article history: Received 19 October 2007 Available online 28 May 2008 Submitted by M. Putinar

Keywords: Regular spectrum Point spectrum 2×2 upper triangular operator matrix Generalized derivation

1. Introduction

ABSTRACT

In this paper we investigate perturbations of the regular spectrum of an upper triangular operator matrix such as $M_C = \begin{bmatrix} A & C \\ 0 & B \end{bmatrix}$ acting on a Hilbert space $H \oplus K$.

© 2008 Elsevier Inc. All rights reserved.

Let H and K be Hilbert spaces, let $\mathcal{L}(H, K)$ denote the space of all bounded linear operators from H to K, and write $\mathcal{L}(H) = \mathcal{L}(H, H)$. If $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$ and $C \in \mathcal{L}(K, H)$ are given, we denote by M_C the operator acting on $H \oplus K$ of the form

 $\begin{bmatrix} A & C \\ 0 & B \end{bmatrix}.$

For $T \in \mathcal{L}(H, K)$, let T^* , N(T), R(T), $\sigma(T)$, $\sigma_p(T)$ denote the adjoint, the null space, the range, the spectrum and the point spectrum of T, respectively. The nullity and the deficiency of T are defined respectively by $\alpha(T) = \dim N(T)$ and $\beta(T) = \dim K/R(T)$. The reduced minimum modulus $\gamma(T)$ of T is defined by

$$\gamma(T) = \begin{cases} \inf\{\|Tx\|: \operatorname{dist}(x, N(T)) = 1\} & \text{if } T \neq 0, \\ 0 & \text{if } T = 0. \end{cases}$$

It is well known that $\gamma(T) > 0$ if and only if R(T) is closed. Moreover $\gamma(T) = \gamma(T^*)$ and $||Tx|| \ge \gamma(T)||x||$ for every $x \in N(T)^{\perp}$, where $N(T)^{\perp}$ stands for the orthogonal complement of N(T) (see [1]).

Recall that an operator $T \in \mathcal{L}(H)$ is said to be generalized invertible (g-invertible for short) if there exists an operator $T^+ \in \mathcal{L}(H)$ such that

 $TT^+T = T$ and $T^+TT^+ = T^+$.

The operator T^+ is known as a generalized inverse of T.

It is well known that $T \in \mathcal{L}(H)$ has a generalized inverse if and only if its range R(T) is closed (see [4]). If there is an operator $S \in \mathcal{L}(H)$ such that TST = T, then T is g-invertible. Indeed, let $S_1 = STS$. Then clearly S_1 satisfies $TS_1T = T$ and $S_1 T S_1 = S_1$.

Corresponding author.

E-mail addresses: barraa@ucam.ac.ma (M. Barraa), boumazgour@hotmail.com (M. Boumazgour).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2008.05.073

We shall call $T \in \mathcal{L}(H)$ Kato non-singular if it is g-invertible and satisfies the following condition:

$$N(T) \subseteq R(T^n) \quad \text{for all } n \ge 0. \tag{1.1}$$

Note that the inequality in (1.1) is equivalent to

$$N(T^n) \subset R(T) \quad \text{for all } n \ge 0. \tag{1.2}$$

Given an arbitrary operator $T \in \mathcal{L}(H)$, the regular region reg(T) of T is defined by

 $\operatorname{reg}(T) = \{\lambda \in \mathbb{C}: T - \lambda I \text{ is Kato non-singular}\}.$

The regular spectrum $\sigma_g(T)$ of *T* is defined to be the set

 $\sigma_g(T) := \mathbb{C} \setminus \operatorname{reg}(T).$

The set $\sigma_g(T)$ is compact and nonempty. Moreover, $\partial \sigma(T) \subseteq \sigma_g(T)$ (see [17]), where we write ∂K for the topological boundary of a subset $K \subseteq \mathbb{C}$. We also have from [17], $\sigma_g(T^*) = \overline{\sigma_g(T)}$ (the bar stands for the complex conjugates points), and $\sigma_g(T) = \sigma(T)$ whenever T is a normal operator. More other properties of the regular spectrum can be found in [1,12,16,17].

Perturbations of different spectra of operator matrices have been studied by numerous authors, see for example [2,3,5,6,8,13,14,19] and the references cited therein. This paper is concerned with the regular spectrum of 2×2 upper triangular operator matrices.

Recall that a hole in a compact subset $\Delta \subseteq \mathbb{C}$ is a bounded component. The polynomially convex hull of Δ is the topological object obtained by filling in holes. We denote it by $\eta(\Delta)$. We also denote $int(\Delta)$ for the interior points of Δ .

2. Kato non-singularity of M_C

In this section we investigate the Kato non-singularity of the matrix M_C . We begin with the following theorem.

Theorem 2.1. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$ be given operators. Suppose that A is Kato non-singular, R(B) is closed and $\alpha(B) \leq \beta(A)$. Then, there exists an operator $C \in \mathcal{L}(K, H)$ such that M_C is Kato non-singular.

Proof. Since $\alpha(B) \leq \beta(A)$, there exists an isometry $J: N(B) \to R(A)^{\perp}$. Define an operator $C \in \mathcal{L}(K, H)$ by

$$C = \begin{bmatrix} J & 0\\ 0 & 0 \end{bmatrix} : \begin{bmatrix} N(B)\\ N(B)^{\perp} \end{bmatrix} \to \begin{bmatrix} R(A)^{\perp}\\ R(A) \end{bmatrix}.$$
(2.1)

We claim that M_C is Kato non-singular. Let $\binom{x}{y} \in N(M_C)$. Then

$$M_{C}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix} \quad \Rightarrow \quad \begin{cases} Ax + Cy = 0, \\ By = 0, \end{cases} \quad \Rightarrow \quad \begin{cases} x \in N(A)\\ y = 0, \end{cases}$$

where the second implication follows from the fact that $R(C) \cap R(A) = \{0\}$ and $N(C) \subseteq N(B)^{\perp}$. Hence

 $N(M_C) = N(A) \subseteq R(A^n) \subseteq R(M_C^n),$

for all *n* because *A* is Kato non-singular.

Next we prove that $R(M_C)$ is closed. To do this, let $\binom{x}{y} \in N(M_C)^{\perp}$. Then $x \in N(A)^{\perp}$ and

$$\left\|M_{C}\left(\binom{x}{y}\right)\right\|^{2} = \|Ax + Cy\|^{2} + \|By\|^{2} = \|Ax\|^{2} + \|Cy\|^{2} + \|By\|^{2}.$$

Write y := u + v, where $u \in N(B)$ and $v \in N(B)^{\perp}$. Then ||Cy|| = ||u|| and $||By|| = ||Bv|| \ge \gamma(B)||v||$ since R(B) is closed. Hence

$$\left\| M_{C} \left(\begin{pmatrix} x \\ y \end{pmatrix} \right) \right\|^{2} \ge \|Ax\|^{2} + \|u\|^{2} + \gamma^{2}(B) \|v\|^{2}$$

$$\ge \gamma^{2}(A) \|x\|^{2} + \|u\|^{2} + \gamma^{2}(B) \|v\|^{2}$$

$$\ge \min(\gamma^{2}(A), \gamma^{2}(B), 1) \left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\|^{2}.$$

Thus $\gamma(M_C) > 0$. Consequently M_C is Kato non-singular. This ends the proof. \Box

Corollary 2.1. If A is Kato non-singular with $\beta(A) = \infty$ and R(B) is closed, then there exists an operator C such that M_C is Kato non-singular.

Corollary 2.2. For a given pair (A, B) of operators, we have

$$\bigcap_{C \in \mathcal{L}(K,H)} \sigma_g(M_C) \subseteq \sigma_g(A) \cup \sigma_f(B) \cup \left\{ \lambda \in \mathbb{C} \colon \beta(A - \lambda I) < \alpha(B - \lambda I) \right\},$$

where $\sigma_f(B) = \{\lambda \in \mathbb{C}: R(B - \lambda I) \text{ is not closed}\}.$

In the case where the range R(B) is not closed we have the following results:

Theorem 2.2. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$ be given operators such that R(B) is not closed. If A is Kato non-singular and $\beta(A) = \infty$, then there exists $C \in \mathcal{L}(K, H)$ such that M_C is Kato non-singular.

Proof. Since R(B) is not closed and $\beta(A) = \infty$, there exists an isomorphism $J : K \to R(A)^{\perp}$. Define an operator $C : K \to H$ in the following way:

$$C := (J \ 0) : K \to \begin{bmatrix} R(A)^{\perp} \\ R(A) \end{bmatrix}.$$
(2.2)

We claim that M_C is Kato non-singular. As in the proof of Theorem 2.1, we check easily that $N(M_C) = N(A)$ and $\gamma(M_C) > 0$. Next, we claim that $N(M_C) \subseteq R(M_C^n)$ for all *n*. Indeed, let $\binom{x}{y} \in N(M_C^2)$; then we have

$$\begin{cases} A^2 x + ACy + CBy = 0, \\ B^2 y = 0. \end{cases}$$

Since R(C) is orthogonal to R(A), we derive that

$$A^2x + ACy = CBy = 0.$$

Hence

$$Ax + Cy \in N(A) \subseteq R(A),$$

because A is Kato non-singular. It follows then that $Cy \in R(A)$, so y = 0. Therefore

$$N(M_C^2) = N(A^2) \oplus \{0\} \subseteq R(A) \oplus \{0\} \subseteq R(M_C).$$

Then, using an induction argument, we deduce that

$$N(M_C^n) = N(A^n) \oplus \{0\} \subseteq R(M_C),$$

for all $n \ge 1$. That is, M_C is Kato non-singular. \Box

To prove the next theorem we need a lemma.

Lemma 2.1. Let *S*, *U* and $T \in \mathcal{L}(H)$ be given such that *U* is invertible. If dim *N*(*S*) is finite and *R*(*SUT*) is closed, then *R*(*T*) is also closed.

Proof. Since R(SUT) is closed, it follows from [10, Theorem 1] that N(S) + R(UT) is closed. But dim $N(S) < \infty$, hence we deduce that R(UT) is closed. Using again [10, Theorem 1] and the fact that U is invertible, we conclude that R(T) is closed. \Box

Theorem 2.3. Suppose that *B* is injective and *R*(*B*) is not closed. Then there exists $C \in \mathcal{L}(K, H)$ such that M_C is Kato non-singular if and only if *A* is Kato non-singular and $\beta(A) = \infty$.

Proof. Assume that M_C is Kato non-singular for some $C \in \mathcal{L}(K, H)$. Since *B* is injective, we easily check that $N(M_C^n) = N(A^n) \oplus \{0\} \subseteq R(M_C)$ for every $n \ge 1$. From this we deduce that $N(A^n) \subseteq R(A)$ for all *n*. On the other hand, we have

$$M_C = \begin{bmatrix} I & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} I & C \\ 0 & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix},$$

hence, by virtue of Lemma 2.1, we conclude that $R(\begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix})$ is closed, that is, R(A) is closed. Therefore A is Kato non-singular. Next, suppose in the contrary that $\beta(A) < \infty$. Then

$$\dim N\left(\begin{bmatrix} A^* & 0\\ 0 & I \end{bmatrix}\right) = \dim N(A^*) = \beta(A) < \infty.$$

Since $R(M_C^*)$ is closed and $\begin{bmatrix} I & 0 \\ C^* & I \end{bmatrix}$ is invertible, we have by Lemma 2.1 that $R(\begin{bmatrix} I & 0 \\ 0 & B^* \end{bmatrix})$ is closed, that is, $R(B^*)$ is closed. This contradicts our assumption. Therefore we must have $\beta(A) = \infty$.

The reverse implication is proved in Theorem 2.2. \Box

As a consequence of Theorem 2.3, we have

Corollary 2.3. Suppose that R(B) is not closed. If $\sigma_p(B)$ is empty, then

$$\bigcap_{C \in \mathcal{L}(K,H)} \sigma_g(M_C) = \sigma_g(A) \cup \left\{ \lambda \in \mathbb{C} \colon \beta(A - \lambda) < \infty \right\}.$$

Remark 2.1. One might guess that if M_C is Kato non-singular, then R(B) is closed. But this is not the case. By [11, Example 3], there are Hilbert space operators A, B and C such that M_C is bounded below and such that R(B) is not closed.

We known that $\sigma(M_C) \subseteq \sigma(A) \cup \sigma(B)$ for every $C \in \mathcal{L}(K, H)$, however this inclusion fails to be true for the regular spectrum in a general setting. To see this, consider the following example:

Example 2.1. Let *H* be a Hilbert space with an orthonormal basis $\{e_{i,j}\}$ where *i* and *j* are integers such that $ij \leq 0$. Define operators *A* and $B \in \mathcal{L}(H)$ by

$$Ae_{i,j} = \begin{cases} 0 & \text{if } j = 0, \ i > 0, \\ e_{i,j+1} & \text{otherwise} \end{cases}$$

and

$$Be_{i,j} = \begin{cases} 0 & \text{if } i = 0, \ j > 0, \\ e_{i+1,j} & \text{otherwise.} \end{cases}$$

Then $N(A) = \bigvee \{e_{i,0}, i > 0\} \subseteq R^n(A)$ and $N(B) = \bigvee \{e_{0,j}, j > 0\} \subseteq R^n(B)$ for all n, and both R(A) and R(B) are closed (see [18]). Thus A and B are Kato non-singular.

Define an operator $C \in \mathcal{L}(H)$ by

$$C := -e_{0,1} \otimes e_{0,1} + e_{0,0} \otimes e_{-1,1} - e_{-1,0} \otimes e_{-1,1}$$

We have $\binom{e_{0,0}}{e_{0,1}} \in N(M_C)$, but $\binom{e_{0,0}}{e_{0,1}} \notin R(M_C)$. Indeed, suppose that there exists a vector $\binom{x}{y}$ such that $\binom{e_{0,0}}{e_{0,1}} = M_C\binom{x}{y}$. Then a straightforward computation shows that $y = e_{-1,1}$ and $Ax = e_{-1,0}$, which is a contradiction since $e_{-1,0} \notin R(A)$. Therefore $N(M_C) \notin R(M_C)$, so that M_C is not Kato non-singular.

In [1, Lemma 1.4], it was shown that, for given operators A, B and C, the operator M_C is Kato non-singular whenever A is surjective and B is bounded below. In the sequel we give a generalization of this result.

Lemma 2.2. Suppose that $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$ have generalized inverses A^+ and B^+ respectively. If an operator $C \in \mathcal{L}(K, H)$ satisfies the equation $C = AA^+C - AA^+CB^+B + CB^+B$ then, the operator M_C is g-invertible. If, in particular, either A is right invertible and B is g-invertible or A is g-invertible and B is left invertible, then M_C is g-invertible for every $C \in \mathcal{L}(K, H)$.

Proof. A simple computation shows that

$$M_C \begin{bmatrix} A^+ & -A^+ C B^+ \\ 0 & B^+ \end{bmatrix} M_C = M_C.$$

So it follows that M_C is g-invertible. \Box

Theorem 2.4. Let $A \in \mathcal{L}(H)$, $B \in \mathcal{L}(K)$ be given Kato non-singular operators. If either A is surjective or B is injective, then M_C is Kato non-singular for every $C \in \mathcal{L}(K, H)$.

Proof. We claim that M_C is Kato non-singular. We consider two cases.

Case 1. Assume that *B* is injective. If $\binom{x}{y} \in N(M_C)$, then $x \in N(A)$ and y = 0. Thus $N(M_C) \subseteq N(A)$. It follows then from the Kato non-singularity of *A* that

 $N(M_C) \subseteq R(A^n) \subseteq R(M_C^n)$ for all n.

Next, we will show that $R(M_C)$ is closed. Since *B* is injective and R(B) is closed, we conclude that *B* is left invertible. Hence Lemma 2.2 implies that M_C is g-invertible. Consequently, we have that M_C is Kato non-singular. Case 2. Assume that A is surjective. Hence A* is injective. Since

$$\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} A^* & 0 \\ C^* & B^* \end{bmatrix} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} = \begin{bmatrix} B^* & C^* \\ 0 & A^* \end{bmatrix},$$
(2.3)

we conclude that

$$\sigma_g \left(\begin{bmatrix} A^* & 0 \\ C^* & B^* \end{bmatrix} \right) = \sigma_g \left(\begin{bmatrix} B^* & C^* \\ 0 & A^* \end{bmatrix} \right).$$
(2.4)

Since $0 \notin \sigma_g(A) \cup \sigma_g(B)$, it follows from the first case that

$$0 \notin \sigma_g \left(\begin{bmatrix} B^* & C^* \\ 0 & A^* \end{bmatrix} \right).$$

Using (2.4), we conclude that $0 \notin \sigma_g(M_c^*)$. Thus M_c is Kato non-singular, which completes the proof.

From the above theorem we obtain the following consequence.

Corollary 2.4. If A, B and C are given operators, then

$$\sigma_g(M_C) \subseteq \sigma_g(A) \cup \sigma_g(B) \cup \left(\overline{\sigma_p(A^*)} \cap \sigma_p(B)\right). \tag{2.5}$$

The inclusion in (2.5) may be proper. To see this, consider the following example.

Example 2.2. Let $\{e_i\}_{i=1}^{\infty}$ and $\{f_i\}_{i=1}^{\infty}$ be orthonormal basis for H and K respectively. Define the operators A and B by $Ae_i = e_{i+1}, i = 1, 2, ...,$ and

$$\begin{bmatrix} Bf_1 = 0, \\ Bf_i = f_{i-1}, & i = 1, 2, \dots \end{bmatrix}$$

It is well known that

$$\sigma_p(A^*) = \sigma_p(B) = \left\{ \lambda \in \mathbb{C} \colon |\lambda| < 1 \right\}$$

and that

$$\sigma_g(A) = \sigma_g(B) = \{\lambda \in \mathbb{C}: |\lambda| = 1\}.$$

Define an operator C from K into H by

$$C := e_1 \otimes f_1: x \in K \mapsto \langle x, f_1 \rangle e_1.$$

It is not hard to show that M_C is a unitary operator. So, by [17, Theorem 1.5], we have

$$\sigma_g(M_C) = \sigma(M_C) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$$

Hence, we see that the inclusion

$$\sigma_g(M_C) \subseteq \sigma_g(A) \cup \sigma_g(B) \cup \left(\overline{\sigma_p(A^*)} \cap \sigma_p(B)\right)$$

is proper.

Theorem 2.5. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. For every $C \in \mathcal{L}(K, H)$, we have

$$(\sigma_g(A) \setminus \sigma_p(B)) \cup (\sigma_g(B) \setminus \overline{\sigma_p(A^*)}) \subseteq \sigma_g(M_C).$$

Proof. It suffices to claim that $\sigma_g(A) \setminus \sigma_p(B) \subseteq \sigma_g(M_C)$, then as in the above we deduce from (2.3) that $\sigma_g(B) \setminus \overline{\sigma_p(A^*)} \subseteq \sigma_g(M_C)$.

Suppose $\lambda \in \sigma_g(A) \setminus \sigma_p(B)$ and $\lambda \notin \sigma_g(M_C)$. Without loss of generality we may take $\lambda = 0$. Since $0 \notin \sigma_p(B)$, we must have $N(M_C) = N(A)$. Thus, it follows from the Kato non-singularity of M_C that $N(A) \subseteq R(A^n)$ for all n. On the other hand, since $0 \notin \sigma_g(M_C)$, there is an operator $M = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} \in \mathcal{L}(H \oplus K)$ such that $M_C M M_C = M_C$. Hence, we obtain

$$\begin{cases} AX_1A + CX_3A = A, \\ BX_3A = 0. \end{cases}$$

Since *B* is injective, we get $X_3A = 0$. Hence $AX_1A = A$, and then *A* is g-invertible. Consequently, we deduce $0 \notin \sigma_g(A)$, which contradicts our assumption. This completes the proof. \Box

3. The passage from $\sigma_g(A) \cup \sigma_g(B) \cup (\overline{\sigma_p(A^*)} \cap \sigma_p(B))$ to $\sigma_g(M_c)$

In this section we give a description of the passage from $\sigma_g(A) \cup \sigma_g(B) \cup (\overline{\sigma_p(A^*)} \cap \sigma_p(B))$ to $\sigma_g(M_C)$ for a given operators A, B and C. We shall prove that this passage is accomplished by removing certain subsets of $\overline{\sigma_p(A^*)} \cup \sigma_p(B)$ from the former.

Theorem 3.1. For a given pair (A, B) of operators there is equality, for every $C \in \mathcal{L}(K, H)$,

 $\eta(\sigma(A) \cup \sigma(B)) = \eta(\sigma_g(A) \cup \sigma_g(B)) = \eta(\sigma_g(M_C)).$

More precisely,

$$\sigma_g(A) \cup \sigma_g(B) \cup \left(\sigma_p(A^*) \cap \sigma_p(B)\right) = \sigma_g(M_C) \cup W,$$

where W is the union of certain of the holes in $\sigma_g(M_C)$ which happen to be subsets of $\overline{\sigma_p(A^*)} \cup \sigma_p(B)$.

Proof. We first claim that, for every $C \in \mathcal{L}(K, H)$,

$$\eta(\sigma(A) \cup \sigma(B)) = \eta(\sigma_g(M_C)). \tag{3.1}$$

We know by [17] that $\partial \sigma(M_C) \subseteq \sigma_g(M_C)$ and $\sigma_g(M_C) \subseteq \sigma(M_C)$, hence it follows that

$$\eta(\sigma(M_c)) = \eta(\sigma_g(M_c)). \tag{3.2}$$

By [9, Theorem 6] and (3.2), we deduce that

$$\eta(\sigma(A) \cup \sigma(B)) = \eta(\sigma_g(M_C)). \tag{3.3}$$

On the other hand, we have by virtue of [17] and Theorem 2.4

$$\begin{aligned} \partial(\sigma(A) \cup \sigma(B)) &\subseteq \partial(\sigma(A)) \cup \partial(\sigma(B)) \\ &\subseteq \sigma_g(A) \cup \sigma_g(B) \\ &\subseteq \sigma_g(A) \cup \sigma_g(B) \cup \left(\overline{\sigma_p(A^*)} \cap \sigma_p(B)\right) \\ &\subseteq \sigma(A) \cup \sigma(B). \end{aligned}$$

Hence using (3.3), we conclude that

$$\eta(\sigma(A) \cup \sigma(B)) = \eta(\sigma_g(A) \cup \sigma_g(B))$$
$$= \eta(\sigma_g(A) \cup \sigma_g(B) \cup (\overline{\sigma_p(A^*)} \cap \sigma_p(B)))$$
$$= \eta(\sigma_g(M_C)).$$
(3.4)

Eq. (3.4) says that the passage from $\sigma_g(M_C)$ to $\sigma_g(A) \cup \sigma_g(B) \cup (\overline{\sigma_p(A^*)} \cap \sigma_p(B))$ is filling in certain of the holes in $\sigma_g(M_C)$. But by Theorem 2.5, we have for every $C \in \mathcal{L}(K, H)$,

 $(\sigma_g(A)\cup\sigma_g(B))\setminus (\overline{\sigma_p(A^*)}\cup\sigma_p(B))\subseteq \sigma_g(M_C).$

Therefore, the filling in certain of the holes in $\sigma_g(M_c)$ should occur in $\overline{\sigma_p(A^*)} \cup \sigma_p(B)$. This ends the proof. \Box

Corollary 3.1. If $\overline{\sigma_p(A^*)} \cup \sigma_p(B)$ has no interior points (if in particular A and B are compact), then

 $\sigma_g(M_{\mathcal{C}}) = \sigma_g(A) \cup \sigma_g(B) \cup \left(\overline{\sigma_p(A^*)} \cap \sigma_p(B)\right) \text{ for every } \mathcal{C} \in \mathcal{L}(K, H).$

Proof. This follows at once from Theorem 3.1. \Box

Recall that an operator $A \in \mathcal{L}(H)$ is said to be hyponormal if the commutator $A^*A - AA^* \ge 0$. The operator A is completely non-normal hyponormal if it has no reducing subspace on which it is normal.

Corollary 3.2. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. If A^* and B are completely non-normal hyponormal, then

$$\sigma_g(M_C) = \sigma_g(A) \cup \sigma_g(B), \text{ for every } C \in \mathcal{L}(K, H).$$

Proof. This follows from Theorem 3.1 and the general fact that $\sigma_p(T) = \emptyset$ for every completely non-normal hyponormal operator *T* on a Hilbert space, see for instance [15, p. 70].

In the remainder of this section consider operators $C \in \mathcal{L}(K, H)$ for which there is equality $\sigma_g(M_C) = \sigma_g(A) \cup \sigma_g(B)$. For $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$ let $\delta_{A,B}$ denote the generalized derivation defined by $\delta_{A,B}(X) = AX - XB$ ($X \in \mathcal{L}(K, H)$).

Theorem 3.2. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$, and let $C \in N(\delta_{AB}) + R(\delta_{AB})$. Then

$$\sigma_g(M_C) = \sigma_g(A) \cup \sigma_g(B).$$

Proof. Since $C \in N(\delta_{AB}) + R(\delta_{AB})$, there exist $X, Y \in \mathcal{L}(K, H)$ such that C = Y + AX - XB and AY = YB. Hence

$$\begin{bmatrix} I & X \\ 0 & I \end{bmatrix} \begin{bmatrix} A & C \\ 0 & B \end{bmatrix} \begin{bmatrix} I & -X \\ 0 & I \end{bmatrix} = \begin{bmatrix} A & Y \\ 0 & B \end{bmatrix}.$$

Therefore

 $\sigma_g \left(\begin{bmatrix} A & C \\ 0 & B \end{bmatrix} \right) = \sigma_g \left(\begin{bmatrix} A & Y \\ 0 & B \end{bmatrix} \right), \tag{3.5}$

where the equality in (3.5) follows from the well-known fact that, if *T* is a bounded operator on a Hilbert space *E*, then $\sigma_g(STS^{-1}) = \sigma_g(T)$ for every invertible operator *S* on *E*.

Write

$$\begin{bmatrix} A & Y \\ 0 & B \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} + \begin{bmatrix} 0 & Y \\ 0 & 0 \end{bmatrix}.$$

Since the operator $\begin{bmatrix} 0 & Y \\ 0 & 0 \end{bmatrix}$ is nilpotent and commutes with $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$, we derive from (3.5) and [17, Theorem 4.8] that

$$\sigma_g(M_C) = \sigma_g\left(\begin{bmatrix} A & 0\\ 0 & B \end{bmatrix}\right).$$

But it is easy to see that

$$\sigma_g\left(\begin{bmatrix}A & 0\\ 0 & B\end{bmatrix}\right) = \sigma_g(A) \cup \sigma_g(B).$$

Hence

$$\sigma_g(M_C) = \sigma_g(A) \cup \sigma_g(B),$$

which completes the proof. \Box

Remark 3.1. If $\sigma_g(M_C) = \sigma_g(A) \cup \sigma_g(B)$, then $\sigma_g(M_{C+D}) = \sigma_g(A) \cup \sigma_g(B)$ for every operator $D \in N(\delta_{AB})$. Indeed, we have $M_{C+D} = M_C + \begin{bmatrix} 0 & D \\ 0 & 0 \end{bmatrix}$ and the operator $\begin{bmatrix} 0 & D \\ 0 & 0 \end{bmatrix}$ is nilpotent and commutes with M_C . Thus [17, Theorem 4.8] applies.

As a corollary of Theorem 3.2, we have

Corollary 3.3. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$ such that $\sigma_r(A) \cap \sigma_l(B) = \emptyset$, then

$$\sigma_g(M_C) = \sigma_g(A) \cup \sigma_g(B)$$
 for every $C \in \mathcal{L}(K, H)$.

Proof. Since $\delta_{A,B}$ is surjective (see [7]), the result follows from Theorem 3.2.

References

- [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985) 279-294.
- [2] M. Barraa, M. Boumazgour, A note on the spectrum of an upper triangular operator matrix, Proc. Amer. Math. Soc. 131 (2003) 3083–3088.
- [3] X. Cao, B. Meng, Essential approximate point spectra and Weyls theorem for operator matrices, J. Math. Anal. Appl. 304 (2005) 61–73.
- [4] Caradus, Generalized inverses and operator theory, in: Queen's Papers in Pure and Appl. Math., vol. 50, Queen's University, Kingston, Ontario, 1978.
- [5] D.S. Djordjevic, Perturbations of spectra of operator matrices, J. Operator Theory 48 (2002) 467-486.
- [6] S.V. Djordjevic, Y.M. Han, A note on Weyl's theorem for operator matrices, Proc. Amer. Math. Soc. 130 (2003) 2543-2547.
- [7] L. Fialkow, A note on the range of the operator $X \rightarrow AX XB$, Illinois J. Math. 25 (1981) 112–124.
- [8] H.K. Du, J. Pan, Perturbation of spectrums of 2 × 2 operator matrices, Proc. Amer. Math. Soc. 121 (1994) 761–776.
- [9] J.K. Han, H.Y. Lee, W.Y. Lee, Invertible completions of 2 × 2 upper triangular operator matrices, Proc. Amer. Math. Soc. 129 (2000) 119–123.
- [10] R. Harte, On Kato non-singularity, Studia Math. 117 (1996) 107-114.
- [11] I.S. Hwang, W.Y. Lee, The boundedness below of 2 × 2 upper triangular operator matrices, Integral Equations Operator Theory 39 (2001) 267–276.
- [12] J.P. Labrousse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Mat. Palermo (2) 29 (1980) 161-258.

[13] W.Y. Lee, Weyl's theorem for operator matrices, Integral Equations Operator Theory 32 (1998) 319–331.[14] W.Y. Lee, Weyl spectra for operator matrices, Proc. Amer. Math. Soc. 129 (2000) 131–138.

- [15] M. Martin, M. Putinar, Lectures on Hyponormal Operators, Oper. Theory Adv. Appl., vol. 39, Birkhäuser, 1989.
- [16] M. Mbekhta, Généralization de la décomposition de kato aux opérateurs paranormaux et spectraux, Glasg. Math. J. 29 (1987) 159-175.
- [17] M. Mbekhta, Résolvent généralisé et théorie spectrale, J. Operator Theory 21 (1989) 69-105.
- [18] V. Muller, On the regular spectrum, J. Operator Theory 31 (1994) 363–380.
- [19] K. Takahashi, Invertible completions of operator matrices, Integral Equations Operator Theory 21 (1995) 355-361.