On the perturbations of spectra of upper triangular operator matrices

Mohamed Barraa ${ }^{\text {a }}$, Mohamed Boumazgour ${ }^{\text {b,* }}$
a Département de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390 Marrakech, Morocco
${ }^{\mathrm{b}}$ Faculté des Sciences Juridiques, Economiques et Sociales, B.P. 8658 Cité Dakhla, Agadir 80000, Morocco

ARTICLE INFO

Article history:

Received 19 October 2007
Available online 28 May 2008
Submitted by M. Putinar

Keywords:

Regular spectrum
Point spectrum
2×2 upper triangular operator matrix
Generalized derivation

Abstract

In this paper we investigate perturbations of the regular spectrum of an upper triangular operator matrix such as $M_{C}=\left[\begin{array}{cc}A & C \\ 0 & B\end{array}\right]$ acting on a Hilbert space $H \oplus K$.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Let H and K be Hilbert spaces, let $\mathcal{L}(H, K)$ denote the space of all bounded linear operators from H to K, and write $\mathcal{L}(H)=\mathcal{L}(H, H)$. If $A \in \mathcal{L}(H), B \in \mathcal{L}(K)$ and $C \in \mathcal{L}(K, H)$ are given, we denote by M_{C} the operator acting on $H \oplus K$ of the form

$$
\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right]
$$

For $T \in \mathcal{L}(H, K)$, let $T^{*}, N(T), R(T), \sigma(T), \sigma_{p}(T)$ denote the adjoint, the null space, the range, the spectrum and the point spectrum of T, respectively. The nullity and the deficiency of T are defined respectively by $\alpha(T)=\operatorname{dim} N(T)$ and $\beta(T)=\operatorname{dim} K / R(T)$. The reduced minimum modulus $\gamma(T)$ of T is defined by

$$
\gamma(T)= \begin{cases}\inf \{\|T x\|: \operatorname{dist}(x, N(T))=1\} & \text { if } T \neq 0 \\ 0 & \text { if } T=0\end{cases}
$$

It is well known that $\gamma(T)>0$ if and only if $R(T)$ is closed. Moreover $\gamma(T)=\gamma\left(T^{*}\right)$ and $\|T x\| \geqslant \gamma(T)\|x\|$ for every $x \in N(T)^{\perp}$, where $N(T)^{\perp}$ stands for the orthogonal complement of $N(T)$ (see [1]).

Recall that an operator $T \in \mathcal{L}(H)$ is said to be generalized invertible (g-invertible for short) if there exists an operator $T^{+} \in \mathcal{L}(H)$ such that

$$
T T^{+} T=T \quad \text { and } \quad T^{+} T T^{+}=T^{+}
$$

The operator T^{+}is known as a generalized inverse of T.
It is well known that $T \in \mathcal{L}(H)$ has a generalized inverse if and only if its range $R(T)$ is closed (see [4]). If there is an operator $S \in \mathcal{L}(H)$ such that $T S T=T$, then T is g-invertible. Indeed, let $S_{1}=S T S$. Then clearly S_{1} satisfies $T S_{1} T=T$ and $S_{1} T S_{1}=S_{1}$.

[^0]We shall call $T \in \mathcal{L}(H)$ Kato non-singular if it is g-invertible and satisfies the following condition:

$$
\begin{equation*}
N(T) \subseteq R\left(T^{n}\right) \quad \text { for all } n \geqslant 0 \tag{1.1}
\end{equation*}
$$

Note that the inequality in (1.1) is equivalent to

$$
\begin{equation*}
N\left(T^{n}\right) \subseteq R(T) \quad \text { for all } n \geqslant 0 \tag{1.2}
\end{equation*}
$$

Given an arbitrary operator $T \in \mathcal{L}(H)$, the regular region $\operatorname{reg}(T)$ of T is defined by

$$
\operatorname{reg}(T)=\{\lambda \in \mathbb{C}: T-\lambda I \text { is Kato non-singular }\}
$$

The regular spectrum $\sigma_{g}(T)$ of T is defined to be the set

$$
\sigma_{g}(T):=\mathbb{C} \backslash \operatorname{reg}(T)
$$

The set $\sigma_{g}(T)$ is compact and nonempty. Moreover, $\partial \sigma(T) \subseteq \sigma_{g}(T)$ (see [17]), where we write ∂K for the topological boundary of a subset $K \subseteq \mathbb{C}$. We also have from [17], $\sigma_{g}\left(T^{*}\right)=\overline{\sigma_{g}(T)}$ (the bar stands for the complex conjugates points), and $\sigma_{g}(T)=\sigma(T)$ whenever T is a normal operator. More other properties of the regular spectrum can be found in $[1,12,16,17]$.

Perturbations of different spectra of operator matrices have been studied by numerous authors, see for example $[2,3,5,6,8,13,14,19]$ and the references cited therein. This paper is concerned with the regular spectrum of 2×2 upper triangular operator matrices.

Recall that a hole in a compact subset $\Delta \subseteq \mathbb{C}$ is a bounded component. The polynomially convex hull of Δ is the topological object obtained by filling in holes. We denote it by $\eta(\Delta)$. We also denote $\operatorname{int}(\Delta)$ for the interior points of Δ.

2. Kato non-singularity of $\boldsymbol{M}_{\boldsymbol{C}}$

In this section we investigate the Kato non-singularity of the matrix M_{C}. We begin with the following theorem.
Theorem 2.1. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$ be given operators. Suppose that A is Kato non-singular, $R(B)$ is closed and $\alpha(B) \leqslant \beta(A)$. Then, there exists an operator $C \in \mathcal{L}(K, H)$ such that M_{C} is Kato non-singular.

Proof. Since $\alpha(B) \leqslant \beta(A)$, there exists an isometry $J: N(B) \rightarrow R(A)^{\perp}$. Define an operator $C \in \mathcal{L}(K, H)$ by

$$
C=\left[\begin{array}{ll}
J & 0 \tag{2.1}\\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
N(B) \\
N(B)^{\perp}
\end{array}\right] \rightarrow\left[\begin{array}{c}
R(A)^{\perp} \\
R(A)
\end{array}\right] .
$$

We claim that M_{C} is Kato non-singular. Let $\binom{x}{y} \in N\left(M_{C}\right)$. Then

$$
M_{C}\binom{x}{y}=\binom{0}{0} \Rightarrow\left\{\begin{array} { l }
{ A x + C y = 0 , } \\
{ B y = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x \in N(A) \\
y=0
\end{array}\right.\right.
$$

where the second implication follows from the fact that $R(C) \cap R(A)=\{0\}$ and $N(C) \subseteq N(B)^{\perp}$. Hence

$$
N\left(M_{C}\right)=N(A) \subseteq R\left(A^{n}\right) \subseteq R\left(M_{C}^{n}\right)
$$

for all n because A is Kato non-singular.
Next we prove that $R\left(M_{C}\right)$ is closed. To do this, let $\binom{x}{y} \in N\left(M_{C}\right)^{\perp}$. Then $x \in N(A)^{\perp}$ and

$$
\left\|M_{C}\left(\binom{x}{y}\right)\right\|^{2}=\|A x+C y\|^{2}+\|B y\|^{2}=\|A x\|^{2}+\|C y\|^{2}+\|B y\|^{2} .
$$

Write $y:=u+v$, where $u \in N(B)$ and $v \in N(B)^{\perp}$. Then $\|C y\|=\|u\|$ and $\|B y\|=\|B v\| \geqslant \gamma(B)\|v\|$ since $R(B)$ is closed. Hence

$$
\begin{aligned}
\left\|M_{C}\left(\binom{x}{y}\right)\right\|^{2} & \geqslant\|A x\|^{2}+\|u\|^{2}+\gamma^{2}(B)\|v\|^{2} \\
& \geqslant \gamma^{2}(A)\|x\|^{2}+\|u\|^{2}+\gamma^{2}(B)\|v\|^{2} \\
& \geqslant \min \left(\gamma^{2}(A), \gamma^{2}(B), 1\right)\left\|\binom{x}{y}\right\|^{2}
\end{aligned}
$$

Thus $\gamma\left(M_{C}\right)>0$. Consequently M_{C} is Kato non-singular. This ends the proof.
Corollary 2.1. If A is Kato non-singular with $\beta(A)=\infty$ and $R(B)$ is closed, then there exists an operator C such that M_{C} is Kato non-singular.

Corollary 2.2. For a given pair (A, B) of operators, we have

$$
\bigcap_{C \in \mathcal{L}(K, H)} \sigma_{g}\left(M_{C}\right) \subseteq \sigma_{g}(A) \cup \sigma_{f}(B) \cup\{\lambda \in \mathbb{C}: \beta(A-\lambda I)<\alpha(B-\lambda I)\},
$$

where $\sigma_{f}(B)=\{\lambda \in \mathbb{C}: R(B-\lambda I)$ is not closed $\}$.
In the case where the range $R(B)$ is not closed we have the following results:

Theorem 2.2. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$ be given operators such that $R(B)$ is not closed. If A is Kato non-singular and $\beta(A)=\infty$, then there exists $C \in \mathcal{L}(K, H)$ such that M_{C} is Kato non-singular.

Proof. Since $R(B)$ is not closed and $\beta(A)=\infty$, there exists an isomorphism $J: K \rightarrow R(A)^{\perp}$. Define an operator $C: K \rightarrow H$ in the following way:

$$
C:=\left(\begin{array}{ll}
J & 0
\end{array}\right): K \rightarrow\left[\begin{array}{c}
R(A)^{\perp} \tag{2.2}\\
R(A)
\end{array}\right] .
$$

We claim that M_{C} is Kato non-singular. As in the proof of Theorem 2.1, we check easily that $N\left(M_{C}\right)=N(A)$ and $\gamma\left(M_{C}\right)>0$. Next, we claim that $N\left(M_{C}\right) \subseteq R\left(M_{C}^{n}\right)$ for all n. Indeed, let $\binom{x}{y} \in N\left(M_{C}^{2}\right)$; then we have

$$
\left\{\begin{array}{l}
A^{2} x+A C y+C B y=0 \\
B^{2} y=0
\end{array}\right.
$$

Since $R(C)$ is orthogonal to $R(A)$, we derive that

$$
A^{2} x+A C y=C B y=0
$$

Hence

$$
A x+C y \in N(A) \subseteq R(A)
$$

because A is Kato non-singular. It follows then that $C y \in R(A)$, so $y=0$. Therefore

$$
N\left(M_{C}^{2}\right)=N\left(A^{2}\right) \oplus\{0\} \subseteq R(A) \oplus\{0\} \subseteq R\left(M_{C}\right)
$$

Then, using an induction argument, we deduce that

$$
N\left(M_{C}^{n}\right)=N\left(A^{n}\right) \oplus\{0\} \subseteq R\left(M_{C}\right)
$$

for all $n \geqslant 1$. That is, M_{C} is Kato non-singular.

To prove the next theorem we need a lemma.
Lemma 2.1. Let S, U and $T \in \mathcal{L}(H)$ be given such that U is invertible. If $\operatorname{dim} N(S)$ is finite and $R(S U T)$ is closed, then $R(T)$ is also closed.

Proof. Since $R(S U T)$ is closed, it follows from [10, Theorem 1] that $N(S)+R(U T)$ is closed. But $\operatorname{dim} N(S)<\infty$, hence we deduce that $R(U T)$ is closed. Using again [10, Theorem 1] and the fact that U is invertible, we conclude that $R(T)$ is closed.

Theorem 2.3. Suppose that B is injective and $R(B)$ is not closed. Then there exists $C \in \mathcal{L}(K, H)$ such that M_{C} is Kato non-singular if and only if A is Kato non-singular and $\beta(A)=\infty$.

Proof. Assume that M_{C} is Kato non-singular for some $C \in \mathcal{L}(K, H)$. Since B is injective, we easily check that $N\left(M_{C}^{n}\right)=$ $N\left(A^{n}\right) \oplus\{0\} \subseteq R\left(M_{C}\right)$ for every $n \geqslant 1$. From this we deduce that $N\left(A^{n}\right) \subseteq R(A)$ for all n. On the other hand, we have

$$
M_{C}=\left[\begin{array}{ll}
I & 0 \\
0 & B
\end{array}\right]\left[\begin{array}{ll}
I & C \\
0 & I
\end{array}\right]\left[\begin{array}{ll}
A & 0 \\
0 & I
\end{array}\right]
$$

hence, by virtue of Lemma 2.1, we conclude that $R\left(\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]\right)$ is closed, that is, $R(A)$ is closed. Therefore A is Kato non-singular. Next, suppose in the contrary that $\beta(A)<\infty$. Then

$$
\operatorname{dim} N\left(\left[\begin{array}{cc}
A^{*} & 0 \\
0 & I
\end{array}\right]\right)=\operatorname{dim} N\left(A^{*}\right)=\beta(A)<\infty
$$

Since $R\left(M_{C}^{*}\right)$ is closed and $\left[\begin{array}{cc}I & 0 \\ C^{*} & I\end{array}\right]$ is invertible, we have by Lemma 2.1 that $R\left(\left[\begin{array}{cc}I & 0 \\ 0 & B^{*}\end{array}\right]\right)$ is closed, that is, $R\left(B^{*}\right)$ is closed. This contradicts our assumption. Therefore we must have $\beta(A)=\infty$.

The reverse implication is proved in Theorem 2.2.
As a consequence of Theorem 2.3, we have
Corollary 2.3. Suppose that $R(B)$ is not closed. If $\sigma_{p}(B)$ is empty, then

$$
\bigcap_{C \in \mathcal{L}(K, H)} \sigma_{g}\left(M_{C}\right)=\sigma_{g}(A) \cup\{\lambda \in \mathbb{C}: \beta(A-\lambda)<\infty\} .
$$

Remark 2.1. One might guess that if M_{C} is Kato non-singular, then $R(B)$ is closed. But this is not the case. By [11, Example 3], there are Hilbert space operators A, B and C such that M_{C} is bounded below and such that $R(B)$ is not closed.

We known that $\sigma\left(M_{C}\right) \subseteq \sigma(A) \cup \sigma(B)$ for every $C \in \mathcal{L}(K, H)$, however this inclusion fails to be true for the regular spectrum in a general setting. To see this, consider the following example:

Example 2.1. Let H be a Hilbert space with an orthonormal basis $\left\{e_{i, j}\right\}$ where i and j are integers such that $i j \leqslant 0$. Define operators A and $B \in \mathcal{L}(H)$ by

$$
A e_{i, j}= \begin{cases}0 & \text { if } j=0, i>0 \\ e_{i, j+1} & \text { otherwise }\end{cases}
$$

and

$$
B e_{i, j}= \begin{cases}0 & \text { if } i=0, j>0 \\ e_{i+1, j} & \text { otherwise }\end{cases}
$$

Then $N(A)=\bigvee\left\{e_{i, 0}, i>0\right\} \subseteq R^{n}(A)$ and $N(B)=\bigvee\left\{e_{0, j}, j>0\right\} \subseteq R^{n}(B)$ for all n, and both $R(A)$ and $R(B)$ are closed (see [18]). Thus A and B are Kato non-singular.

Define an operator $C \in \mathcal{L}(H)$ by

$$
C:=-e_{0,1} \otimes e_{0,1}+e_{0,0} \otimes e_{-1,1}-e_{-1,0} \otimes e_{-1,1} .
$$

We have $\binom{e_{0,0}}{e_{0,1}} \in N\left(M_{C}\right)$, but $\binom{e_{0,0}}{e_{0,1}} \notin R\left(M_{C}\right)$. Indeed, suppose that there exists a vector $\binom{x}{y}$ such that $\binom{e_{0,0}}{e_{0,1}}=M_{C}\binom{x}{y}$. Then a straightforward computation shows that $y=e_{-1,1}$ and $A x=e_{-1,0}$, which is a contradiction since $e_{-1,0} \notin R(A)$. Therefore $N\left(M_{C}\right) \nsubseteq R\left(M_{C}\right)$, so that M_{C} is not Kato non-singular.

In [1, Lemma 1.4], it was shown that, for given operators A, B and C, the operator M_{C} is Kato non-singular whenever A is surjective and B is bounded below. In the sequel we give a generalization of this result.

Lemma 2.2. Suppose that $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$ have generalized inverses A^{+}and B^{+}respectively. If an operator $C \in \mathcal{L}(K, H)$ satisfies the equation $C=A A^{+} C-A A^{+} C B^{+} B+C B^{+} B$ then, the operator M_{C} is g-invertible. If, in particular, either A is right invertible and B is g-invertible or A is g-invertible and B is left invertible, then M_{C} is g-invertible for every $C \in \mathcal{L}(K, H)$.

Proof. A simple computation shows that

$$
M_{C}\left[\begin{array}{cc}
A^{+} & -A^{+} C B^{+} \\
0 & B^{+}
\end{array}\right] M_{C}=M_{C}
$$

So it follows that M_{C} is g-invertible.
Theorem 2.4. Let $A \in \mathcal{L}(H), B \in \mathcal{L}(K)$ be given Kato non-singular operators. If either A is surjective or B is injective, then M_{C} is Kato non-singular for every $C \in \mathcal{L}(K, H)$.

Proof. We claim that M_{C} is Kato non-singular. We consider two cases.
Case 1. Assume that B is injective. If $\binom{x}{y} \in N\left(M_{C}\right)$, then $x \in N(A)$ and $y=0$. Thus $N\left(M_{C}\right) \subseteq N(A)$. It follows then from the Kato non-singularity of A that

$$
N\left(M_{C}\right) \subseteq R\left(A^{n}\right) \subseteq R\left(M_{C}^{n}\right) \quad \text { for all } n
$$

Next, we will show that $R\left(M_{C}\right)$ is closed. Since B is injective and $R(B)$ is closed, we conclude that B is left invertible. Hence Lemma 2.2 implies that M_{C} is g-invertible. Consequently, we have that M_{C} is Kato non-singular.

Case 2. Assume that A is surjective. Hence A^{*} is injective. Since

$$
\left[\begin{array}{cc}
0 & I \tag{2.3}\\
I & 0
\end{array}\right]\left[\begin{array}{cc}
A^{*} & 0 \\
C^{*} & B^{*}
\end{array}\right]\left[\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right]=\left[\begin{array}{cc}
B^{*} & C^{*} \\
0 & A^{*}
\end{array}\right]
$$

we conclude that

$$
\sigma_{g}\left(\left[\begin{array}{cc}
A^{*} & 0 \tag{2.4}\\
C^{*} & B^{*}
\end{array}\right]\right)=\sigma_{g}\left(\left[\begin{array}{cc}
B^{*} & C^{*} \\
0 & A^{*}
\end{array}\right]\right) .
$$

Since $0 \notin \sigma_{g}(A) \cup \sigma_{g}(B)$, it follows from the first case that

$$
0 \notin \sigma_{g}\left(\left[\begin{array}{cc}
B^{*} & C^{*} \\
0 & A^{*}
\end{array}\right]\right)
$$

Using (2.4), we conclude that $0 \notin \sigma_{g}\left(M_{C}^{*}\right)$. Thus M_{C} is Kato non-singular, which completes the proof.
From the above theorem we obtain the following consequence.
Corollary 2.4. If A, B and C are given operators, then

$$
\begin{equation*}
\sigma_{g}\left(M_{C}\right) \subseteq \sigma_{g}(A) \cup \sigma_{g}(B) \cup\left(\overline{\sigma_{p}\left(A^{*}\right)} \cap \sigma_{p}(B)\right) \tag{2.5}
\end{equation*}
$$

The inclusion in (2.5) may be proper. To see this, consider the following example.
Example 2.2. Let $\left\{e_{i}\right\}_{i=1}^{\infty}$ and $\left\{f_{i}\right\}_{i=1}^{\infty}$ be orthonormal basis for H and K respectively. Define the operators A and B by $A e_{i}=e_{i+1}, i=1,2, \ldots$, and

$$
\left\{\begin{array}{l}
B f_{1}=0, \\
B f_{i}=f_{i-1}, \quad i=1,2, \ldots
\end{array}\right.
$$

It is well known that

$$
\sigma_{p}\left(A^{*}\right)=\sigma_{p}(B)=\{\lambda \in \mathbb{C}:|\lambda|<1\}
$$

and that

$$
\sigma_{g}(A)=\sigma_{g}(B)=\{\lambda \in \mathbb{C}:|\lambda|=1\}
$$

Define an operator C from K into H by

$$
C:=e_{1} \otimes f_{1}: x \in K \mapsto\left\langle x, f_{1}\right\rangle e_{1} .
$$

It is not hard to show that M_{C} is a unitary operator. So, by [17, Theorem 1.5], we have

$$
\sigma_{g}\left(M_{C}\right)=\sigma\left(M_{C}\right) \subseteq\{\lambda \in \mathbb{C}:|\lambda|=1\}
$$

Hence, we see that the inclusion

$$
\sigma_{g}\left(M_{C}\right) \subseteq \sigma_{g}(A) \cup \sigma_{g}(B) \cup\left(\overline{\sigma_{p}\left(A^{*}\right)} \cap \sigma_{p}(B)\right)
$$

is proper.
Theorem 2.5. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. For every $C \in \mathcal{L}(K, H)$, we have

$$
\left(\sigma_{g}(A) \backslash \sigma_{p}(B)\right) \cup\left(\sigma_{g}(B) \backslash \overline{\sigma_{p}\left(A^{*}\right)}\right) \subseteq \sigma_{g}\left(M_{C}\right)
$$

Proof. It suffices to claim that $\left.\sigma_{g}(A) \backslash \sigma_{p}(B)\right) \subseteq \sigma_{g}\left(M_{C}\right)$, then as in the above we deduce from (2.3) that $\left.\sigma_{g}(B) \backslash \overline{\sigma_{p}\left(A^{*}\right)}\right) \subseteq$ $\sigma_{g}\left(M_{C}\right)$.

Suppose $\lambda \in \sigma_{g}(A) \backslash \sigma_{p}(B)$ and $\lambda \notin \sigma_{g}\left(M_{C}\right)$. Without loss of generality we may take $\lambda=0$. Since $0 \notin \sigma_{p}(B)$, we must have $N\left(M_{C}\right)=N(A)$. Thus, it follows from the Kato non-singularity of M_{C} that $N(A) \subseteq R\left(A^{n}\right)$ for all n. On the other hand, since $0 \notin \sigma_{g}\left(M_{C}\right)$, there is an operator $M=\left[\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right] \in \mathcal{L}(H \oplus K)$ such that $M_{C} M M_{C}=M_{C}$. Hence, we obtain

$$
\left\{\begin{array}{l}
A X_{1} A+C X_{3} A=A \\
B X_{3} A=0 .
\end{array}\right.
$$

Since B is injective, we get $X_{3} A=0$. Hence $A X_{1} A=A$, and then A is g-invertible. Consequently, we deduce $0 \notin \sigma_{g}(A)$, which contradicts our assumption. This completes the proof.

3. The passage from $\sigma_{g}(A) \cup \sigma_{g}(B) \cup\left(\overline{\sigma_{p}\left(A^{*}\right)} \cap \sigma_{p}(B)\right)$ to $\sigma_{g}\left(M_{C}\right)$

In this section we give a description of the passage from $\sigma_{g}(A) \cup \sigma_{g}(B) \cup\left(\overline{\sigma_{p}\left(A^{*}\right)} \cap \sigma_{p}(B)\right)$ to $\sigma_{g}\left(M_{C}\right)$ for a given operators A, B and C. We shall prove that this passage is accomplished by removing certain subsets of $\overline{\sigma_{p}\left(A^{*}\right)} \cup \sigma_{p}(B)$ from the former.

Theorem 3.1. For a given pair (A, B) of operators there is equality, for every $C \in \mathcal{L}(K, H)$,

$$
\eta(\sigma(A) \cup \sigma(B))=\eta\left(\sigma_{g}(A) \cup \sigma_{g}(B)\right)=\eta\left(\sigma_{g}\left(M_{C}\right)\right)
$$

More precisely,

$$
\sigma_{g}(A) \cup \sigma_{g}(B) \cup\left(\overline{\sigma_{p}\left(A^{*}\right)} \cap \sigma_{p}(B)\right)=\sigma_{g}\left(M_{C}\right) \cup W
$$

where W is the union of certain of the holes in $\sigma_{g}\left(M_{C}\right)$ which happen to be subsets of $\overline{\sigma_{p}\left(A^{*}\right)} \cup \sigma_{p}(B)$.
Proof. We first claim that, for every $C \in \mathcal{L}(K, H)$,

$$
\begin{equation*}
\eta(\sigma(A) \cup \sigma(B))=\eta\left(\sigma_{g}\left(M_{C}\right)\right) \tag{3.1}
\end{equation*}
$$

We know by [17] that $\partial \sigma\left(M_{C}\right) \subseteq \sigma_{g}\left(M_{C}\right)$ and $\sigma_{g}\left(M_{C}\right) \subseteq \sigma\left(M_{C}\right)$, hence it follows that

$$
\begin{equation*}
\eta\left(\sigma\left(M_{C}\right)\right)=\eta\left(\sigma_{g}\left(M_{C}\right)\right) \tag{3.2}
\end{equation*}
$$

By [9, Theorem 6] and (3.2), we deduce that

$$
\begin{equation*}
\eta(\sigma(A) \cup \sigma(B))=\eta\left(\sigma_{g}\left(M_{C}\right)\right) \tag{3.3}
\end{equation*}
$$

On the other hand, we have by virtue of [17] and Theorem 2.4

$$
\begin{aligned}
\partial(\sigma(A) \cup \sigma(B)) & \subseteq \partial(\sigma(A)) \cup \partial(\sigma(B)) \\
& \subseteq \sigma_{g}(A) \cup \sigma_{g}(B) \\
& \subseteq \sigma_{g}(A) \cup \sigma_{g}(B) \cup\left(\overline{\sigma_{p}\left(A^{*}\right)} \cap \sigma_{p}(B)\right) \\
& \subseteq \sigma(A) \cup \sigma(B)
\end{aligned}
$$

Hence using (3.3), we conclude that

$$
\begin{align*}
\eta(\sigma(A) \cup \sigma(B)) & =\eta\left(\sigma_{g}(A) \cup \sigma_{g}(B)\right) \\
& =\eta\left(\sigma_{g}(A) \cup \sigma_{g}(B) \cup\left(\overline{\sigma_{p}\left(A^{*}\right)} \cap \sigma_{p}(B)\right)\right) \\
& =\eta\left(\sigma_{g}\left(M_{C}\right)\right) . \tag{3.4}
\end{align*}
$$

Eq. (3.4) says that the passage from $\sigma_{g}\left(M_{C}\right)$ to $\sigma_{g}(A) \cup \sigma_{g}(B) \cup\left(\overline{\sigma_{p}\left(A^{*}\right)} \cap \sigma_{p}(B)\right)$ is filling in certain of the holes in $\sigma_{g}\left(M_{C}\right)$. But by Theorem 2.5, we have for every $C \in \mathcal{L}(K, H)$,

$$
\left(\sigma_{g}(A) \cup \sigma_{g}(B)\right) \backslash\left(\overline{\sigma_{p}\left(A^{*}\right)} \cup \sigma_{p}(B)\right) \subseteq \sigma_{g}\left(M_{C}\right)
$$

Therefore, the filling in certain of the holes in $\sigma_{g}\left(M_{C}\right)$ should occur in $\overline{\sigma_{p}\left(A^{*}\right)} \cup \sigma_{p}(B)$. This ends the proof.

Corollary 3.1. If $\overline{\sigma_{p}\left(A^{*}\right)} \cup \sigma_{p}(B)$ has no interior points (if in particular A and B are compact), then

$$
\sigma_{g}\left(M_{C}\right)=\sigma_{g}(A) \cup \sigma_{g}(B) \cup\left(\overline{\sigma_{p}\left(A^{*}\right)} \cap \sigma_{p}(B)\right) \quad \text { for every } C \in \mathcal{L}(K, H)
$$

Proof. This follows at once from Theorem 3.1.

Recall that an operator $A \in \mathcal{L}(H)$ is said to be hyponormal if the commutator $A^{*} A-A A^{*} \geqslant 0$. The operator A is completely non-normal hyponormal if it has no reducing subspace on which it is normal.

Corollary 3.2. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$. If A^{*} and B are completely non-normal hyponormal, then

$$
\sigma_{g}\left(M_{C}\right)=\sigma_{g}(A) \cup \sigma_{g}(B), \quad \text { for every } C \in \mathcal{L}(K, H)
$$

Proof. This follows from Theorem 3.1 and the general fact that $\sigma_{p}(T)=\emptyset$ for every completely non-normal hyponormal operator T on a Hilbert space, see for instance [15, p. 70].

In the remainder of this section consider operators $C \in \mathcal{L}(K, H)$ for which there is equality $\sigma_{g}\left(M_{C}\right)=\sigma_{g}(A) \cup \sigma_{g}(B)$. For $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$ let $\delta_{A, B}$ denote the generalized derivation defined by $\delta_{A, B}(X)=A X-X B(X \in \mathcal{L}(K, H))$.

Theorem 3.2. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$, and let $C \in N\left(\delta_{A B}\right)+R\left(\delta_{A B}\right)$. Then

$$
\sigma_{g}\left(M_{C}\right)=\sigma_{g}(A) \cup \sigma_{g}(B)
$$

Proof. Since $C \in N\left(\delta_{A B}\right)+R\left(\delta_{A B}\right)$, there exist $X, Y \in \mathcal{L}(K, H)$ such that $C=Y+A X-X B$ and $A Y=Y B$. Hence

$$
\left[\begin{array}{ll}
I & X \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
I & -X \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
A & Y \\
0 & B
\end{array}\right]
$$

Therefore

$$
\sigma_{g}\left(\left[\begin{array}{cc}
A & C \tag{3.5}\\
0 & B
\end{array}\right]\right)=\sigma_{g}\left(\left[\begin{array}{cc}
A & Y \\
0 & B
\end{array}\right]\right)
$$

where the equality in (3.5) follows from the well-known fact that, if T is a bounded operator on a Hilbert space E, then $\sigma_{g}\left(S^{-1}\right)=\sigma_{g}(T)$ for every invertible operator S on E.

Write

$$
\left[\begin{array}{cc}
A & Y \\
0 & B
\end{array}\right]=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]+\left[\begin{array}{ll}
0 & Y \\
0 & 0
\end{array}\right]
$$

Since the operator $\left[\begin{array}{ll}0 & Y \\ 0 & 0\end{array}\right]$ is nilpotent and commutes with $\left[\begin{array}{cl}A & 0 \\ 0 & B\end{array}\right]$, we derive from (3.5) and [17, Theorem 4.8] that

$$
\sigma_{g}\left(M_{C}\right)=\sigma_{g}\left(\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]\right)
$$

But it is easy to see that

$$
\sigma_{g}\left(\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]\right)=\sigma_{g}(A) \cup \sigma_{g}(B)
$$

Hence

$$
\sigma_{g}\left(M_{C}\right)=\sigma_{g}(A) \cup \sigma_{g}(B)
$$

which completes the proof.
Remark 3.1. If $\sigma_{g}\left(M_{C}\right)=\sigma_{g}(A) \cup \sigma_{g}(B)$, then $\sigma_{g}\left(M_{C+D}\right)=\sigma_{g}(A) \cup \sigma_{g}(B)$ for every operator $D \in N\left(\delta_{A B}\right)$. Indeed, we have $M_{C+D}=M_{C}+\left[\begin{array}{ll}0 & D \\ 0 & 0\end{array}\right]$ and the operator $\left[\begin{array}{ll}0 & D \\ 0 & 0\end{array}\right]$ is nilpotent and commutes with M_{C}. Thus [17, Theorem 4.8] applies.

As a corollary of Theorem 3.2, we have
Corollary 3.3. Let $A \in \mathcal{L}(H)$ and $B \in \mathcal{L}(K)$ such that $\sigma_{r}(A) \cap \sigma_{l}(B)=\emptyset$, then

$$
\sigma_{g}\left(M_{C}\right)=\sigma_{g}(A) \cup \sigma_{g}(B) \quad \text { for every } C \in \mathcal{L}(K, H)
$$

Proof. Since $\delta_{A, B}$ is surjective (see [7]), the result follows from Theorem 3.2.

References

[1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985) 279-294.
[2] M. Barraa, M. Boumazgour, A note on the spectrum of an upper triangular operator matrix, Proc. Amer. Math. Soc. 131 (2003) 3083-3088.
[3] X. Cao, B. Meng, Essential approximate point spectra and Weyls theorem for operator matrices, J. Math. Anal. Appl. 304 (2005) 61-73.
[4] Caradus, Generalized inverses and operator theory, in: Queen's Papers in Pure and Appl. Math., vol. 50, Queen's University, Kingston, Ontario, 1978.
[5] D.S. Djordjevic, Perturbations of spectra of operator matrices, J. Operator Theory 48 (2002) 467-486.
[6] S.V. Djordjevic, Y.M. Han, A note on Weyl's theorem for operator matrices, Proc. Amer. Math. Soc. 130 (2003) 2543-2547.
[7] L. Fialkow, A note on the range of the operator $X \rightarrow A X-X B$, Illinois J. Math. 25 (1981) 112-124.
[8] H.K. Du, J. Pan, Perturbation of spectrums of 2×2 operator matrices, Proc. Amer. Math. Soc. 121 (1994) 761-776.
[9] J.K. Han, H.Y. Lee, W.Y. Lee, Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc. 129 (2000) 119-123.
[10] R. Harte, On Kato non-singularity, Studia Math. 117 (1996) 107-114.
[11] I.S. Hwang, W.Y. Lee, The boundedness below of 2×2 upper triangular operator matrices, Integral Equations Operator Theory 39 (2001) $267-276$.
[12] J.P. Labrousse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Mat. Palermo (2) 29 (1980) $161-258$.
[13] W.Y. Lee, Weyl's theorem for operator matrices, Integral Equations Operator Theory 32 (1998) 319-331.
[14] W.Y. Lee, Weyl spectra for operator matrices, Proc. Amer. Math. Soc. 129 (2000) 131-138.
[15] M. Martin, M. Putinar, Lectures on Hyponormal Operators, Oper. Theory Adv. Appl., vol. 39, Birkhäuser, 1989.
[16] M. Mbekhta, Généralization de la décomposition de kato aux opérateurs paranormaux et spectraux, Glasg. Math. J. 29 (1987) 159-175.
[17] M. Mbekhta, Résolvent généralisé et théorie spectrale, J. Operator Theory 21 (1989) 69-105.
[18] V. Muller, On the regular spectrum, J. Operator Theory 31 (1994) 363-380.
[19] K. Takahashi, Invertible completions of operator matrices, Integral Equations Operator Theory 21 (1995) 355-361.

[^0]: * Corresponding author.

 E-mail addresses: barraa@ucam.ac.ma (M. Barraa), boumazgour@hotmail.com (M. Boumazgour).

