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a b s t r a c t

In this paper, we consider a (continuous) fractional boundary value problem of the form
−Dν0+y(t) = f (t, y(t)), y

(i)(0) = 0,
[
Dα0+y(t)

]
t=1 = 0, where 0 ≤ i ≤ n−2, 1 ≤ α ≤ n−2,

ν > 3 satisfying n−1 < ν ≤ n, n ∈ N, is given, and Dν0+ is the standard Riemann–Liouville
fractional derivative of order ν. We derive the Green’s function for this problem and show
that it satisfies certain properties. We then use cone theoretic techniques to deduce a
general existence theorem for this problem. Certain of our results improve on recent work
in the literature, and we remark on the consequences of this improvement.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

While continuous fractional calculus has been studied for as long as ordinary calculus, the progress of research in this area
has only recently greatly increased. Some of the current research in fractional differential equations has extended certain of
the classical results for ordinary differential equations (ODEs) to the fractional case. For example, Bai and Lü [1] considered a
fractional analogue of thewell-known two-point conjugate problem.On the other hand, Xu et al. [2] considered amulti-point
fractional boundary value problem (BVP). The recentmonograph [3] is interesting for its application of fractional derivatives
to the spatial spread of an epidemic, and a recent paper by Lakshmikantham and Vatsala [4] is to be recommended for its
development of some of the basic theory of fractional initial value problems (IVPs).
In this paper, we are concerned with a partial extension of a problem considered in a very recent paper by Zhang [5].

Zhang considered the problem

Dα0+u(t)+ q(t)f
(
u, u′, . . . , u(n−2)

)
= 0, 0 < t < 1, n− 1 < α ≤ n, (1.1)

u(0) = u′(0) = · · · = u(n−2)(0) = u(n−2)(1) = 0, (1.2)

where Dα0+ is the standard Riemann–Liouville fractional derivative of order α, q may be singular at t = 0, and f may be
singular at u = 0, u′ = 0, . . ., u(n−2) = 0. As a consequence of the viewpoint assumed by Zhang, it is never addressed
whether or not the Green’s function associated to (1.1) and (1.2) satisfies a Harnack-like inequality. As is well known from
the existing literature, this is a crucial property when seeking the existence of positive solutions by means of cone theory.
One may consult from among a great many papers the classic paper of Erbe and Wang [6] to see explicitly this fact. On
the other hand, and perhaps surprisingly, it was first shown by Bai and Lü [1] that the fractional analogue of the two-point
conjugate BVP does not satisfy this property.
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Here we consider, for f : [0, 1] × [0,+∞) → [0,+∞) continuous, a class of (continuous) fractional boundary value
problems (FBVPs) of the form

−Dν0+y(t) = f (t, y(t)), 0 < t < 1, n− 1 < ν ≤ n, (1.3)

y(i)(0) = 0, 0 ≤ i ≤ n− 2, (1.4)[
Dα0+y(t)

]
t=1 = 0, 1 ≤ α ≤ n− 2, (1.5)

where y(i) in boundary condition (1.4) represents the ith (ordinary) derivative of y. Clearly, (1.4) and (1.5) generalize the
boundary conditions considered in [5]. We shall assume throughout that n ∈ N is given subject to the restriction n > 3.
Note that this problem is not unrelated to the so-called (k, n − k) conjugate BVPs, which have received much attention in
recent years; see, for example, the paper by Davis and Henderson [7] and the references therein. Moreover, in the special
case when ν = 4, problem (1.3) has been studiedwith a variety of boundary conditions and nonlinearities; see, for example,
[8,9] and the references therein.
Our primary contribution in this paper is that we improve certain of Zhang’s results by showing that the Green’s function

associated to (1.3)–(1.5) satisfies, among other properties, a Harnack-like inequality. Since by putting α = n − 2 in (1.5)
abovewe get the boundary conditions given by (1.2), our results affirm that the Green’s function associated to (1.1) and (1.2)
does satisfy a Harnack-like inequality. Finally, in Section 4, we show that problem (1.3)–(1.5) has a positive solution under
standard assumptions on the nonlinearity f .

2. Preliminaries

We first wish to collect some basic lemmas that will be important to us in what follows. These and other related results
and their proofs can be found, for example, in [1,10].

Definition 2.1. Let ν > 0 with ν ∈ R. Suppose that y : [a,+∞)→ R. Then the νth Riemann–Liouville fractional integral
is defined to be

D−νa y(t) :=
1

Γ (ν)

∫ t

a
y(s)(t − s)ν−1ds,

whenever the right-hand side is defined. Similarly, with ν > 0 and ν ∈ R, we define the νth Riemann–Liouville fractional
derivative to be

Dνay(t) :=
1

Γ (n− ν)
dn

dtn

∫ t

a

y(s)
(t − s)ν+1−n

ds,

where n ∈ N is the unique positive integer satisfying n− 1 ≤ ν < n and t > a.

Remark 2.2. In what follows, we shall suppress the explicit dependence of Dνa on a. It will be clear from the context. In fact,
in this paper a = 0 throughout.

Lemma 2.3. Let α ∈ R. Then DnDαy(t) = Dn+αy(t), for each n ∈ N0, where y(t) is assumed to be sufficiently regular so that
both sides of the equality are well defined. Moreover, if β ∈ (−∞, 0] and γ ∈ [0,+∞), then DγDβy(t) = Dγ+βy(t).

Lemma 2.4. The general solution to Dνy(t) = 0, where n − 1 < ν ≤ n and ν > 0, is the function y(t) = c1tν−1 + c2tν−2 +
· · · + cntν−n, where ci ∈ R for each i.

3. Green’s function properties

We begin by deriving the Green’s function for the operator−Dν together with the boundary conditions given in (1.4) and
(1.5).

Theorem 3.1. Let g ∈ Cn([0, 1]) be given. Then the unique solution to problem −Dνy(t) = g(t) together with the boundary
conditions (1.4) and (1.5) is

y(t) =
∫ 1

0
G(t, s)g(s)ds, (3.1)

where

G(t, s) =


tν−1(1− s)ν−α−1 − (t − s)ν−1

Γ (ν)
, 0 ≤ s ≤ t ≤ 1

tν−1(1− s)ν−α−1

Γ (ν)
, 0 ≤ t ≤ s ≤ 1

(3.2)

is the Green’s function for this problem.
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Proof. We know from Lemma 2.4 that the general solution to our problem is

y(t) = c1tν−1 + c2tν−2 + · · · + cntν−n − D−νg(t), (3.3)

where we note that−ν < 0. We immediately observe that boundary condition (1.4) implies that c2 = · · · = cn = 0. On the
other hand, recalling (see [10]) that Dα

[
tν−1

]
=

Γ (ν)

Γ (ν−α)
tν−α−1, we find that boundary condition (1.5) implies that

0 = c1 ·
Γ (ν)

Γ (ν − α)
(1)ν−α−1 −

1
Γ (ν − α)

∫ 1

0
(1− s)ν−α−1g(s)ds, (3.4)

where we have used Lemma 2.3. But (3.4) may be simplified to get that

c1 =
1

Γ (ν)

∫ 1

0
(1− s)ν−α−1g(s)ds. (3.5)

Finally, putting (3.5) into (3.3) and using the fact that ci = 0 for each i ≥ 2, we find that the general solution to the problem
is

y(t) =
tν−1

Γ (ν)

∫ 1

0
(1− s)ν−α−1g(s)ds−

1
Γ (ν)

∫ t

0
(t − s)ν−1g(s)ds, (3.6)

from which it is easy to see that (3.1) holds with G(t, s) defined as in (3.2). �

We now state and prove several properties of the Green’s function derived in Theorem 3.1. These properties will be
crucial when we prove our existence theorem in Section 4. For convenience in what follows, let us put

G1(t, s) :=
tν−1(1− s)ν−α−1 − (t − s)ν−1

Γ (ν)
, 0 ≤ s ≤ t ≤ 1 (3.7)

and

G2(t, s) :=
tν−1(1− s)ν−α−1

Γ (ν)
, 0 ≤ t ≤ s ≤ 1. (3.8)

Theorem 3.2. Let G(t, s) be as given in the statement of Theorem 3.1. Then we find that:

1. G(t, s) is a continuous function on the unit square [0, 1] × [0, 1];
2. G(t, s) ≥ 0 for each (t, s) ∈ [0, 1] × [0, 1]; and
3. maxt∈[0,1] G(t, s) = G(1, s), for each s ∈ [0, 1].

Proof. That property (1) holds is trivial. Indeed, it is clear that each of G1 and G2 are continuous on their domains and that
G1(s, s) = G2(s, s), whence (1) follows.
To prove that (3) is true, we begin by noting that, for each fixed admissible s, we have ∂G2

∂t > 0, clearly. So, in particular,

G2 is increasing with respect to t . On the other hand, note that
∂G1
∂t =

(ν−1)tν−2(1−s)ν−α−1−(t−s)ν−2(ν−1)
Γ (ν)

. Put G∗(t, s) := ∂G1
∂t for

each admissible (t, s). Evidently, G∗(t, s) > 0 on its domain if and only if tν−2(1 − s)ν−α−1 − (t − s)ν−2 ≥ 0. But that this
latter inequality holds follows from the observation that

tν−2(1− s)ν−α−1 − tν−2
(
1−

s
t

)ν−2
≥ tν−2

[
(1− s)ν−α−1 − (1− s)ν−2

]
≥ 0, (3.9)

where to get the first inequality we use the fact that 0 ≤ t ≤ 1, whereas to get the final inequality we use the fact that
ν−α−1 ≤ ν−2, for each admissible α. Thus, as (3.9) holds, we deduce that G∗(t, s) ≥ 0 on its domain. In particular, then,
G1 is increasing on its domain, too. Consequently, (3) holds.
Finally, to prove that (2) holds, let us note that, for each fixed and admissible s, we have that G(0, s) = 0. So, as (3) implies

that G(t, s) is increasing in t for each s, we find at once that G(t, s) ≥ 0 at each admissible pair (t, s). Thus, (2) holds, and
the proof is complete. �

Theorem 3.3. Let G(t, s) be as given in the statement of Theorem 3.1. Then there exists a constant γ ∈ (0, 1) such that

min
t∈
[
1
2 ,1

]G(t, s) ≥ γ max
t∈[0,1]

G(t, s) = γG(1, s). (3.10)
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Proof. Notice that Theorem 3.2 implies that

min
t∈
[
1
2 ,1

]G(t, s) =

G1

(
1
2
, s
)
, s ∈

(
0,
1
2

]
G2

(
1
2
, s
)
, s ∈

[
1
2
, 1
)

=


( 1
2

)ν−1
(1− s)ν−α−1 −

( 1
2 − s

)ν−1
Γ (ν)

, s ∈
(
0,
1
2

]
( 1
2

)ν−1
(1− s)ν−α−1

Γ (ν)
, s ∈

[
1
2
, 1
)
.

(3.11)

Moreover, observe that

lim
s→0+

( 1
2

)ν−1
(1− s)ν−α−1 −

( 1
2 − s

)ν−1
(1− s)ν−α−1 [1− (1− s)α]

L′H
= lim
s→0+

−(ν − α − 1)
( 1
2

)ν−1
(1− s)ν−α−2 +

( 1
2 − s

)ν−2
(ν − 1)

−(1− s)ν−α−2(ν − α − 1)+ (1− s)ν−2(ν − 1)
, (3.12)

whence lims→0+

(
1
2

)ν−1
(1−s)ν−α−1−

(
1
2−s

)ν−1
(1−s)ν−α−1[1−(1−s)α ]

=
1
α

( 1
2

)ν−1
(ν + α − 1) > 0. It is also the case that for 0 < s ≤ 1

2( 1
2

)ν−1
(1− s)ν−α−1 −

( 1
2 − s

)ν−1
(1− s)ν−α−1 [1− (1− s)α]

≥

( 1
2

)ν−1 (
1− 1

2

)ν−α−1
−
( 1
2 −

1
2

)ν−1(
1− 1

2

)ν−α−1 [
1−

(
1− 1

2

)α]
=

( 1
2

)ν−α−1
2α − 1

. (3.13)

Finally, observe that, for 12 ≤ s ≤ 1, we find that( 1
2

)ν−1
1− (1− s)α

≥

(
1
2

)ν−1
. (3.14)

Now, define γ̃ (s) : [0, 1] → (0, 1) by

γ̃ (s) :=


( 1
2

)ν−1
(1− s)ν−α−1 −

( 1
2 − s

)ν−1
(1− s)ν−α−1 [1− (1− s)α]

, 0 < s ≤
1
2( 1

2

)ν−1
1− (1− s)α

,
1
2
≤ s ≤ 1,

(3.15)

where γ̃ (0) := lims→0+ γ̃ (s); note that γ̃ (0) > 0 by (3.12). Put

γ := min

{( 1
2

)ν−α−1
2α − 1

,

(
1
2

)ν−1}
, (3.16)

where, evidently, 0 < γ < 1. Then, from (3.11)–(3.16), we find that

min
t∈
[
1
2 ,1

]G(t, s) = γ̃ (s) max
t∈[0,1]

G(t, s) ≥ γ max
t∈[0,1]

G(t, s) = γG(1, s),

as claimed. �

Remark 3.4. Note that, in great contrast to, say, [1], where their γ is a function of s and satisfies lims→0+ γ (s) = 0, in our
Theorem3.3 abovewe are able to take our γ to be a strictly positive constant.We believe this to be a very important difference
between our results and other work (e.g., [1,2]) on (continuous) FBVPs. Moreover, as pointed out in Section 1, this improves
and builds on certain of the results given in [5].

Remark 3.5. It can be shown that, for 0 ≤ α < 1 in (1.5), we find that γ can no longer be taken as a constant and that,
moreover, lims→0+ γ (s) = 0 in this case.
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4. Existence theorem

In this sectionwe deduce the existence of a positive solution to problem (1.3)–(1.5) by assuming some growth conditions
on f (t, y). To accomplish this we appeal to cone theoretic techniques. In particular, we shall require the following well-
known result due to Krasnosel’skiı̆; see, for example, [11].

Lemma 4.1. Let B be a Banach space and let K ⊆ B be a cone. Assume that Ω1 andΩ2 are open sets contained inB such that
0 ∈ Ω1 andΩ1 ⊆ Ω2. Assume, further, that T : K ∩

(
Ω2 \Ω1

)
→ K is a completely continuous operator. If either

1. ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2, or
2. ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2,

then T has at least one fixed point inK ∩
(
Ω2 \Ω1

)
.

Now, notice that y solves (1.3)–(1.5) if and only if y is a fixed point of the operator (Ty)(t) :=
∫ 1
0 G(t, s)f (s, y(s))ds, where

G is the Green’s function derived in this paper and T : B → B, whereB is the Banach space Cn([0, 1]) equipped with the
usual supremum norm, ‖ · ‖. Let us also make the following declarations, which will be used in what follows. In particular,

we put η :=
[∫ 1
0 G(1, s)ds

]−1
and λ :=

[∫ 1
1
2
G
( 3
4 , s
)
ds
]−1
, where these are clearly well defined. In addition, let us also

introduce two conditions on the behavior of f that will be useful in what follows.

C1: There exists a number r1 > 0 such that f (t, y) ≤ ηr1 whenever 0 ≤ y ≤ r1.
C2: There exists a number r2 > 0 such that f (t, y) ≥ λr2 whenever γ r2 ≤ y ≤ r2, where γ is the constant deduced in

Theorem 3.3.

We now can prove the following existence result.

Theorem 4.2. Suppose that there are numbers r2 > r1 > 0 such that conditions (C1) and (C2) hold at r1 and r2, respectively.
Suppose also that f (t, y) ≥ 0 and continuous. Then the FBVP (1.3)–(1.5) has at least one positive solution.

Proof. Consider the setK :=
{
y ∈ B : y(t) ≥ 0 and min

t∈
[
1
2 ,1

] y(t) ≥ γ ‖y‖
}
, which is a cone withK ⊆ B. Observe that

T : K → K , for we observe that

min
t∈
[
1
2 ,1

](Ty)(t) ≥ γ
∫ 1

0
G(1, s)f (s, y(s))ds = γ max

t∈[0,1]

∫ 1

0
G(t, s)f (s, y(s))ds = γ ‖Ty‖,

whence Ty ∈ K , as claimed. Moreover, a standard argument, which we omit, shows that T is equicontinuous and bounded,
so the Arzela–Ascoli theorem may be applied to deduce the complete continuity of T .
Now, put Ω1 := {y ∈ K : ‖y‖ < r1}. Note that, for y ∈ ∂Ω1, we have that ‖y‖ = r1, so condition (C1) holds for all

y ∈ ∂Ω1. So, for y ∈ K ∩ ∂Ω1, we find that

‖Ty‖ = max
t∈[0,1]

∫ 1

0
G(t, s)f (s, y(s))ds ≤ ηr1

∫ 1

0
G(1, s)ds, (4.1)

whence (4.1) implies that ‖Ty‖ ≤ ‖y‖ whenever y ∈ K ∩ ∂Ω1. Thus we get that the operator T is a cone compression on
K ∩ ∂Ω1. On the other hand, put Ω2 := {y ∈ K : ‖y‖ < r2}. Note that, for y ∈ ∂Ω2, we have that ‖y‖ = r2, so condition
(C2) holds for all y ∈ ∂Ω2. So, for y ∈ K ∩ ∂Ω2, we find that

(Ty)
(
3
4

)
=

∫ 1

0
G
(
3
4
, s
)
f (s, y(s))ds ≥

∫ 1

1
2

G
(
3
4
, s
)
f (s, y(s))ds

≥ r2λ
∫ 1

1
2

G
(
3
4
, s
)
ds, (4.2)

whence (4.2) implies that ‖Ty‖ ≥ ‖y‖ whenever y ∈ K ∩ ∂Ω2. Thus we get that the operator T is a cone expansion on
K ∩ ∂Ω2. So, it follows by Lemma 4.1 that the operator T has a fixed point. But this means that (1.3)–(1.5) has a positive
solution, say y0, with r1 ≤ ‖y0‖ ≤ r2, as claimed. And this completes the proof. �

Remark 4.3. The existence result given in Theorem 4.2 is representative rather than definitive. Since γ may be taken to be
a constant here, we could argue the existence of a positive solution to (1.3)–(1.5) by assuming that f (t, y) is either sublinear
or superlinear in an appropriate way, thus paralleling the assumptions introduced by Erbe and Wang [6]. Again, this relies
crucially upon knowing that γ is constant. Indeed, because Theorem 3.3 holds, problem (1.3)–(1.5) admits positive solutions
under much weaker conditions on f (t, y) than, say, the two-point conjugate problem studied in [1], at least so far as the
author is aware at present.
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