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Elaeis guineensis (oil palm) accounts for a large and increasing proportion of the world's cooking oil
production. Cloning via somatic embryogenesis results in a somaclonal variant known as mantled which
produce fruit with little to no oil yield. The mantled phenotype is believed to be epigenetic in nature. We
performed RNA-Seq on developing flower and fruit samples of normal and mantled oil palm to characterize
their transcriptomes. We present expression data for all transcripts in normal and mantled flower and fruit
samples. Many genes are differentially expressed, including several from pathways that may be the cause
of the mantled phenotype if disrupted, such as genes involved in primary hormone responses, DNA
replication and repair, chromatin remodeling and a gene involved in RNA mediated DNA methylation. In
addition, the gene expression data for developing flower and fruit will serve as a valuable resource for oil
palm genetics and genomic studies.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Elaeis guineensis (oil palm) is a member of the Arecaceae family
that accounts for a large and increasing proportion of the world's
cooking oil production. In addition to this it is gaining interest for
use in bio diesel production. Oil palm is monoecious and produces a
mature inflorescence roughly every 1–2 months after reaching sexual
maturity. Each inflorescence is sexually determined early during
development and commercial strains have been selected to produce
a large proportion of female inflorescences. The proportion of male
to female inflorescences can be affected by environmental factors
such as water availability and defoliation, with drought or leaf
removal resulting in more male than female [1]. The male
inflorescence consists of many rachillae each bearing 400–1500
staminate flowers and the female inflorescence consists of many
rachillae with 5–30 floral triads consisting of a pistillate flower
flanked by two abortive staminate flowers [1]. The inflorescence
develops enclosed by a fibrous, lignified prophyll and peduncular
bract which dies off to reveal the developed inflorescence [1].

Current oil palm crops are often seed derived from high yielding
parents, but can result in offspring with less favorable yields. To
e ontology; qPCR, quantitative
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overcome this problem, a lot of attention has been given to develop-
ing a somatic embryogenesis protocol to allow crops to be generated
from the highest producing parental plant(s). Somatic embryogenesis
is performed by harvesting cells from a donor plant and growing
those cells on media. The cells undergo reprogramming of gene
expression and return to a totipotent state where they either replicate
in an unorganized manner producing a callus or in a polarized fashion
leading to somatic embryogenesis. The type of growth can be
controlled by adding growth hormones to the media with auxin
being the main hormone used [2,3]. High auxin levels promote callus
growth while removing or reducing the level of auxins induces the
callus to form plantlets which can then be planted in the field.
There are two main forms of callus, nodular compact callus and fast
growing callus. Fast-growing callus is associated with a high auxin
to cytokinin ratio [4], and is often associated with the addition of
the synthetic auxin 2,4-dichlorophenoxyacetic acid to the media
[2]. Fast-growing callus can also spontaneously occur from nodular
compact callus in the absence of hormones, but at a lower rate
[2]. Nodular compact callus typically has higher embryogenic capabil-
ity than fast-growing callus but with the disadvantage of a slower
growth rate.

The primary advantage of somatic embryogenesis is the production
of genetically identical plants that will have the same phenotype as the
parent plant. However, in many different species the process results in
abnormal or variant plantlets being generated, these variants are
termed somaclonal variants. Somaclonal variants result from a variety
of causes ranging from gross chromosomal rearrangements to single
base variants to changes in methylation patterns [5]. A study where
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somatic embryogenesis of oil palmwas carried out for 20 years without
the use of growthhormones shows that an increasingnumber of defects
arise with increasing culture age [2]. A somaclonal variant that affects
oil palm flower development, known as mantled, is observed in oil
palm derived from somatic embryogenesis in approximately 5% of
plants grown from nodular compact callus and higher in plants from
fast-growing callus [6–8]. The mantled phenotype is only observed in
plants derived from somatic embryogenesis. Currently there is no way
to detect a mantled oil palm until it reaches sexual maturity because
the phenotype appears normal, however, once flowering starts the
phenotype becomes apparent with the production of inflorescences
where the staminodes of the female flower and the stamens of the
male flower are transformed into carpel-like structures [1,8]. The extent
of this transformation is quite variable between different plants, with a
mild phenotype resulting in almost normal looking fruit ranging to an
extreme phenotype where no fruit body is produced at all. Themantled
phenotype is not specific to any genotype, but occurs at slightly
different frequencies between different genotypes and between
somatic embryogenesis culture conditions [9].

Genome-wide hypomethylation has been found in oil palm with
the mantled phenotype [10] and confirmed multiple times [11–13].
The current theory is that the phenotype is epigenetic in nature.
Mantled oil palm has also been observed to revert back to the normal
phenotype in approximately half of severely affected and all mildly
affected mantled plants by around nine years of age consistent with
an epigenetic cause [6]. No gross genetic abnormalities have been
found in mantled oil palm or between clonal offspring and the mother
oil palm [14,15]. In addition, several groups have looked for methyla-
tion sensitive amplification polymorphisms and found many such loci
at which mantled oil palm exhibit a reduced level of methylation
[11–13]. However, another study found a mixture of reduced methyl-
ation at some loci and increased methylation at others compared to
normal oil palm suggesting that the phenotype is a deregulation of
methylation patterns [16]. Hypomethylation is associated with devel-
opmental disorders in flowering time [5] and structure in plants with
mutations in methylation pathway genes, suggesting that the ob-
served methylation changes in mantled oil palm could be causative.
Indeed, mantled oil palm from fast growing callus show a reduced
level of methylation compared to mantled plants from nodular com-
pact callus cells consistent with methylation changes being causative
[10].

Several candidate genes have been investigated inmantled oil palm,
including DNA methyltransferases and genes from the ABC flower
development pathway. Three primary DNA methyltransferases have
been isolated from oil palm and DNA (cytosine-5)-methyltransferase 1
was found to be up-regulated in mantled developing inflorescence
[17]. Expression analysis of oil palm MADS box genes from the ABC
flower development pathway revealed differential expressions of
EgAGL2-1, EgDEF1, EgGLO2, and EgAG2 and showed that the mantled
phenotype most closely resembles mutants of B function genes [18].
One hypothesis for what causes the mantled phenotype is an altered
response to one or more hormones based on observed differential
expression in auxin response genes [19]. In addition, there is a growing
body of evidence that plants respond to hormones through chromatin
remodeling [20]. Each of these proposed mechanisms would be
expected to change the expression pattern of a number of genes respon-
sible for early flower and fruit development.

A promising method that has recently become mainstream is high
throughput RNA-sequencing to identify differential expression [21].
In organisms with a published genome, sequence reads are mapped
against the genome and gene expression is given as a count of the
number of reads that map to each exon [22]. Differential expression
in organisms without a genome is done by first generating a
de-novo assembly and then calculating expression based on the
number of reads that map back to the assembled sequences. This
makes RNA-sequencing desirable for organisms that do not have an
available reference genome, such as the oil palm, because the data
can also be used to generate a transcriptome database. The process
can be likened to large scale qPCR with the added benefit of
generating a transcriptome library [21].

With the aim of characterizing the expression profile of late
developing female flower, we have sequenced the transcriptome of
flowers from two mantled and two normal plants. We have combined
this sequence data with a previously sequenced transcriptome of fruit
samples from the same plants [23]. The resulting transcriptome
assembly represents both sample types and gives insight into
expression patterns between normal and mantled flower and fruit.

2. Results and discussion

2.1. RNA sequencing and sequence annotation

Total sequence output for the normal plants was 195,315 reads
totaling 60.1 Mb and 213,340 reads totaling 71.6 Mb and for the
mantled plants was 197,556 reads totaling 62.5 Mb and 212,915
reads totaling 71.6 Mb. The samples were assembled using Newbler
v2.6 and produced 16,986 contigs that formed 13,788 isotigs (repre-
sentative of mRNAs) from 10,659 isogroups (groups of isotigs
produced from a subset of contigs and representative of genes or
gene families). This data was also assembled with data from previous-
ly sequenced fruit samples [23] producing 26,478 contigs that formed
21,179 isotigs from 16,045 isogroups (Supplementary file 1). The N50
contig size in the combined assembly was 983 bp, larger than the N50
contig size of 874 bp when only the flower samples were used,
suggesting an improvement in assembly quality [24]. The large
number of additional isotigs likely reflects the difference in expres-
sion patterns between developing flowers and maturing fruit.

We compared the assembly of the developing flower and the
previously published fruit assembly [23] to the larger combined
assembly. The assembly from the developing flower samples had
98% of sequences that matched to sequences in the combined
assembly and the fruit-only assembly had 96% similarity. A blastx of
the unmatched sequences reveals that approximately a third from
both assemblies does not match any sequences in the NCBI non
redundant protein database and the rest receives an annotation that
is also present in the combined assembly.

The isotigs from the combined assembly were annotated using
Blast2GO against the plant non redundant database which assigned
a sequence description to 88.8% of the sequences (Fig. 1). An
additional blast against the TAIR Arabidopsis database was also
performed because Arabidopsis has the highest amount of genetic
information among the plant species and thus can give the most
useful information about potential gene function. There were several
instances where isotigs from multiple isogroups matched the same
Arabidopsis gene suggesting additional diversity of gene function in
oil palm.

We used the sequences from the combined assembly to perform a
blastx against the plant transcription factor database and identified
1050 isotigs from 761 isogroups that matched a transcription factor
with a stringent E value threshold of 1E-60 (Supplementary file 2).

We looked for MADS box genes because these have previously
been implicated as playing a role in the mantled phenotype. There
were 12 genes that completely matched previously identified MADS
box genes from oil palm [18,25]. In addition to these genes there
were 12 genes not previously described in oil palm. We also found
an isotig somewhat similar to Arabidopsis AGL26 (which has a
MADS domain and a methylase domain) containing the methylase
domain but lacking the MADS box domain (Supplementary file 2).

In addition we identified 195 isotigs from 156 isogroups with
methyltransferase activity (Supplementary file 2). These genes are
of interest because the mantled phenotype occurs with large changes
in methylation patterns and is currently considered to be the result of
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Fig. 1. GO term distribution of transcriptome assembled from oil palm flower and fruit samples.
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methylation polymorphisms affecting the expression of one or more
key genes.

2.2. Differential expression

Expression is represented as normalized read count per isotig
(Supplementary files 3 and 4) and was checked by qPCR for 12
genes that showed consistent relative expression values (Fig. S1).
Both the isotigs and isogroups of the developing flower and fruit
samples from the combined assembly were tested for differential
expression using the DESeq (v1.4.1; CRAN: DESeq) and NOISeq
(v1.1.0; CRAN: NOISeq) packages in R. The developing flower data
and the fruit data represent two common RNA-Seq data types, with
and without biological replicates (Supplementary file 3). For this
reason we tested how well the programs function with each data
type. To do this we summed the read counts for each biological
replicate to produce a data set with a higher read count but no
information on biological variation for each gene.

In the developing flower samples using biological replicates
NOISeq identified 12 isotigs from 12 isogroups as differentially
expressed between mantled and normal samples (Supplementary
file 3). Using the summed flower sample read counts NOISeq identi-
fied 4568 isotigs and 955 isogroups as differentially expressed (DE)
(Supplementary file 3). Interestingly, there were still over 4000
isotigs DE when we took the average read count as opposed to the
sum indicating that the increased read number has little effect on
the number of DE sequences. DESeq identified 467 isotigs from 438
isogroups as DE using biological replicates and 673 isotigs from
604 isogroups when the biological replicates were combined
(Supplementary file 3). To account for the differences in number of
DE genes between the two data set types we looked at the biological
variation within sample groups and found that the variation within
groups often exceeded the variation between groups, this vital
information was lost when biological replicates were not used. In
many cases, the large difference in expression between groups was
due to a single outlier, subsequently we called these genes as not
DE. There was no difference in the total variation observed in the
mantled flower samples compared to the normal flower samples. In
addition, we performed a t-test on each gene which identified 325
isotigs from 299 isogroups as DE (Supplementary file 3). For this
dataset it appears that that DESeq performs better than NOISeq
since DESeq gave a number of DE genes closest to the t-test results
and a t-test has a low false positive rate when sample sizes are
small [26]. Out of these tests 159 isotigs were DE according to both
DESeq and t-test, 308 isotigs according to DESeq only and 166 isotigs
according to t-test only (Supplementary file 3).

This number of DE genes is somewhat consistent with the number
found by Beule et al. using a suppression subtractive hybridization
approach, which identified 1350 DE sequences [27]. The lower
number presented in our dataset is likely because we used biological
replicates allowing for outliers to be removed. Comparison of the DE
sequences from Beule et al. [27] to our list identified 963 isotigs that
matched a sequence from Beule et al. [27]. From these sequences
there were 23 that were DE, but 12 of them were DE in the opposite
direction to that identified by Beule et al. [27] (Supplementary file
5). The lack of overlap in DE genes is not overly surprising considering
that Beule et al. [27] used male inflorescence samples where we used
female samples.

The DE isotigs had a GO term distribution similar to the entire
isotig set (Fig. 2). GO term enrichment analysis of the DE genes
identified some over-represented GO terms including ‘regulation of
gene expression’ and ‘regulation of gene expression, epigenetic’,
however none were significant after multiple testing correction.
Similarly, we saw no direct interactions among the DE genes from
the Arabidopsis interactions viewer. This shows that the DE genes
are from many pathways and suggests that the mantled phenotype
is a large non-specific disruption to gene expression. Inspection of
the DE genes yield several genes with a function relevant to the
mantled phenotype including many genes involved in the response
to auxin (Supplementary file 3) and many involved in development.
Most notably of these is the up-regulation of TIC (isotig01111)
which is a member of the circadian rhythm pathway that regulates
flowering time [28] and up-regulation of CNOT1 (isotig16091),
which is highly conserved in both plants and animals and functions
in human and mouse to maintain stem cells in an undifferentiated
state [29].

In addition we see DE genes involved in DNA repair and
replication, but perhaps the most interesting DE genes are the ones
involved in chromatin remodeling. We see two chromatin
remodeling genes that are up-regulated. They are SYD (isotig16132)
which is a SWI2/SNF2-like protein and is a co-activator of floral
homeotic genes. SYD is a master regulator of several developmental
processes including the maintenance of the stem cell pool [30],
suggesting that up-regulation of this gene could be blocking
differentiation of cells into floral organs. The other gene is
CHR1 (isotig19129), also up-regulated, which is involved in DNA
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Fig. 2. GO term distribution of transcripts differentially expressed between normal and mantled developing flower samples.
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methylation and chromatin remodeling [31]. Up-regulation of this
gene may explain the observations of some loci having increased
methylation despite global hypomethylation [16].

We see down-regulation of a histone acetyletransferase HAC1
(isotig07668 and isotig07669), a histone gene H2AZ (isotig17428)
and a histone methyl transferase PRMT6 (isotig15007). Mutations to
HAC1 result in late flowering in Arabidopsis [32]. RNAi induced
knock-down of H2AZ also results in an early flowering phenotype
[33]. In addition, a study that looked at gene expression in a histone
methyltransferase mutant of Arabidopsis, resulting in pleiotropic
defects including floral abnormalities, found that 1910 genes were
differentially expressed in inflorescence, including many genes
involved in flower development [34], showing that disruption to
histone function can result in floral abnormalities.

Changes in methylation patterns have been observed so often in
the mantled phenotype that it is considered a part of the phenotype.
Down regulation of an isotig (isotig15872) similar to Arabidopsis
Fig. 3. A. Overlap of isotigs expressed in each sample type. B. Overla
KTF1 is observed in mantled flower. This gene is expressed in inflores-
cence, colocalizes with AGO4 and is involved in the RNA-directed DNA
methylation pathway (RdDM) [35]. Loss-of-function Arabidopsis mu-
tants for KTF1 show a reduced level of DNA methylation and reduced
silencing of RdDM targeted loci [35]. Additionally KTF1 is required for
repressive histone modifications [36]. This suggests that down regu-
lation of this gene may be responsible for disrupted methylation
patterns.

2.3. Fruit samples

We looked at the overlap of expression in each sample (Fig. 3A).
Common to all sample types were 11,940 isotigs from 8525
isogroups, and 896 isotigs from 821 isogroups were found in fruit
samples and not in flower samples and 2290 isotigs from 2015
isogroups were found in flower samples but not in fruit. The isotigs
expressed only in flower were enriched for functions consistent
p of differentially expressed isotigs in flower and fruit samples.
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with a developing organ (Fig. 4). Isotigs expressed only in fruit were
enriched for death and cell death function from Blast2GO, but when
the Arabidopsis matches were used enrichment was observed for
carbohydrate transport. Over representation of the functions shown
in Fig. 2 and those listed for fruit makes sense since the flowers
were undergoing significant development and the fruit samples
were at roughly the age when fatty acids begin to build up [37].

For the 90 day fruit NOISeq identified 3855 isotigs from 3033
isogroups as differentially expressed and DESeq identified 781 isotigs
from 636 isogroups as differentially expressed (Supplementary file
4). The results from the fruit samples are likely to contain many
false positives based on the results from combining the flower
samples. One possible way to extract true positive results is to
compare to the flower samples, if genes are up or down regulated
in both age groups then they are more likely to represent true
positive results. 19 of the isotigs from 17 isogroups were differentially
expressed in both the developing flowers and fruit (Fig. 3B). 3 isotigs
from 3 isogroups were down regulated in both, 9 isotigs from
7 isogroups were up-regulated in both, 4 isotigs from 4 isogroups
were down regulated in flowers but up-regulated in fruit and 3 isotigs
from 3 isogroups were up-regulated in flowers but down regulated in
fruit.

One interesting gene (isotig10881) that is up-regulated in both
flower and fruit samples is a gene that has previously been called
EgNAC1 (GenBank: DQ267440.1) and is most similar to Arabidopsis
ATAF2. ATAF2 is a transcription factor that is induced by dehydration,
salicylic acid and jasmonic acid, it shows highest expression in root
and leaves and lowest expression in flower buds [38]. What makes
this gene interesting is that it is up-regulated in callus cells that are
embryogenic compared to callus cells that are non-embryogenic and
has been identified as a potential marker gene for successful somatic
embryogenesis [39]. This suggests that this gene may represent a link
between somatic embryogenesis and the mantled phenotype.

One of the isotigs down regulated in both flower and fruit was a
gene similar to Arabidopsis AT1G21780 (isotig05542) which is
involved in flower morphogenesis and floral organ abscission. This
gene contains similarity to human SPOP which binds to CUL3 and is
involved in transcription, chromatin remodeling and apoptosis
repression [40]. While AT1G21780 and SPOP are quite different,
they both bind to CUL3 and both have the BTB domain suggesting
functional similarity. Interestingly, overexpression of a BTB/POZ
domain containing gene has been linked to human tumor progression
[41], perhaps furthering the analogy between cancer and the mantled
phenotype made previously [17].
Differential GO-term
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3. Conclusion

We have shown that the mantled phenotype involves a complex
and seemingly unrelated set of genes being differentially expressed.
We have confirmed previous suggestions that the mantled phenotype
is more complex than interruption to a single pathway and have also
confirmed previous findings of no differential expression to any of
the MADS box genes. We have found a large number of genes
differentially expressed between normal and mantled samples.
Among these genes are several good candidates for explaining the
phenotype including KTF1, the chromatin remodeling genes and
AT1G21780. The most interesting find is differential expression in
chromatin remodeling genes and histone methylation genes
consistent with the hypothesis that somatic embryogenesis is
disrupting the methylation pathway in a non-specific manner.
Furthermore, non-specific disruption to the methylation pathway
provides a mechanism for why different studies have found different
patterns of methylation and different patterns of gene expression.
This finding also suggests that the mantled phenotype is not a single
phenotype, but rather a collection of phenotypes that include
disruptions to other organs such as leaf and root but undergo
selection at the plantlet stage to exclude any disruptions resulting
in an apparent phenotype. In addition to this we have shown that
the potential marker for embryogenic callus, EgNAC1, is also a
potential marker for the mantled phenotype supporting the
hypothesis that the mantled phenotype is caused by the somatic
embryogenesis process.

4. Methods

4.1. Samples

Inflorescence and fruit samples were collected from two normal
plants and two mantled plants, produced via somatic embryogenesis
from the same clonal background, from the same field in Krabi,
Thailand as previously described in [23]. RNA was extracted from
individual flowers of the samples of prophyll and peduncular bract
enclosed inflorescence (leaf stage +15 to +17 as described by Adam
et al. [1]), and sequenced using themethod previously described in [23].

4.2. Transcriptome assembly and annotation

We produced two transcriptome assemblies using Newbler v2.6
(Roche), one from the prophyll and peduncular bract enclosed
 Distribution
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inflorescence flower samples and a second assembly in combination
with sequence data previously obtained from oil palm fruit aged
90 days after pollination, as described in [23]. The assembly from
the flower samples was compared against the combined assembly.
The combined assembly was annotated using Blast2GO against the
plant non-redundant database and a blastx against the TAIR
Arabidopsis protein database using a stringent e-value cut-off of
1E-30. Isotigs that matched genes of interest that had other isotigs
with the same or a similar annotation were checked by blastx and
sequence alignment to see if they were alleles or portions of the
same gene.

4.3. Differential expression

Differential expression was calculated from the raw read counts
using the DESeq [42] and NOISeq [43] packages in R and by t-test.
The t-test was applied after first normalizing via the method utilized
by DESeq, all read counts presented are the normalized reads
resulting from this normalization. Read counts per contig were
summed from the output file from the assembly program Newbler,
which lists the alignment of the 3′ and 5′ ends of each read. Thus
each read was counted twice, which takes advantage of the long
read lengths obtained by the 454 platform. Read counts per isotig
were calculated by summing the reads from constituent contigs. To
this output we applied selection criteria: a fold change of at least
two and a minimum combined read count of 10 for either the normal
or mantled samples. In addition, genes that had higher variation
within biological replicates than between phenotypes were listed as
not DE. A blastx was performed for all DE isotigs discussed in the
results (Supplementary file 6).

Cases of false positive differentially expressed genes were
controlled for by performing a blast and sequence alignment of any
differentially expressed sequence with all sequences that received
the same annotation or Arabidopsis match.

4.4. GO term enrichment

GO term enrichment was tested both by using the Blast2GO
enrichment test (which uses a Fisher's exact test with Benjamini–
Hochberg correction for multiple testing) and by using the AmiGO
website with the closest Arabidopsis gene match for each isotig
[44]. The Arabidopsis match for each differentially expressed isotig
was also used as input for the Arabidopsis interactions viewer.

4.5. qPCR

Primers (Supplementary file 7) were designed using Primer3 [45].
PCR products were confirmed by Sanger sequencing. qPCR was
performed for each sample in triplicate for each of the six genes on
a Corbett Rotor Gene 3000 (Corbett Life Science) using Faststart
SYBR green master mix according to manufacturer instructions
(Roche Diagnostics). Relative concentrations of each gene were
calculated using the delta-delta-ct method in the flower and fruit
samples and relative expression levels were consistent with those
identified in the RNA-Seq data.

All raw data used in the transcriptome assembly has been deposited
in the NCBI Short Read Archive (accessions: SRR618511, SRR618512,
SRR618513, SRR618514, SRR618515, SRR618516). Supplementary
data to this article can be found online at doi: http://dx.doi.org/10.
1016/j.ygeno.2013.02.012.
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