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Abstract

In this paper, the authors study the large time behavior for the weak solutions to a class system
of the incompressible non-Newtonian fluidsR?. It is proved that the weak solutions decayZif
norm at(1+ ¢)~1/2 and the estimate for the decay rate is sharp in the sense that it coincides with the
decay rate of a solution to the heat equation.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the optimal deaaye of global solutions to the Cauchy
problem for 2-dimensional non-Newtonian fluids

w— M+ (- Vyu—V - (Je)|”2e(w)) + Vr =0, (1.1)
V.ou=0, (1.2)
u(x,0) = uop. (1.3)
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Here,u = u(x,t) = (11, u2) andsz denote the unknown velocity vector and pressure of the
fluids as the pointx, 1) € R? x (0, 00), while ug is the given initial velocity vector field.

For simplicity, we assume that the external force has a scalar potential and it is included
into the pressure gradiert(u) = (¢;; (1)) is the symmetric deformations velocity tensor
whose components are given

1 314,' auj
eij(u) = E(E + 8_)6,)
andle(u)| = (e;j (u)e;; (u))Y/2. The non-Newtonian model above includes shear thinning
(p < 2) and shear thickeningp > 2). Whenp = 2, as we know, the system turns out to
be the famous Navier—Stokes equations (see [4,10]).

There is an extensive literature on the $ns of the incompresible non-Newtonian
fluids. Ladyzhenskaya [5] and Lions [6] firsisdussed the existence and uniqueness for
weak solutions of the sort model, Bellout et al. [3] studied the existence of Young measure
solutions of non-Newtonian bipolar fluids. Bae and Choe [1,2] obtained the existence,
unigueness, regularity and decay rates ofisohs to the monopolar fluids. Pokorny [8]
investigated the Cauchy problem for both monopolar and bipolar fluids. As for the large
time behavior of solutions, Nasova and Penel [7] recently studied uniformly algebraic
decay inR3 and logarithmic decay ifR? by using Fourie splitting methods which were
developed by Schonbek [9] and Wiegner [11], for example, they got the decay Hfthe
normis(In(z +¢))~™, m € N, in R?, assuming.1 N L2 integrability of the initial dataxo.

The purpose of this paper is also to investigatelthelecay rates for the weak solutions
of this incompressible non-Newtonian fluid R?. By improving the Fourier splitting
method [12], we will show that if the initial datey € L2 N LY, then the solutions decay in
L? norm at(1+ r)~Y2, the decay rates are optimal in trense that they éncide with the
decay rates of the solution to the heat equation.

The remains of this paper are organized as follows. In Section 2, we introduce the
mathematical preliminaries and state our main results. In Section 3, we prove some
auxiliary lemma and finally we apply this result to prove the main theorems in Sections 4
and 5.

2. Statement of the main results

Throughout this paper, we denote b§(R?) the usual Lebesgue space with the norm

Il - llg. In particular| - | = - I|2. W™ P(R?) is the usual Sobolev space with the norm
| - llm,p. FOr a Banach spack, X2 ={u= (u1,u2): uj € X}, L4(0, T; X) is the space of
all measurable functions: (0, ') — X with the norm]ju || = fOT llul|% dt. When

L1(0,T;X) = .
q = 00, |lull>(0,7;:x) = €SSSUR0 7 lullx. C(I; X) denotes tf1e space of continuous

functions from the interval to X. We denote byH = {¢ € L2(R?)2, divgp = 0}. The
Fourier transformation of a functiofi is denoted by

F[f]($)=f($)=/f(x)'e*ix'sdx, £ =(61.6) eR%
R2



B. Dong, Y, Li / J. Math. Anal. Appl. 298 (2004) 667676 669

Denote byC > 0 any constant appearing in our paper, which may only depend on the
initial dataug, but never depends an> 0.
By a weak solution of the Cauchy problem (1.1)—(1.3) we mean a function

u € L2((0,T); (W22 N L([0, T); H) N LP((0, T); (WhP)?) (VT > 0),
which satisfies

t t
d ou;
/u(t)'go(t)dx—//u'—(pdxdt—i—//ujﬁgoidxdt
ot 8xj
0 R2

R2 0 R2

t
+//(1+ |e(u)|p72)€ij(14) -ejj(p)dxdt
0 R2
:/uo-(p(O)dx (2.1)
R2
a.e.r € (0, T) for everyp € C1([0, T), H) N C([0, T), W12(R?)2 N WP (R?)?).

We remark that the weak solutior(x, ¢) of (1.1)—(1.3) satisfies the following energy
inequality:

1d
EE/|u|2dx+/|Vu|2dx+/|Vu|”dx<O. (2.2)
R2 R2 R2
Our main theorems are the following
Theorem 2.1. Let ug € H N L. Then we have the decay estimate for the solutions of the
problem (1.1)—(1.3)
lu)| <C@+n7Y2 vr>o0. (2.3)
The aboveresult is sharp in the following sense.
Theorem 2.2. Let u(¢) be aweak solution of (1.1)—(1.3)and v(z) the solution of the linear

heat equation with the sameinitial value ug € H N L1, Then
u@) —v)| <CQ+07¥* fors> 1. (2.4)

3. Someauxiliary lemmas

In this section, we prove an auxiliary lemma, which will be employed in the proof of
the main theorems.

Lemma 3.1 (Gronwall inequality).Let f(¢), g(¢), h(z) be nonnegative continuous func-
tions and satisfy the inequality
t

g(t) < f(f)-l-/g(s)h(s)ds Vi > 0,
0
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where f/(¢r) > 0. Then

t

¢ < F ) eXp( / h(s) ds) Vi 0.

0

Lemma 3.2. Let ug € H N LY, and u be a weak solution of (1.1)—(1.3) Then

sup [Ju(®)| < lluoll,
0<r<o0

t
li(g, | < C + Clg| + C|s|/ Jues)[? ds.
0

Proof. From the energy inequality (2.2), it is easy to get (3.2).
Applying the Fourier transformation to (1.1), we have

m+EFA=Fpm-wu—vn+v(kmn%%@»}:G@Jy

Now we estimate5 (&, r).
|F[ - Vyu]| = | F[divu @ w)]| < Z/ luiu 11851 dx < €],
i.j R
|F[V - (Je@)|"e@)]| < 1€l F[le@)|” %e@)]| < 1&1IVul 27

Taking divergence of (1.1), we get

92 2
Am = ,Xj: T, (—uiuj + |e)|" “eijw)).

The Fourier transformation yields
-2
EPFIn] =) && F[—uiuj+ |e@)]|” “eijw)],
ij
and thus
|F[Vr]| < |El|Flx]| < & [luel|® + IEIIIVuHﬁj.
Inserting (3.5)—(3.7) int@; (£, ) we have
|G n| < ClEul® + CI«?IIIVullij-
From (3.4),

t

MéJ):ﬁo(é)e*\S\Zr_i_/G(g,t)eflélz(tfs)ds'
0

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Since the weak solutiom(x, ) of system (1.1)—(1.3) satisfie8u € L2(0, oo; L?) N
L?(0, 00; LP?) for p > 3, by using interpolation technology, we have

o
f V)P ds < C, (3.10)
0

whereC is independent of time. Hence (3.9) imply, noting thad(¢)| < |luoll1 < C if
ug € Ll,

t
HEBIES ||uo||1+C|€|/(||M(S)HZ+ IV~ 3) ds
0

t
<C+Cle| +C|s|/||u<s>||2dS~
0

The proof of this lemma is completed O

4. Proof of Theorem 2.1

From the energy inequality (2.2), it follows that

1d
EE/|u|2dx+/|v14|2dx<0. (4.1)
R2 R2

Applying Plancherel’'s theorem to (4.1) yields

1d
53/ |ﬁ(é,t)|2dé+/Ié|2\ﬁ(s,t)\2ds <O0. (4.2)
R2 R2

Let f(r) be a continuous function afwith f(0) =1, f(r) > 0 and f/(¢) > 0, then we
have

d
E(f(r)/ﬁ(s,nfds)+2f(t)f|s|2|ﬁ(s,r>|2ds<f’(r>/|ﬁ(s,t)|2ds.
R2 R2 R2
Let B(r) = (£ € RZ: 2f(1)|&[2 < f'(1)}; then

2f(t)/l«§|2|ﬁ(§,t)|2d$
R2

=2f(1) / |s|2|ﬁ(s,t>|2ds+2f(r>f|§|2\ﬁ(s,t)\2ds

B(1)¢ B(t)
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21 A 2
Z2f(@) / §1%|acE, 0| ds
B(1)¢

>f(r)/|u(s H2de - f(t)/|u(é n|de.

B(t)

Therefore we get

(f(t)/|u(«§ N dE) < S / e t)| d§.

B(t)

Integrating in time yields

f(t)/\u(é | d$</|uo| d€+C/f(s) / (. 5)|2de ds. 4.3)

B(s)

Let A= f'(1)/(2f (t)) and apply to Lemma 3.2. Then (4.3) implies

f(r)/\ﬁ(s,r)\zds

t 2 A s 2
<C+C/f’(s)/d9/(1+p+p/ ||u(z)||2dz) pdpds
f'(s) 1) f'(s)
<C+C/f():2f(> (Zf(s)) <2f( >) (/””(”” dt) } :

(4.4)

Now we prove the algebraic decay rate ofebnem 2.1 by two steps. Firstly, applying
(3.2) to (4.4) implies

/ / 2 ,
o fleoracese ol (G (45 )

Choosef (1) = (In(e + 1))3, then
3(In(e +1))? '@ 3

e+r 2f(t)  (e+0In(e+1)’
by direct calculation we have

f'@)=

la@)| = u)] < c(ine + )" (4.5)

Next we choosef (1) = (1+ 1)? again, from (4.4) and using Hélder inequality we get
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t s 2
(1+t)2/|L?($,t)|2d§<C+C(1+t)+C/(1+s)_l</||u(r)||2dr> ds
R2 0 0
r s
<C(1+t)+C//||u(r)||4dtds
00

t
<CA+1) +C(1+t)/ |us)|*ds.
0
Applying (4.5) to the above inequality we infer that
t
1+ t)/ i, n|?ds <C + C/ ()| 2L+ $)(L+ )7L (In(e +5)) ) ds.
R2 0

Let
g(r)=(1+r>/|ﬁ<s,r)|2ds=(1+r>/|u(x,r)|2dx,
R2 R2

fO=C  h@)=A+n"(InEe+n)">
it is easy to see that

o
/ h(r)dt < oo,
0
so, applying Lemma 3.1 we have
o
g() < Cexp(/h(t) dt) <C,
0
and thus
lu)| < Cc@+n7Y2 (4.6)

The proof of Theorem 2.1 is completed

5. Proof of Theorem 2.2

Denotew(t) = u(t) — v(¢) the difference ofi(r) andv(t), whereu(t) is the solution of
the system (1.1)—(1.3) andr) = ¢'%ug is the solution of the heat system with the same
initial dataug asu(r). Thusw(t) satisfies the equation

w — Aw = —(u- Vu+V - (le@)|’ 2ew)) — Vr (5.1)

with a homogeneous initial conditian(x, 0) = 0. Sinceug € H, v is divergence free, and
S0 isw. Similar to Lemma 3.2, we have
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Lemma 5.1. Let w be the solution of the above problem. Then
[, 0] < ClEIINQA+1) + CIE]. (5.2)

Proof. Applying Fourier transform to (5.1) we have
By + €12 = F[—(u - Vyu+ V- (|ew)|”ew)) — V] = G(E,1).

By the formula of constant variation and according to (3.8) and (3.10), we have

p—

13 t o0
[, 1)) <f\G(s,we—‘f‘z’\dsgaafHu(s>||2ds+C|s|f||W||”*ids
0 0 0
<ClEINA+n+ClEl. O (5.3)
Now we prove Theorem 2.2. Multiplying by and integrating oveR? yield
%||w||2+2||Vw||2=28(u, v, w), (5.4)
where
(- Vyu, w) — (le)|” re(u), V)
((u-V)(w+v),w) — (|e(u)|p_1e(u), e(w))
= —((u -V)v, w) — (|e(u)|pfle(u), e(u — v))
(by ((u -Vw, w) = O)

= ((u -Vw, v) + (|e(u)|p_le(u), e(v)) - (|e(u)|p_1e(u), e(u)). (5.5)

As we know,v(x, t) satisfies the following decay estimate foxlg < oo, k € N, and
t>0:

B(u,v,w)=—

_n(q_1y_k
| Dfu)]|, <7207 uglly. (5.6)
Now we estimate the first two terms 8{u, v, w),
-1
12(((u - VIw, v) — (Je@) " "e(m), e(v)))|
-1
L2[Vwll lull vl + 2Vl IIVulli_l
-1
<IVwl? + lulPlvlZ + 20 Volloo I Vulh—y
<IVwl2+C@+ 042+ 2 V)b
<IVwl?+CA+n73+CA+n"¥2|vu|" fore>1. (5.7)
Since(le(u)|?~te(u), e(u)) > 0, thus (5.4)—(5.7) imply
d 2 2 _ _ _
EHW)H +[Vu®|* <ca+n=+c@+n"¥?vul ]

Let f(r) andB(t) be the same as in the proof of Theorem 2.1. Similar to (4.3), we have
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t
f(r>||w<s,t)||2<ff'(s)dsf (&, 5)[2dz
0

B(s)

t
+c/f(s)((1+s)*3+(1+s)*3/2||w(s)||§j)ds. (5.8)
0

Noting thatB(r) = {£ € R%: 2f(1)|£]|? < f/(1)}, letting f (r) = (14 1)* and applying (5.2)
to the first term of the right-hand side to get

t
/f/(s)ds/ (&, 9)|?de < CA+ 2L+ 1))+ CA+1)2,
0

B(s)

and to the second term of the right-hand side to get

t
/ FE(A+973 4 @+ Vues) |17)) ds
0

t
<CA+2+CA+ t)5/2/ ||Vu(s)||§jds <Cc@A+n¥2
0
Hence, inserting the alve estimates to (5.8),

|[o@)|%= Jw) | <c@+n"%2 fore>1. (5.9)

So the proof of Theorem 2.2 is completeda
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