
Journal of Combinatorial Theory, Series A 119 (2012) 1132–1157
Contents lists available at SciVerse ScienceDirect

Journal of Combinatorial Theory,
Series A

www.elsevier.com/locate/jcta

Distributive lattices, affine semigroups, and branching rules
of the classical groups

Sangjib Kim

School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 July 2010
Available online 24 February 2012

Keywords:
Classical groups
Branching rules
Distributive lattices
Toric deformations

We study algebras encoding stable range branching rules for
the pairs of complex classical groups of the same type in the
context of toric degenerations of spherical varieties. By lifting
affine semigroup algebras constructed from combinatorial data of
branching multiplicities, we obtain algebras having highest weight
vectors in multiplicity spaces as their standard monomial type
bases. In particular, we identify a family of distributive lattices and
their associated Hibi algebras which can uniformly describe the
stable range branching algebras for all the pairs we consider.

Crown Copyright © 2012 Published by Elsevier Inc.
All rights reserved.

1. Introduction

1.1. Let us consider a pair of complex algebraic groups G and H with embedding H ⊂ G and
their completely reducible representations V G and V H . If V H is irreducible, then a description of
the multiplicity of V H in V G , regarded as a representation of H by restriction, is called a branching
rule for (G, H). By Schur’s lemma, the branching multiplicity is equal to the dimension of the space
HomH (V H , V G), which we will call the multiplicity space.

1.2. In this paper, we shall consider branching rules of the polynomial representations for the
following pairs (G, H) of complex classical groups: (GLm,GLn), (Sp2m, Sp2n), (SOp, SOq). Our goal is to
study branching rules for (G, H) collectively in the context of toric degenerations of spherical varieties
and to obtain an explicit description of the multiplicity space HomH (V μ

H , V λ
G) when the length �(λ)

of highest weight λ for G satisfies the following stable range condition:

(1) �(λ) � m for (GLm,GLn);
(2) �(λ) � n for (Sp2m, Sp2n), (SO2m, SO2n+1), (SO2m+1, SO2n+1);
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(3) �(λ) < n for (SO2m, SO2n), (SO2m+1, SO2n).

We shall construct an algebra whose graded components are spanned by the highest weight vec-
tors of irreducible representations of H appearing in each irreducible representation of G .

1.3. To give a slightly more detailed overview, let us consider the ring FG of regular functions
over G/U G where U G is a maximal unipotent subgroup of G . This ring is called the flag algebra
for G , because it can be realized as the multi-homogeneous coordinate ring of the flag variety. As
a G-module, the flag algebra FG contains exactly one copy of every irreducible representation of G
[25,26], and in this context the author studied polynomial models for FG and their flat degenerations
[18,19].

By highest weight theory, the U H -invariant subspace of V λ
G consists of the highest weight vectors

of irreducible representations of H appearing in V λ
G . Therefore, the U H -invariant subalgebra of FG

leads us to study the branching rules for (G, H) collectively:

FU H
G =

∑
λ∈Ĝ

(
V λ

G

)U H

=
∑
λ∈Ĝ

∑
μ∈Ĥ

m
(

V μ
H , V λ

G

)(
V μ

H

)U H (1.3.1)

where m(V μ
H , V λ

G) is the multiplicity of V μ
H in V λ

G .

Moreover, we can impose a graded structure on FU H
G so that its graded components correspond to

the multiplicity spaces:

m
(

V μ
H , V λ

G

)(
V μ

H

)U H ∼= HomH
(

V μ
H , V λ

G

)
for (λ,μ) ∈ Ĝ × Ĥ . In this sense, we may call FU H

G the branching algebra for (G, H). This algebra was
introduced by Zelobenko. See [33] and [34].

1.4. In this paper, we describe isomorphisms between stable range branching algebras for the pairs
of the symplectic or orthogonal groups and suitable stable range branching algebras for the pairs of
the general linear groups. Starting from combinatorial data of stable range branching multiplicities, we
shall construct an affine semigroup and its semigroup algebra graded by the pairs of highest weights
for the classical groups G and H listed in Section 1.2. This algebra can be realized as a Hibi algebra
over a distributive lattice. Then, by using toric deformation techniques, we lift the Hibi algebra to
construct a polynomial model of the branching algebra for (G, H). We study its finite presentation
and standard monomial type basis. It turns out that there is a particular type of distributive lattices
whose Hibi algebras can uniformly describe stable range branching algebras for all the pairs (G, H)

we consider. These algebraic statements will enrich well-known combinatorial coincidences between
the branching pairs listed in Section 1.2.

Recently, Howe and his collaborators studied branching algebras for classical symmetric pairs,
especially their toric degenerations and expressions of branching multiplicities in terms of Littlewood–
Richardson coefficients [16,17]. In the cases this paper concerns, using known combinatorics of
branching rules, we can explicitly describe the multiplicity spaces and their degenerations. More
specifically, we show that the stable range branching algebras are deformations of semigroup algebras
of generalized semistandard tableaux or equivalently Gelfand–Tsetlin patterns, and therefore provide
a precise connection between the multiplicity space and the combinatorial objects which count its
dimension.

We remark that this Hibi algebra structure in branching problems has interesting counterparts in
tensor product decomposition problems, which can be explained by reciprocity properties between
branchings and tensor products in representation theory. For this direction, we refer readers to [15,
14,20].
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1.5. This paper is arranged as follows: In Section 2, we develop the combinatorial tools we will use.
In Section 3, we study the branching algebra for (GLm,GLn) and its toric degeneration. In Section 4
and Section 5, we study the distributive lattices and affine semigroups associated with the branching
rules for (Sp2m, Sp2n) and (SOp, SOq), and construct the corresponding stable range branching algebras.

2. Combinatorics of branchings

This section is to prepare us the combinatorial ingredients we will use to construct stable range
branching algebras.

2.1. The Gelfand–Tsetlin (GT) poset for GLm is the poset

Γm = {
x(i)

j : 1 � i �m, 1 � j � i
}

satisfying x(i+1)
j � x(i)

j � x(i+1)
j+1 for all i and j. The elements of Γm can be listed in a reversed triangular

array so that x(i)
j are weakly decreasing from left to right along diagonals, as GT patterns are originally

drawn [6]. Counting from bottom to top, we will call x(r) = (x(r)
1 , x(r)

2 , . . . , x(r)
r ) the r-th row of Γm .

Definition 2.1.1.

(1) For m > n, the GT poset for (GLm,GLn) is the following subposet of Γm:

Γ n
m = {

x(i)
j ∈ Γm: n � i �m

}
.

(2) In Γ n
m , for m � k we define the GT poset of length k as

Γ n
m,k = {

x(i)
j ∈ Γ n

m: j � k
}
.

For example, Γ 3
6,4 can be drawn as

x(6)
1 x(6)

2 x(6)
3 x(6)

4

x(5)
1 x(5)

2 x(5)
3 x(5)

4

x(4)
1 x(4)

2 x(4)
3 x(4)

4

x(3)
1 x(3)

2 x(3)
3

(2.1.1)

2.2. Next, let us consider the set Lm of all non-empty subsets of {1,2, . . . ,m}. We shall write

I = [i1, . . . , ia]
for the subset consisting of elements i1, . . . , ia ordered so that 1 � i1 < · · · < ia � m. The length |I| = a
of I is the number of elements in I .

The following partial order �, called the tableau order, can be imposed on Lm: for two elements I
and J of Lm , we say I � J , if |I| � | J | and the c-th smallest element in I is less than or equal to the
c-th smallest element in J for 1 � c � | J |. Then, Lm with � forms a lattice whose meet ∧ and join
∨ are, for I = [i1, . . . , ia] and J = [ j1, . . . , jb] with a � b,

I ∧ J = [
min(i1, j1), . . . ,min(ia, ja), ia+1, . . . , ib

]
I ∨ J = [

max(i1, j1), . . . ,max(ia, ja)
]
.

Moreover, Lm is a distributive lattice, i.e., for all x, y, z ∈Lm , the following identity holds: x∧(y ∨ z) =
(x∧ y)∨(x∧ z). It is straightforward to check that the following subposets are also distributive lattices.
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Definition 2.2.1.

(1) For m > n, the distributive lattice Ln
m for (GLm,GLn) is the subposet of Lm consisting of the

following elements:

[1,2, . . . , r − 1, r,a1,a2, . . . ,as],
[1,2, . . . , r − 1, r],
[a1,a2, . . . ,as]

where r � n and n + 1 � a1 < · · · < as � m.
(2) For k � m, we let Ln

m,k denote the subposet of Ln
m consisting of elements of length not greater

than k:

Ln
m,k = {

I ∈ Ln
m: |I| � k

}
.

2.3. Recall that a subset S of a poset (P ,<) is called order increasing, if the following condition
holds: for x, y ∈ P , if x ∈ S and x < y, then y ∈ S . The poset structure of Ln

m,k can be read from the
GT poset Γ n

m,k of length k. For this, let us impose a partial order on the set of order increasing subsets
of Γ n

m,k as follows. For two order increasing subsets A and B of Γ n
m,k , we say A is bigger than B ,

if A ⊆ B as sets. Note that here we use the reverse inclusion order on sets, because we use order
increasing sets instead of order decreasing sets.

Proposition 2.3.1. There is an order isomorphism between Ln
m,k and the set of order increasing subsets of Γ n

m,k.

This is an easy computation similar to [18, Theorem 3.8]. For each I ∈ Ln
m,k , we define the corre-

sponding order increasing subset AI of Γ n
m,k as

AI =
⋃

n�i�m

{
x(i)

1 , x(i)
2 · · · , x(i)

si

}
(2.3.1)

where si is the number of entries in I less than or equal to i. For example, the subset of Γ 3
6,4 given

in (2.1.1) corresponding to I = [1,4,6] ∈L3
6,4 is

x(6)
1 x(6)

2 x(6)
3

x(5)
1 x(5)

2

x(4)
1 x(4)

2

x(3)
1

Then, it is straightforward to check that this correspondence gives an order isomorphism. In fact, this
proposition gives an example of Birkhoff ’s representation theorem or the fundamental theorem for
finite distributive lattices [29, Theorem 3.4.1]. See [18, §3.3] for further details.

For k � n and d � 0, we can identify Γ n
m,k with Γ n+d

m+d,k by shifting the i-th row x(i) up to the

(i + d)-th row x(i+d) for n � i � m, and then the above proposition gives

Corollary 2.3.2. For k � n and d � 0, there is an order isomorphism between distributive lattices

Ln
m,k

∼= Ln+d
m+d,k.
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2.4. A shape or Young diagram is a left-justified array of boxes with weakly decreasing row lengths.
We identify a shape with its sequence of row lengths D = (r1, r2, . . .). The following example shows
the shape D = (4,2,1):

If l is maximal with rl �= 0, then we call l the length of D and write �(D) = l. If we flip a shape D over
its main diagonal that slants down from upper left to lower right, then we obtain its conjugate Dt .
With the previous example, we have �(D) = 3 and Dt = (4,2,1)t = (3,2,1,1). For F = ( f1, f2, . . .)

and D = (d1,d2, . . .), if fr � dr for all r, then we write F ⊇ D and let F/D denote the skew shape
having F as its outer shape and D as its inner shape.

2.5. Consider a multiset {I1, . . . , Is} ⊂Lm with |Ic| = lc for each c. A concatenation t of its elements
is called a tableau, if they are arranged so that lc � lc+1 for all c. The shape sh(t) of t is the Young
diagram (l1, . . . , ls)

t and the length �(t) of t is the length of its shape. If {I1, . . . , Is} is taken from the
subposet Ln

m , then we shall specify the outer and inner shapes of t.

Definition 2.5.1. A standard tableau t for (GLm,GLn) is a multiple chain

t = (I1 � · · · � Is)

in Ln
m . The shape shn(t) of t is F/D where

F = (|I1|, . . . , |Is|
)t

and D = (d1, . . . ,dn)

and dr is the number of r’s in t for 1 � r � n.

For example, the multiple chain [1,2,3,6] � [1,2,5,6] � [1,2,6] � [1,4] � [5] � [5] in L3
6,4 forms

a standard tableau for (GL6,GL3) of shape (6,4,3,2)/(4,3,1):

1 1 1 1 5 5
2 2 2 4
3 5 6
6 6 (2.5.1)

Recall that a tableau is called semistandard, if its entries weakly increase along each row and strictly
increase along each column (e.g., [30, p. 309]). Then, after erasing r � 3, we can identified the standard
tableau (2.5.1) with the following skew semistandard tableau

5 5
4

5 6
6 6

2.6. The following set of pairs of Young diagrams will be used frequently: for a � b,

Λa,b = {
(F , D): �(F ) � a, �(D) � b, F ⊇ D

}
.

We note that if (F , D) ∈ Λa,b , then �(D) � min(�(F ),b). This is because F ⊇ D implies �(F ) � �(D).
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2.7. Let T n
m (F , D) denote the set of all standard tableaux for (GLm,GLn) whose shapes are F/D . For

each k with n � k � m, we consider the following disjoint union over Λk,n

T n
m,k =

⋃
(F ,D)∈Λk,n

T n
m(F , D).

As illustrated by the example in Section 2.5, if we identify the elements of Ln
m with single-column

tableaux, then our definition of standard tableaux for (GLm,GLn) of shape F/D agrees with the usual
definition of skew semistandard Young tableaux of shape F/D with entries from {n + 1, . . . ,m}.

By setting tableaux in the context of a finite distributive lattice (Definition 2.5.1), we can exploit an
additional structure: Proposition 2.3.1 leads us to study Ln

m,k in terms of the order increasing subsets
of Γ n

m,k , and the order increasing subsets of Γ n
m,k give rise to the order preserving maps from Γ n

m,k to
{0,1}. More generally,

Definition 2.7.1. A GT pattern for (GLm,GLn) is an order preserving map from the GT poset Γ n
m for

(GLm,GLn) to the set of non-negative integers:

p : Γ n
m → Z�0.

The r-th row of p is (p(x(r)
1 ), . . . ,p(x(r)

r )) for n � r � m. The type of p is F/D where F and D are its
m-th row and the n-th row respectively.

Note that if �(F ) � k, then the support of every GT pattern p of type F/D lies in the GT poset Γ n
m,k

of length k. Therefore, we have GT patterns defined on Γ n
m,k

p : Γ n
m,k → Z�0.

Let Pn
m(F , D) denote the set of all GT patterns for (GLm,GLn) whose type is F/D . Then for each k

with n � k � m, we consider the following disjoint union over Λk,n:

Pn
m,k =

⋃
(F ,D)∈Λk,n

Pn
m(F , D). (2.7.1)

2.8. Since the sum of two order preserving maps is an order preserving map, Pn
m,k is a semigroup

with function addition as its multiplication, or more precisely a monoid with the zero function as its
identity. We further note that Pn

m,k is generated by the order preserving maps from Γ n
m,k to {0,1}.

Then, by identifying each GT pattern p with (p(x(i)
j )) ∈ ZN where N is the number of elements in

Γ n
m,k , we see that Pn

m,k can be understood as an affine semigroup, i.e., a finitely generated semigroup

which is isomorphic to a subsemigroup of ZN containing 0 for some N [3].
This semigroup structure on GT patterns provides a simple bijection between T n

m,k and Pn
m,k .

Proposition 2.8.1. For each (F , D) ∈ Λm,n, there is a bijection between T n
m (F , D) and Pn

m(F , D).

Proof. The bijection in Proposition 2.3.1 provides the bijection between Ln
m and the set of character-

istic functions of order increasing subsets of Γ n
m . This bijection can be extended to multiple chains in

Ln
m as follows. Let t = (I1 � · · · � Ic) be a multiple chain in Ln

m and pIr be the characteristic function
of the order increasing set AIr corresponding to Ir given in (2.3.1) for each r. Then we can consider
the following correspondence:

t = (I1 � · · · � Ic) �→ pt =
c∑

r=1

pIr . (2.8.1)

Since the order preserving characteristic functions on Γ n
m generate Pn

m , this correspondence gives a
bijection between T n

m (F , D) and Pn
m(F , D). For further details, see [18, §3.2]. �
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2.9. We remark that by identifying GT patterns p with their images (p(x(i)
j )), our definition is

equivalent to the usual definition of GT patterns. The correspondence given in the above proposition
is the same as the well-known conversion procedure between the set of semistandard tableaux and
the set of GT patterns (e.g., [9, §8.1.2]), which is usually explained by successive applications of the
Pieri’s rules.

For example, a pattern p ∈P3
6,4 can be visualized by listing its value at x(i)

j ∈ Γ 3
6,4

3 3 3 1

3 3 2 0

3 2 1 0

2 2 1

(2.9.1)

Then it is the sum of the GT patterns

1 1 1 1

1 1 1 0

1 1 1 0

1 1 1

+
1 1 1 0

1 1 1 0

1 1 0 0

1 1 0

+
1 1 1 0

1 1 0 0

1 0 0 0

0 0 0

corresponding to the elements [1,2,3,6] � [1,2,5] � [4,5,6] of L3
6,4. This multiple chain can be

identified with the following standard tableau in T 3
6,4

1 1 4
2 2 5
3 5 6
6 (2.9.2)

of shape (3,3,3,1)/(2,2,1). Note that to (2.9.2), we can apply the usual conversion procedure (e.g.,
[9, §8.1.2]) to obtain its corresponding pattern—by successively striking out the boxes with 6, 5, and
4 in the tableau (2.9.2), we obtain each row of the pattern (2.9.1).

2.10. Now we study an algebra constructed from the distributive lattice Ln
m,k . In fact, from any

distributive lattice one can associate an algebra.

Definition 2.10.1. (See [10].) Let L be a finite distributive lattice. The Hibi algebra H(L) over L is the
quotient ring of the polynomial ring C[zγ : γ ∈ L] by the ideal generated by zαzβ − zα∧β zα∨β for all
incomparable pairs (α,β) of L:

H(L) = C[zγ : γ ∈ L]/〈zα zβ − zα∧β zα∨β〉.

Let us consider the Hibi algebra over Ln
m,k

Hn
m,k = H

(
Ln

m,k

)
.

We shall identify the monomials
∏

r zIr in Hn
m,k with the tableaux consisting of elements Ir ∈ Ln

m,k .
For example, the above tableau (2.9.2) will be used to denote the monomial

z[1236]z[125]z[456] ∈ H3
6,4.

Recall that standard tableaux are multiple chains in Ln
m,k (Definition 2.5.1). Then the following prop-

erty is a consequence of the general theory of Hibi algebras [10,13].
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Lemma 2.10.2.

(1) The set T n
m,k of all standard tableaux for (GLm,GLn) whose shapes are F/D with �(F ) � k form a C-basis

for the Hibi algebra Hn
m,k.

(2) In particular, Hn
m,k is graded by Λk,n, and the set T n

m (F , D) of standard tableaux for (GLm,GLn) of shape
F/D form a C-basis for the (F , D)-graded component of Hn

m,k.

It is shown in [18, Corollary 3.14] that the Hibi algebra over Lm is isomorphic to the semigroup
algebra of GT patterns defined on Γm . This fact combined with the above lemma leads us to study
the Hibi algebra Hn

m,k over Ln
m,k in terms of the semigroup algebra C[Pn

m,k] of the affine semigroup
Pn

m,k given in (2.7.1).
Note that for p1 and p2 ∈ Pn

m,k of types F1/D1 and F2/D2 respectively, the type of (p1 + p2) is
(F1 + F2)/(D1 + D2), and therefore C[Pn

m,k] is graded by pairs of shapes

C
[
Pn

m,k

] =
⊕

(F ,D)∈Λk,n

C
[
Pn

m

]
(F ,D)

where C[Pn
m](F ,D) is the space spanned by Pn

m(F , D).

Proposition 2.10.3.

(1) The semigroup algebra C[Pn
m,k] of the GT patterns for (GLm,GLn) is isomorphic to the Hibi algebra Hn

m,k
over Ln

m,k.
(2) The set Pn

m(F , D) of GT patterns for (GLm,GLn) of type F/D is a C-basis for the (F , D)-graded component
C[Pn

m](F ,D) .

Proof. Note that the algebra C[Pn
m,k] is generated by the set of characteristic functions of order in-

creasing subsets of Γ n
m,k; and that, for order increasing subsets A and B of Γ n

m,k , their characteristic
functions satisfy χA + χB = χA∩B + χA∪B . With this observation, one can show that the isomorphism
in Proposition 2.3.1 can be extended to an algebra isomorphism between C[Pn

m,k] and Hn
m,k . For fur-

ther details, see [13, Theorem 4.3] and [18, §3.2]. The second statement follows from Proposition 2.8.1
and the above lemma. �
3. Branching algebras for (GLm,GLn)

In this section, our goal is to construct an algebra encoding branching rules for (GLm,GLn) and
study its toric degeneration. For later use, we will construct a family of algebras parametrized by the
length of highest weights for GLm .

3.1. Recall that the set of Young diagrams F with �(F ) � m can be used as a labeling system of
irreducible polynomial representations of GLm by identifying dominant weights ( f1 � · · · � fm) ∈ Z

m
�0

of GLm with Young diagrams (cf. [9, §3.1.4]). We let ρ F
m denote the irreducible polynomial representa-

tion of GLm labeled by Young diagram F .
Then the branching algebra for (GLm,GLn) will be graded by the set Λm,n defined in Section 2.6

and its graded components will correspond to the multiplicity spaces HomGLn (ρ
D
n ,ρ F

m) for (F , D).

3.2. For Young diagrams F = ( f1, f2, . . .) and D = (d1,d2, . . .), we write

F � D

if fr � dr � fr+1 for all r, and say D interlaces F .



1140 S. Kim / Journal of Combinatorial Theory, Series A 119 (2012) 1132–1157
Proposition 3.2.1. (See [9, §8.1.1].)

(1) For Young diagrams F and D with �(F ) � m and �(D) � m − 1, the multiplicity of ρD
m−1 in ρ F

m is 1 if
F � D, and 0 otherwise.

(2) The number of GT patterns in Pn
m(F , D) is equal to the multiplicity m(ρD

n ,ρ F
m) of ρD

n in ρ F
m.

From Proposition 3.2.1 and Proposition 2.8.1, we have

Corollary 3.2.2. For (F , D) ∈ Λm,n, the branching multiplicity m(ρD
n ,ρ F

m) is equal to the number of standard
tableaux for (GLm,GLn) whose shapes are F/D.

3.3. To construct a family of branching algebras for (GLm,GLn) parameterized by the length k, let
us review a polynomial model for the flag algebra. We assume m � k and let GLm × GLk act on the
space Mm,k

∼= Cm ⊗Ck of m × k complex matrices by

(g1, g2) · Q = (
gt

1

)−1
Q g−1

2 (3.3.1)

for g1 ∈ GLm , g2 ∈ GLk , and Q ∈ Mm,k . Then under the GLm × GLk action, the coordinate ring C[Mm,k]
of Mm,k has the following decomposition:

C[Mm,k] =
∑

�(F )�k

ρ F
m ⊗ ρ F

k

where the summation is over F with length not more than k. This result is known as GLm − GLk
duality (e.g., [9,12]). If Uk is the subgroup of GLk consisting of upper triangular matrices with 1’s on
the diagonal, then by taking Uk

∼= 1 × Uk invariants, we have

C[Mm,k]Uk =
∑

�(F )�k

ρ F
m ⊗ (

ρ F
k

)Uk .

3.4. This representation decomposition turns out to be compatible with the multiplicative structure
of the algebra. Since the diagonal subgroup Ak of GLk normalizes Uk , C[Mm,k]Uk is stable under the
action of Ak . Note that by highest weight theory (e.g., [9, §3.2.1 and §12.1.3]), (ρ F

k )Uk is the one-
dimensional space spanned by a highest weight vector of ρ F

k , and Ak acts on (ρ F
k )Uk by the character

φF
(
diag(a1, . . . ,ak)

) = a f1
1 · · ·a fk

k

given by Young diagram F = ( f1, f2, . . . , fk). Thus, ρ F
m � ρ F

m ⊗ (ρ F
k )Uk is the space of Ak-eigenvectors

of weight φF in C[Mm,k]Uk and the C-algebra C[Mm,k]Uk is graded by the semigroup Â+
k of dominant

polynomial weights for GLk , or equivalently the subsemigroup Â+
k ⊂ Â+

m of dominant weights for GLm:

C[Mm,k]Uk =
∑

�(F )�k

ρ F
k ,

ρ
F1
m · ρ F2

m ⊆ ρ
F1+F2
m (3.4.1)

where we identify (r1, . . . , rk) ∈ Z
k
�0 with (r1, . . . , rk,0, . . . ,0) ∈ Z

m
�0.

3.5. A finite presentation of C[Mm,k]Uk in terms of generators and relations is well known—all the
Uk-invariant minors on Mm,k form a generating set and they satisfy the Plücker relations. To explain
more details, let us consider a subposet Lm,k = L1

m,k of Lm consisting of elements I = [i1, i2, . . . , ir]
such that |I|� k (cf. Definition 2.2.1).

For each Q ∈ Mm,k , we let δI (Q ) denote the determinant of the submatrix of Q = (ta,b) obtained
by taking the i1, i2, . . . , ir -th rows and the 1,2, . . . , r-th columns:
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δI (Q ) = det

⎡
⎢⎢⎢⎣

ti11 ti12 · · · ti1r

ti21 ti22 · · · ti2r

...
...

. . .
...

tir 1 tir 2 · · · tirr

⎤
⎥⎥⎥⎦ . (3.5.1)

Definition 3.5.1. A product δI1δI2 · · · δIr is called a standard monomial (or GLm standard monomial), if its
indices form a multiple chain t = (I1 � I2 � · · ·� Ir) in Lm,k . We write

t = δI1δI2 · · · δIr .

Then we define the shape of a standard monomial t to be the shape of t, i.e., (|I1|, |I2|, . . . , |Ir |)t .

Proposition 3.5.2. (See [8, pp. 233, 236].)

(1) For I, J ∈Lm,k, the product δIδ J ∈C[Mm,k]Uk can be uniquely expressed as a linear combination of stan-
dard monomials

δIδ J =
∑

r

crδSr δTr (3.5.2)

where, for each r with cr �= 0, Sr � Tr in Lm,k and Sr ∪̇ Tr = I ∪̇ J as sets.
(2) On the right-hand side, δI∧ J δI∨ J appears with coefficient 1, and Sr � I ∧ J and I ∨ J � Tr for all r with

cr �= 0. Moreover, for each (Sr, Tr) �= (I ∧ J , I ∨ J ), let h be the smallest integer such that the sum s of the
h-th entries of Sr and Tr is different from the sum s0 of the h-th entries of I and J . Then s > s0 .

By applying the straightening relations (3.5.2), we can find a C-basis for C[Mm,k]Uk . The following
is well known. See, for example, [3,4,8,11]. For this particular form, see [18, Theorem 4.5, Remark 4.6].

Proposition 3.5.3. Standard monomials t associated with multiple chains t in Lm,k form a C-basis for
C[Mm,k]Uk . More precisely, standard monomials t with sh(t) = F form a weight basis for the GLm irreducible
representation ρ F

m ⊂C[Mm,k]Uk with highest weight F .

We specify the following properties of the standard monomial expression of δIδ J for I, J ∈Ln
m,k of

length not more than k, which can be easily derived from the above proposition.

Corollary 3.5.4. Let I and J be incomparable elements in Ln
m,k with |I| � | J |. Consider the standard monomial

expression of the product δIδ J given in (3.5.2). Let us denote the standard tableau Sr � Tr by tr . Then, for each
r with non-zero cr ,

(1) the shape shn(tr) is F/D where F = (|I|, | J |)t and D = (d1,d2, . . .) where dh is the number of h’s in the
disjoint union I ∪̇ J for 1 � h � n;

(2) all the entries in the h-th row of tr are bigger than or equal to h for 1 � h � min(n, |I|);
(3) if we denote the numbers of entries less than or equal to h in Sr and Tr by αh and βh respectively, then

αh + βh � 2h for 1 � h � min(n, |I|).

Example 3.5.5. For I = [1,2,5,6] and J = [1,3,4] from L2
6,4, we have

δ[1256]δ[134] = δ[1246]δ[135] − δ[1236]δ[145] + δ[1235]δ[146] − δ[1245]δ[136] − δ[1234]δ[156].

Note that shn(tr) = (2,2,2,1)/(2,1) for all the terms tr on the right-hand side.
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3.6. Let m > n. To consider the branching rules for (GLm,GLn), we use the following embedding of
GLn in GLm: for X ∈ GLn ,[

X 0

0 I

]
∈ GLm

where I is the (m − n) × (m − n) identity matrix and 0’s are the zero matrices of proper sizes.
From (3.4.1), by taking Un-invariants, we have

C[Mm,k]Un×Uk =
∑

�(F )�k

(
ρ F

m

)Un

=
∑

�(F )�k

∑
D

m
(
ρD

n ,ρ F
m

)(
ρD

n

)Un (3.6.1)

where m(ρD
n ,ρ F

m) is the multiplicity of ρD
n appearing in ρ F

m , and (ρD
n )Un is the one-dimensional space

spanned by a highest weight vector of ρD
n .

Definition 3.6.1. For m � k, the length k branching algebra for (GLm,GLn) is the (Un × Uk)-invariant
ring of C[Mm,k]

Bn
m,k = C[Mm,k]Un×Uk .

3.7. Note that for I ∈Ln
m,k all the minors δI are invariant under the subgroup Un × Uk of GLn × GLk

with respect to the action (3.3.1). In fact, the length k branching algebra for (GLm,GLn) is generated
by {δI : I ∈Ln

m,k}.

Theorem 3.7.1. For each k with m � k, the branching algebra Bn
m,k for (GLm,GLn) is graded by Λk,n

Bn
m,k =

⊕
(F ,D)∈Λk,n

Bn
m,k(F , D)

and the standard monomials t for t ∈ T n
m (F , D) form a C-basis of the (F , D)-graded component Bn

m,k(F , D).

Proof. For I ∈ Ln
m,k , the determinant functions δI , considered as elements of C[Mm,k]Uk , satisfy the

relations (3.5.2). Also, by keeping track of the entries of I and J in this relation, we can easily see
that all Sr and Tr appearing on the right-hand side of (3.5.2) are elements of Ln

m,k , and that all the
standard tableaux tr = (Sr � Tr) have the same shape as in the first statement of Corollary 3.5.4.
By applying these relations repeatedly, we can express every monomial in {δI : I ∈ Ln

m,k} as a linear
combination of standard monomials of the same shape. In particular, the algebra Bn

m,k is graded by
the shapes shn(t) ∈ Λk,n of standard monomials for (GLm,GLn). Now, it is enough to show that for
each shape F/D with (F , D) ∈ Λk,n , the number of standard monomials t for t ∈ T n

m (F , D) is equal
to the multiplicity of ρD

n in ρ F
m , which is Corollary 3.2.2. �

Note that the standard monomials t for t ∈ T n
m (F , D) are invariant under the action of Un and

scaled by the character φD under the action of the diagonal subgroup of GLn:

diag(a1, . . . ,an) · t = φD
(
diag(a1, . . . ,an)

)
t

= (
ad1

1 · · ·adn
n

)
t (3.7.1)

for D = (d1, . . . ,dn). This shows that standard monomials t for t ∈ T n
m (F , D) are the highest weight

vectors of the copies of ρD
n in ρ F

m . Accordingly, we have
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Proposition 3.7.2. The standard monomials t with t ∈ T n
m (F , D), as C-basis elements of Bn

m,k(F , D), are the

highest weight vectors of the copies of ρD
n in ρ F

m. Therefore, we have

Bn
m,k(F , D) ∼= HomGLn

(
ρD

n ,ρ F
m

)
.

3.8. Toric degenerations of the branching algebras Bn
m,k can be induced by the same methods used

for the case of the flag algebra C[Mm,k]Uk in the literature, for example, [7,18,23,27,31]. See also [32,
Theorem 1], for the properties of the algebra of polynomials on a semisimple algebraic group and its
associated graded algebra.

Theorem 3.8.1. The length k branching algebra Bn
m,k for (GLm,GLn) is a flat deformation of the Hibi algebra

Hn
m,k over Ln

m,k.

Proof. Let us impose a filtration on Bn
m,k by giving the following weight on each monomials. Fix an

integer N greater than 2m, and then define the weight of I = [i1, . . . , ia] ∈Ln
m,k as

wt(I) =
∑
r�1

ir Nm−r . (3.8.1)

The weight of a standard tableau t consisting of Ic is defined to be the sum of individual weights,
i.e., wt(t) = ∑

c wt(Ic). Then we can define a Z-filtration Fwt = {Fwt
d } on Bn

m,k = C[Mm,k]Un×Uk with

respect to the weight wt . Set Fwt
d (Bn

m,k) to be the space spanned by{
t: wt(t) � d

}
.

The filtration Fwt is well defined, since every product
∏

δIc can be expressed as a linear combina-
tion of standard monomials with bigger weights by Proposition 3.5.2. For all pairs A, B ∈ Ln

m,k , since
wt(A) + wt(B) = wt(A ∧ B) + wt(A ∨ B), δAδB and δA∧BδA∨B belong to the same associated graded
component. Therefore, we have sA · grsB = sA∧B · grsA∨B where sC are elements corresponding to δC in
the associated graded ring grwt(Bn

m,k) of Bn
m,k with respect to the filtration Fwt . Then it is straight-

forward to show that the associated graded ring grwt(Bn
m,k) forms the Hibi algebra over Ln

m,k . From a

general property of the Rees algebras (e.g., [1]), the Rees algebra Rt of Bn
m,k with respect to Fwt :

Rt =
⊕
d�0

Fwt
d

(
Bn

m,k

)
td

is flat over C[t] with its general fiber isomorphic to Bn
m,k and special fiber isomorphic to the associ-

ated graded ring which is Hn
m,k . �

We remark that Spec(Hn
m,k) is an affine toric variety in the sense of [31]. Then, the rational poly-

hedral cone corresponding to the affine toric variety and the integral points therein can be realized
from our description of the affine semigroup Pn

m,k given at the beginning of Section 2.8.

4. Stable range branching algebra for (Sp2m, Sp2n)

In this section, starting from combinatorial descriptions of stable range branching rules, we study
the affine semigroup algebra and its associated Hibi algebra for (Sp2m, Sp2n). Then we construct an
explicit model for the stable range branching algebra. Along with these, we also show that these
algebraic objects are isomorphic to their (GL2m,GL2n) counterparts with a proper length condition.

Recall that we can label irreducible rational representation of Sp2m , after identifying dominant
weights with Young diagrams, by Young diagrams with less than or equal to m rows (cf. [9, §3.1.4]).
We let τ F

2m denote the irreducible representation of Sp2m labeled by Young diagram F .
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4.1. Let Jm = ( ja,b) be the m×m matrix with ja,m+1−a = 1 for 1 � a � m and 0 otherwise. Then we
define the symplectic group Sp2m of rank m as the subgroup of GL2m preserving the skew symmetric
bilinear form on C2m induced by[

0 Jm

− Jm 0

]
.

Note that, for the elementary basis {ei} of the space C2m , e j and e2m+1− j make an isotropic pair
for 1 � j � m with respect to this bilinear form. Also, the subgroup of upper triangular matrices with
1’s on the diagonal can be taken as a maximal unipotent subgroup of Sp2m . We will denoted it by
USp2m .

For n < m, we identify Sp2n with the subgroup of Sp2m preserving the skew symmetric bilinear
form restricted to the subspace of C2m spanned by

{ea, e2m+1−a: 1 � a � n}.
Then Sp2n can be embedded in Sp2m as follows.

[
X Y

Z W

]
�→

⎡
⎣ X 0 Y

0 I 0

Z 0 W

⎤
⎦ (4.1.1)

where X , Y , Z , W are n × n matrices, I is the 2(m − n) × 2(m − n) identity matrix, and 0’s are the
zero matrices of proper sizes.

4.2. In order to construct an affine semigroup encoding stable range branching rules for
(Sp2m, Sp2n), we review the following combinatorial description of branching multiplicities.

Lemma 4.2.1. (See [9, Theorem 8.1.5].) For Young diagrams F and D with �(F ) � m and �(D) � m − 1, the
multiplicity of τ D

2(m−1) in τ F
2m as an Sp2(m−1) representation is equal to the number of Young diagrams E

satisfying the interlacing condition F � E � D.

For example, if F = (5,3,3,2,1) and D = (4,3,2,2), then the multiplicity of τ D
8 in τ F

10 is equal to
the number of E = (e1, e2, . . . , e5) in

5 3 3 2 1

e1 e2 e3 e4 e5

4 3 2 2

so that the entries are weakly decreasing from left to right along diagonals.
Note that this branching is not multiplicity free and rather similar to the two-step branchings for

the general linear groups. To obtain a description of the multiplicity spaces for (Sp2m, Sp2n), we can
simply iterate the above lemma. Because of the length condition �(Ek) � k of Sp2k representations
τ

Ek
2k for n � k � m, it will be quite different from the (GL2m,GL2n) case (Proposition 3.2.1). Within the

stable range �(F ) � n, however, we have exactly the same description.
In the previous example, if we set F = (5,3,3,2,0) so that �(F ) = 4, then the multiplicity of τ D

8
in τ F

10 is equal to the number of E = (e1, e2, . . . , e5) in

5 3 3 2 0

e1 e2 e3 e4 e5

4 3 2 2

and the interlacing condition makes e5 = 0. Therefore the multiplicity of τ D
8 in τ F

10 is equal to the
multiplicity of the GL8 representation ρD

8 in the GL10 representation ρ F
10.
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Remark 4.2.2.

(1) For complete GT patterns for Sp2m , we refer to [22] and [28]. See also [18, §5] for their ring
theoretic interpretation.

(2) The branching algebra for (Sp2m, Sp2m−2) has interesting algebraic and combinatorial properties
with an extra structure from the action of SL2 × · · · × SL2. For this, we refer to [21].

4.3. Recall that P2n
2m(F , D) is the set of all GT patterns for (GL2m,GL2n) whose types are F/D .

Within the stable range �(F ) � n, F ⊇ D implies �(D) � n, and therefore the support of every GT
pattern in P2n

2m(F , D) lies in the GT poset Γ 2n
2m,n of length n:

x(2m)
1 x(2m)

2 · · · x(2m)
n

x(2m−1)
1 x(2m−1)

2 · · · x(2m−1)
n

. . .
. . . · · · . . .

x(2n)
1 x(2n)

2 · · · x(2n)
n

Proposition 4.3.1. Let F and D be Young diagrams with F ⊇ D and �(F ) � n. Then the branching multiplic-
ity m(τ D

2n, τ F
2m) is equal to the number of elements in P2n

2m(F , D), and therefore it is equal to the number of
elements in T 2n

2m (F , D).

Proof. From Lemma 4.2.1, by using the same argument used to prove (2) of Proposition 3.2.1, the
set P2n

2m(F , D) of GT patterns of shape F/D counts the multiplicity of τ D
2n in τ F

2m . The last statement
follows from Proposition 2.8.1. �

We call the affine semigroup P2n
2m,n , defined in (2.7.1), the semigroup for (Sp2m, Sp2n) and call its

associated semigroup algebra C[P2n
2m,n] the semigroup algebra for (Sp2m, Sp2n). Then it is graded by

Λn,n defined in Section 2.6

C
[
P2n

2m,n

] =
⊕

(F ,D)∈Λn,n

C
[
P2n

2m

]
(F ,D)

.

4.4. To define tableaux and standard monomials for the symplectic groups, we shall use the fol-
lowing ordered letters:

〈2m〉 = {u1 < v1 < u2 < v2 < · · · < um < vm}. (4.4.1)

If we let L〈2m〉 denote the set of all non-empty subsets J of 〈2m〉, then on L〈2m〉 we can impose
the tableau order �, as it is done in Section 2.2 for L2m , through the bijection

ι(uc) = 2c − 1 and ι(vc) = 2c (4.4.2)

for 1 � c � m. Then L〈2m〉 is a distributive lattice isomorphic to L2m .
For m > n, we consider the subposet L〈n,2m〉 of L〈2m〉 with all the elements J ⊂ 〈2m〉 of the

forms

[u1, u2, . . . , uc, y1, y2, . . . , ys],
[u1, u2, . . . , uc],
[y1, y2, . . . , ys] (4.4.3)

where c � n and un+1 � y1 < y2 < · · · < ys � vm . In particular, if uc ∈ J for c � n, then {uh: 1 �
h � c} ⊂ J .
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Now, for k � n, let L〈n,2m〉k be the subposet of L〈n,2m〉 consisting of J ∈ L〈n,2m〉 with | J | � k.
Then, through the map (4.4.2), it is straightforward to see that L〈n,2m〉k is isomorphic to Ln

2m−n,k

given in Definition 2.2.1, and therefore isomorphic to L2n
2m,k by Corollary 2.3.2.

Definition 4.4.1.

(1) The distributive lattice for (Sp2m, Sp2n) is

LSp = L〈n,2m〉n

∼= L2n
2m,n.

(2) The Hibi algebra for (Sp2m, Sp2n), denoted by HSp , is the Hibi algebra over the distributive lattice
LSp .

Note that from LSp ∼= L2n
2m,n , the Hibi algebra HSp for (Sp2m, Sp2n) is isomorphic to H2n

2m,n . Then
from Proposition 2.10.3 for (GL2m,GL2n) we have

Corollary 4.4.2. The Hibi algebra for (Sp2m, Sp2n) is isomorphic to the semigroup algebra for (Sp2m, Sp2n):

HSp ∼= C
[
P2n

2m,n

]
.

4.5. Next, we define standard tableaux for (Sp2m, Sp2n).

Definition 4.5.1.

(1) A standard tableau t for (Sp2m, Sp2n) is a multiple chain in LSp:

t = (I1 � · · · � Is).

(2) The shape shn(t) of a standard tableau t for (Sp2m, Sp2n) is F/D where

F = (|I1|, . . . , |Is|
)t

and D = (d1, . . . ,dn)

with dr being the number of uh ’s in t for 1 � h � n.

We write TSp(F , D) for the set of all standard tableaux for (Sp2m, Sp2n) whose shapes are F/D , and
consider the disjoint union

TSp =
⋃

(F ,D)∈Λn,n

TSp(F , D)

over Λn,n . Then as in the case of the general linear groups, TSp gives rise to a C-basis for the Hibi
algebra for (Sp2m, Sp2n). As in Section 2.10, we shall identify monomials in the Hibi algebra HSp with
tableaux whose columns are elements of LSp .

Proposition 4.5.2.

(1) The Hibi algebra HSp for (Sp2m, Sp2n) is graded by Λn,n, and for each (F , D) ∈ Λn,n, TSp(F , D) forms
a C-basis for the graded component HSp(F , D) of HSp.

(2) The number of standard tableaux for (Sp2m, Sp2n) of shape F/D is equal to the branching multiplicity
m(τ D

2n, τ F
2m) of τ D

2n in τ F
2m.

Proof. From the isomorphism LSp ∼= L2n
2m,n , we can easily see that there is a bijection between

TSp(F , D) and T 2n
2m (F , D). Then (1) follows from Lemma 2.10.2 and (2) follows from Proposi-

tion 4.3.1. �
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4.6. We remark that every standard tableau for (Sp2m, Sp2n) of shape F/D can be realized as a
skew semistandard tableau of shape F/D having entries from {un+1, vn+1, . . . , um, vm}. For example,
for m = 10 and n = 6, the standard tableau of shape F = (6,5,3,0,0) and D = (4,3,1)

[u1, u2, u3] � [u1, u2, v4] � [u1, u2, v4] � [u1, u4] � [v4, u5] � [u5]
in LSp =L〈3,10〉3 can be identified with the skew semistandard tableau

v4 u5

u4 u5

v4 v4

where the empty boxes in h-th row are considered as the ones with uh for 1 � h � n.
We also remark that, as it is shown in Proposition 2.3.1, we can attach an order increasing subset

AI of Γ 2n
2m,n to each I ∈LSp:

AI =
⋃

2n� j�2m

A( j)
I (4.6.1)

where A( j)
I ⊂ Γ 2n

2m,n are defined as

A(2i−1)
I = {

x(2i−1)
1 , x(2i−1)

2 , . . . , x(2i−1)
si

}
,

A(2i)
I = {

x(2i)
1 , x(2i)

2 , . . . , x(2i)
ti

}
.

Here si and ti are the numbers of elements in I less than or equal to ui and vi respectively. Then we
can relate every element of TSp to a sum of characteristic functions of these order increasing subsets
as given in Proposition 2.8.1 and (2.8.1). This gives a direct proof for Corollary 4.4.2.

4.7. Now we want to lift the elements of the Hibi algebra HSp to construct the stable range
branching algebra for (Sp2m, Sp2n). For this purpose, we briefly review the polynomial model of Sp2m-
representation spaces studied in [18].

From (3.4.1), as a GL2m module, C[M2m,m]Um decomposes into irreducible representations ρ F
2m for

�(F ) � m. By taking Sp2m as a subgroup of GL2m , we let Sp2m × GLm act on the space M2m,m ∼= C2m ⊗
Cm as in (3.3.1).

Then we take the quotient of C[M2m,m]Um by the ideal ISp = ∑
F I F where I F is the Sp2m-

invariant complement space to τ F
2m in ρ F

2m , i.e., ρ F
2m = τ F

2m ⊕ I F for each F (cf. [5, §17.3]). Then this
quotient algebra can be taken as a polynomial model of the flag algebra for Sp2m in that it contains
exactly one copy of every irreducible representation τ F

2m:

FSp =C[M2m,m]Um/ISp

=
∑

�(F )�m

τ F
2m.

Moreover, this decomposition is compatible with the graded structure of the algebra, i.e., τ
F1

2m ·
τ

F2
2m ⊂ τ

F1+F2
2m . Therefore, for the stable range �(F ) � n, we can consider its subalgebra consisting of

τ F
2m with �(F ) � n:

F (n)
Sp =

∑
�(F )�n

τ F
2m. (4.7.1)
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4.8. To describe generators of FSp , to each I = [w1, . . . , wr] ∈ L〈2m〉 with r � m, we attach a
determinant function δI ′ as follows. For Q ∈ M2m,m , we let δI ′ (Q ) denote the determinant of the
submatrix of Q = (ta,b) obtained by taking the i′1, i′2, . . . , i′r -th rows and the 1,2, . . . , r-th columns:

δI ′(Q ) = det

⎡
⎢⎢⎢⎢⎣

ti′11 ti′12 · · · ti′1r

ti′21 ti′22 · · · ti′2r

...
...

. . .
...

ti′r 1 ti′r 2 · · · ti′rr

⎤
⎥⎥⎥⎥⎦ (4.8.1)

where {i′1, i′2, . . . , i′r} is the image of the set {w1, w2, . . . , wr} ⊂ 〈2m〉 under

ψ : {u1, v1, . . . , um, vm} → {1,2, . . . ,2m}
ψ(uc) = c and ψ(vc) = 2m + 1 − c (4.8.2)

for 1 � c � m.
This conversion procedure is to make the labeling (uc, vc) of isotropic pairs compatible with ours

(c,2m + 1 − c) for the skew symmetric form defined in Section 4.1. Note that (c, c̄) and (2c − 1,2c)
are used for the isotropic pairs in [2] and [18].

Notation 4.8.1. To avoid a possible ambiguity, we impose a new total order � on {1,2, . . . ,2m} in-
duced by ψ in (4.8.2) and the order of 〈2m〉 given in (4.4.1):

1 � 2m � 2 � 2m − 1 � · · ·�m �m + 1.

(1) To emphasize the order �, we shall use the prime symbol as in i′j for the elements i j of
{1,2, . . . ,2m}.

(2) In the determinant (4.8.1), we may further assume that

i′1 � i′2 � · · ·� i′r
to fix the sign of the determinant.

(3) We also let I ′ denote the image of I ∈ L〈2m〉 under ψ . Similarly, we let t′ denote the multiple
chain (I ′1 � I ′2 � · · ·� I ′c) corresponding to the multiple chain t = (I1 � I2 � · · · � Ic) in L〈2m〉.

For the flag algebra FSp , we are interested in δI ′ with I ∈ L〈2m〉 whose h-th smallest entry is not
less than uh for all h � 0.

Definition 4.8.2. (See [2,18].) Fix the element J0 = [u1, u2, . . . , um] ∈ L〈2m〉 of length m. For a multi-
ple chain t = (I1 � I2 � · · · � Ic) of L〈2m〉, its associated monomial

t′ = δI ′1δI ′2 · · · δI ′c ∈C[M2m,m]Um

is called an Sp-standard monomial, if Is � J0 for all s.

4.9. To a product of δI ′ ’s, as an element of C[M2m,m]Um , apply the straightening relations in Propo-
sition 3.5.2 to obtain a linear combination of standard monomials for GL2m:∏

i

δI ′i =
∑

r

cr

∏
j�1

δK ′
r, j

.

If there is a non-zero term
∏

j δK ′
r, j

which is not an Sp-standard monomial, then apply relations from

the ideal ISp . This replaces the entries in Kr, j ’s corresponding to isotropic pairs (ua, va) with the sum
of entries corresponding to (ub, vb) for a � b, thereby expressing

∏
j δK ′

r, j
as a linear combination

of Sp-standard monomials. For further details, we refer to [18]. A combinatorial description of this
procedure in the language of tableaux is given in [2].
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Proposition 4.9.1. (See [18, Theorem 5.20].) Sp-standard monomials project to a C-basis of the flag algebra
FSp for Sp2m. In particular, for a Young diagram F with �(F ) � m, Sp-standard monomials of shape F project
to a weight basis for the Sp2m irreducible representation τ F

2m ⊂FSp.

We also note that, from the graded structure τ
F1

2m · τ F2
2m ⊂ τ

F1+F2
2m of FSp , in order to obtain the

subalgebra F (n)
Sp in (4.7.1), it is enough to consider δI ′ ’s with I ∈L〈2m〉 and |I| � n.

4.10. We want to find an explicit model for the USp2n -invariant subalgebra of F (n)
Sp , which will

denote by BSp . Note that, from (1.3.1) and (4.7.1), we have

BSp =
∑

�(F )�n

(
τ F

2m

)USp2n

=
∑

�(F )�n

∑
D

m
(
τ D

2n, τ
F

2m

)(
τ D

2n

)USp2n .

Theorem 4.10.1. The algebra BSp is generated by

G = {δI ′ + ISp: I ∈ LSp},
and it is graded by Λn,n. For each (F , D) ∈ Λn,n the Sp-standard monomials t′ corresponding to standard
tableaux t for (Sp2m, Sp2n) whose shapes are F/D form a C-basis of the (F , D)-graded component. The di-
mension of the (F , D)-graded component is equal to the branching multiplicity of τ D

2n in τ F
2m.

Proof. Let R be the subalgebra of F (n)
Sp generated by G . We will show that R = BSp . Recall that, for

I ∈LSp ⊂L〈2m〉, we defined the polynomial δI ′ on the space M2m,m in (4.8.1). By (4.4.3) and (4.8.2), it
is the determinant of a submatrix of Q ∈ M2m,m obtained by taking consecutive columns {1,2, . . . , |I|}
and either consecutive rows {1,2, . . . , r} or partially consecutive rows {1,2, . . . , r}∪{b1, . . . ,bs} or only
{b1, . . . ,bs} of Q for r � n and bi ∈ {n + 1,n + 2, . . . ,2m − n} for all i.

Since the left action of U2n ⊂ GL2m under the embedding (4.1.1) operates the rows of M2m,m , all
the elements δI ′ for I ∈ LSp are invariant under the action of U2n and therefor invariant under the
action of USp2n . Since the ideal ISp is stable under the action of Sp2m , the generators of the algebra R
are invariant under the unipotent subgroup USp2n of Sp2n , and so are their products. Also, since every
I ∈LSp satisfies |I| � n, we have R⊆ BSp .

On the other hand, every element in LSp is greater than J0 = [u1, u2, . . . , um] with respect to the
tableau order, and therefore standard tableaux t for (Sp2m, Sp2n) (Definition 4.5.1 and Proposition 4.9.1)
give rise to Sp-standard monomials t′ (Definition 4.8.2) for FSp . That is, Sp-standard monomials
corresponding to standard tableaux for (Sp2m, Sp2n) project to linearly independent elements in BSp ⊆
FSp . They span the whole algebra BSp , because for each (F , D) ∈ Λn,n the number of standard tableaux
in TSp(F , D) is equal to the multiplicity of τ D

2n in τ F
2m by Proposition 4.3.1. Furthermore, they are

scaled by weight D under the action of the diagonal subgroup {diag(a1, . . . ,an,a−1
n , . . . ,a−1

1 )} of Sp2n
as given in (3.7.1). This shows that standard monomials t′ with t ∈ TSp(F , D) are the highest weight
vectors of the copies of τ D

2n in τ F
2m . �

In this sense, we call BSp the stable range branching algebra for (Sp2m, Sp2n). Recall that we obtained
BSp by lifting the elements of the Hibi algebra HSp over the distributive lattice LSp which is isomor-
phic to the distributive lattice L2n

2m,n . Now we compare it with the algebra B2n
2m,n (Definition 3.6.1)

obtained from the Hibi algebra H2n
2m,n for the general linear groups.

Proposition 4.10.2. The stable range branching algebra BSp for (Sp2m, Sp2n) is isomorphic to the length n
branching algebra B2n

2m,n for (GL2m,GL2n).
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Proof. From the isomorphism LSp ∼= L2n
2m,n of distributive lattices, with I �→ Î , we can consider a

bijection between the generating set of BSp and the generating set of B2n
2m,n:

{δI ′ + ISp: I ∈ LSp} ←→ {
δ Î : Î ∈ L2n

2m,n

}
.

Then, to see that this bijection gives rise to an algebra isomorphism, let us show that the straightening
relations among δ Î ’s in B2n

2m,n agree with those of (δI ′ + ISp)’s in BSp ⊂FSp .
As explained in Section 4.9, to express a product of δI ′ ’s as a linear combination of Sp-standard

monomials projecting to the quotient FSp = C[M2m,m]Um /ISp , we first apply the straightening rela-
tions in C[M2m,m]Um (Proposition 3.5.2) and then relations from the ideal ISp .

For elements Ii ∈ LSp ⊂ L〈2m〉, the corresponding product
∏

i δI ′i , as an element in C[M2m,m]Um ,
can be expressed as a linear combination of GL2m-standard monomials:∏

i

δI ′i =
∑

r

cr

∏
j�1

δK ′
r, j

(4.10.1)

in C[M2m,m]Um . Now we claim that for each non-zero term
∏

j δK ′
r, j

, its indices Kr, j ’s form a multiple

chain in LSp , i.e., the monomial
∏

j δK ′
r, j

is already Sp-standard. Therefore, the expression (4.10.1)

provides the Sp-standard monomial expression of
∏

i δI ′i projecting to BSp ⊂FSp . This follows directly
from the quadratic relation (3.5.2), that is, for I, J ∈LSp ,

δI ′δ J ′ =
∑

r

crδS ′
r
δT ′

r
.

On the right-hand side, for each non-zero term δS ′
r
δT ′

r
, the chain Sr � Tr satisfies the condition Sr � J0

and Tr � J0 in Definition 4.8.2. This can be easily seen from the statement (2) of Corollary 3.5.4 and
the fact that I and J from LSp do not contain vh for 1 � h � n.

Moreover, by Theorem 4.10.1 and Proposition 4.3.1, the (F , D)-graded components of both algebras
are of the same dimension, and they have C-bases labeled by the same patterns for all (F , D) ∈ Λn,n .
Therefore, two graded algebras are isomorphic to each other. �

With this characterization BSp ∼= B2n
2m,n , from Theorem 3.8.1, we have

Corollary 4.10.3. The stable range branching algebra BSp for (Sp2m, Sp2n) is a flat deformation of the Hibi
algebra HSp for (Sp2m, Sp2n), which is isomorphic to H2n

2m,n.

5. Stable range branching algebra for (SOp, SOq)

Through out this section, for m > n � 2, we set

p = 2m + 1 or 2m;
q = 2n + 1 or 2n;
k =

{
n if q = 2n + 1,

n − 1 if q = 2n.

Following the same techniques we developed for the symplectic groups, we construct the stable range
branching algebra BSO for (SOp, SOq). The results and their proofs in this section are analogous to the
case of (Sp2m, Sp2n).

5.1. Let us review a labeling system for the irreducible rational representations of SOp (cf. [9,
§3.1.4]). For the even orthogonal group O 2m of rank m, every Young diagram F with �(F ) < m can
label exactly one irreducible representation σ F

2m , which can be also realized as an SO2m irreducible
representation. A diagram of length m labels an irreducible representation of O 2m which decomposes
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into two irreducible representations of SO2m . For the odd special orthogonal group SO2m+1 of rank m,
every irreducible rational representation σ F

2m+1 can be uniquely labeled by a Young diagram F with
�(F ) � m. Then these representations are also O 2m+1-irreducible.

5.2. Let Jm = ( ja,b) be the m × m matrix such that ja,m+1−a = 1 for 1 � a � m and 0 otherwise.
Then we define the special orthogonal groups SO2m and SO2m+1 as the subgroups of SL2m and SL2m+1
preserving the symmetric bilinear forms on C2m and C2m+1 induced by

[
0 Jm

Jm 0

]
and

⎡
⎣ 0 0 Jm

0 1 0

Jm 0 0

⎤
⎦

respectively where 0’s are the zero matrices of proper sizes. Then, the pairs (e j, ep+1− j) of the el-
ementary basis elements for Cp make isotropic pairs with respect to the above symmetric bilinear
form. Also, the subgroup of upper triangular matrices with 1’s on the diagonal can be taken as a
maximal unipotent subgroup of SOp . We will denote it by USOp .

For m > n, let us identify SO2n as the subgroup of SOp preserving the symmetric bilinear form on
the subspace of Cp spanned by {e j, ep+1− j: 1 � j � n}. Then we can embed SO2n in SOp as follows

[
X Y

Z W

]
→

⎡
⎣ X 0 Y

0 I 0

Z 0 W

⎤
⎦

where X , Y , Z , W are blocks of size n × n, I is the (p − 2n) × (p − 2n) identity matrix, and 0’s
are the zero matrices of proper sizes. Similarly, we embed SO2n+1 in SO2m+1 by considering the
(2n + 1)-dimensional subspace of C2m+1 spanned by {e j, e2m+2− j: 1 � a � n} and em+1. For SO2n+1

in SO2m , we use the (2n + 1)-dimensional subspace of C2m spanned by {e j, e2m+1− j: 1 � j � n} and
(em + em+1).

5.3. Our next task is to construct an affine semigroup encoding stable range branching rules for
(SOp, SOq). Note that ( f1, . . . , fm) ∈ Zm is a dominant weight for SO2m+1 and SO2m , if f1 � · · · �
fm � 0 and f1 � · · · � fm−1 � | fm|� 0 respectively.

Lemma 5.3.1. (See [9, Theorems 8.1.3 and 8.1.4].)

(1) Let F = ( f1, . . . , fm) and D = (d1, . . . ,dm) be dominant weights for SO2m+1 and SO2m respectively. Then
the branching multiplicity of σ D

2m in σ F
2m+1 is equal to 1 if (d1, . . . , |dm|) interlaces ( f1, . . . , fm), i.e.,

f1 f2 · · · fm−1 fm

d1 d2 · · · dm−1 |dm|
and 0 otherwise;

(2) Let F = ( f1, . . . , fm) and D = (d1, . . . ,dm−1) be dominant weights for SO2m and SO2m−1 respectively.
Then the branching multiplicity of σ D

2m−1 in σ F
2m is equal to 1 if (d1, . . . ,dm) interlaces ( f1, . . . , | fm|), i.e.,

f1 f2 · · · fm−1 | fm|
d1 d2 · · · dm−1

and 0 otherwise.

By iterating these results, we may obtain patterns counting the branching multiplicities for
(SOp, SOq). Such patterns are different from the GT patterns for (GLp,GLq). Within the stable range,
however, they are the same as the ones for (GLp,GLq) with restrictions on lengths. That is because, as
in the case for the symplectic groups, the length restriction �(F ) � k forces �(D) � k via the interlac-
ing conditions in Lemma 5.3.1. Therefore, as is shown in Proposition 4.3.1 for the symplectic groups,
we have
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Proposition 5.3.2. Let F and D be Young diagrams with F ⊇ D and �(F ) � k. Then the branching multiplicity
m(σ D

q , σ F
p ) is equal to the number of elements in Pq

p(F , D), and therefore it is equal to the number of elements

in T q
p (F , D).

As in the case of (GLp,GLq) in (2.7.1), we can consider the affine semigroup Pq
p,k of the order

preserving maps from the GT poset Γ
q
p,k of length k:

x(p)
1 x(p)

2 · · · x(p)

k

x(p−1)
1 x(p−1)

2 · · · x(p−1)

k

. . .
. . . · · · . . .

x(q)
1 x(q)

2 · · · x(q)

k

to non-negative integers. We call Pq
p,k the semigroup for (SOp, SOq), and define its associated semi-

group algebra:

C
[
Pq

p,k

] =
⊕

(F ,D)∈Λk,k

C
[
Pq

p
]
(F ,D)

and call it the semigroup algebra for (SOp, SOq).

5.4. Let us define the distributive lattice for (SOp, SOq) and study its Hibi algebra. We shall closely
follow the construction developed in Section 4.4 for the symplectic groups. Consider the ordered
letters:

〈2m〉 = {u1 < v1 < u2 < v2 < · · · < um < vm}, (5.4.1)

〈2m + 1〉 = {u1 < v1 < u2 < v2 < · · · < um < vm < ∞}
for p = 2m and 2m + 1 respectively.

If we let L〈p〉 denote the set of all non-empty subsets J of 〈p〉, then on L〈p〉 we can also impose
the tableau order � as in Section 2.2 and Section 4.4. Then L〈p〉 is a distributive lattice isomorphic
to Lp , as in the case of the symplectic groups, through the bijection (4.4.2) (and ι(∞) = 2m + 1 for
p = 2m + 1).

Then, we define L〈n,q, p〉 to be the set of non-empty subsets J of L〈p〉 of the following forms:

[u1, u2, . . . , uc, y1, y2, . . . , ys],
[u1, u2, . . . , uc],
[y1, y2, . . . , ys] (5.4.2)

where c � n and, for q = 2n and 2n + 1,

un+1 � y1 < y2 < · · · < ys;
vn+1 � y1 < y2 < · · · < ys,

respectively. In particular, if uc ∈ J for c � n, then {uh: 1 � h � c} ⊂ J .
Now, let L〈n,q, p〉k be the subset of L〈n,q, p〉 consisting of J with | J | � k. Then, as is the case for

the symplectic groups (Section 4.4), we can identify L〈n,q, p〉k with the distributive lattice Ln
p−q+n,k ,

and therefore with Lq
p,k by Corollary 2.3.2.

Definition 5.4.1. The distributive lattice for (SOp, SOq) is L〈n,q, p〉k , and it will be denoted by LSO .

LSO = L〈n,q, p〉k

∼= Lq
p,k.
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Then we define the Hibi algebra for (SOp, SOq), denoted by HSO , to be the Hibi algebra over the
distributive lattice LSO . From the isomorphism of distributive lattices, we have HSO ∼= Hq

p,k . Then
from Proposition 2.10.3 for (GLp,GLq), we have

Corollary 5.4.2. There is an algebra isomorphism

HSO ∼=C
[
Pq

p,k

]
.

5.5. As in the previous cases (Section 2.10), we shall identify the monomials in the Hibi algebra
HSO with tableaux whose columns are elements of LSO .

Definition 5.5.1. A standard tableau t for (SOp, SOq) is a multiple chain I1 � · · · � Is in LSO . The shape
shn(t) of t is F/D where F = (|I1|, . . . , |Is|)t and D = (d1, . . . ,dn) with dr being the number of ur ’s in
t for 1 � r � n.

We write TSO(F , D) for the set of all standard tableaux for (SOp, SOq) whose shapes are F/D , and
set

TSO =
⋃

(F ,D)∈Λk,k

TSO(F , D).

Then, as in the case of the symplectic groups, TSO gives rise to a C-basis for the Hibi algebra for
(SOp, SOq).

Proposition 5.5.2.

(1) The Hibi algebra HSO for (SOp, SOq) is graded by Λk,k and TSO(F , D) forms a C-basis of the graded
component HSO(F , D).

(2) For (F , D) ∈ Γk,k, the number of standard tableaux for (SOp, SOq) of shape F/D is equal to the branching
multiplicity m(σ D

q , σ F
p ) of σ D

q in σ F
p .

Proof. From the isomorphism LSO ∼= Lq
p,k , it is straightforward to see that there is a bijection be-

tween TSO(F , D) and T q
p (F , D). Then (1) follows from Lemma 2.10.2 and (2) follows from Proposi-

tion 5.3.2. �
5.6. We can also find a correspondence between LSO and the set of order increasing subsets of the

GT poset Γ
q
p,k in the same way explained in Section 4.6. Namely, define the order increasing subset

AI of Γ
q
p,k corresponding to I ∈LSO as

AI =
⋃

q� j�p

{
x( j)

1 , x( j)
2 , . . . , x( j)

s j

}
(5.6.1)

where, for n + 1 � h � m, s2h−1 and s2h are the numbers of elements in I less than or equal to uh
and vh respectively; and s2n is the number of elements in I less than vn and s2m+1 is the number
of elements in I . Then every element of TSO can be related to a sum of characteristic functions of
these order increasing subsets as given in Proposition 2.8.1 and (2.8.1). This gives a direct proof for
Corollary 5.4.2.

5.7. To construct the stable range branching algebra for (SOp, SOq), we review the polynomial
model of SOp-representation spaces studied in [19].

From (3.4.1), C[Mp,m]Um consists of GLp-irreducible representations ρ F
p with �(F ) � m. By taking

O p as a subgroup of GLp , we let O p × GLm act on the space Mp,m ∼= Cp ⊗ Cm via the action of
GLp × GLm given in (3.3.1). Then we take the quotient of C[Mp,m]Um by the ideal IO = ∑

F I F where
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I F is the O p-invariant complement space to the O p-irreducible representation σ F
p in ρ F

p , i.e., ρ F
p =

σ F
p ⊕ I F for each F (cf. [5, §19.5]).

Then [19] shows that this quotient algebra can be taken as a polynomial model for the flag algebra
for SOp in that it contains exactly one copy of each irreducible representation σ F

p with �(F ) � m:

FSO = C[Mp,m]Um/IO

=
∑

�(F )�m

σ F
p

and it is graded by Young diagrams, i.e., σ
F1
p · σ F2

p ⊂ σ
F1+F2
p . We note that σ F

2m with �(F ) = m are
irreducible O 2m representations, but they are not irreducible as SO2m representations.

To take the stable range �(F ) � k, we consider its subalgebra consisting of σ F
p with �(F ) � k:

F (k)
SO =

∑
�(F )�k

σ F
p . (5.7.1)

5.8. To describe generators of FSO , to each I = [w1, . . . , wr] ∈L〈p〉, we attach a determinant func-
tion δI ′ as follows.

For Q ∈ Mp,m , we let δI ′ (Q ) denote the determinant of the submatrix of Q = (ta,b) obtained by
taking the i′1, i′2, . . . , i′r -th rows and the 1,2, . . . , r-th columns:

δI ′(Q ) = det

⎡
⎢⎢⎢⎢⎣

ti′11 ti′12 · · · ti′1r

ti′21 ti′22 · · · ti′2r

...
...

. . .
...

ti′r 1 ti′r 2 · · · ti′rr

⎤
⎥⎥⎥⎥⎦ (5.8.1)

where is {i′1, i′2, . . . , i′r} is the image of the set {w1, w2, . . . , wr} ⊂ 〈p〉 under ψp :

ψ2m : {u1, v1, . . . , um, vm} → {1,2, . . . ,2m},
ψ2m(uc) = c and ψ2m(vc) = 2m + 1 − c,

ψ2m+1 : {u1, v1, . . . , um, vm,∞} → {1,2, . . . ,2m,2m + 1},
ψ2m+1(uc) = c and ψ2m+1(vc) = 2m + 2 − c (5.8.2)

for p = 2m and 2m + 1 respectively, for 1 � c � m and ψ2m+1(∞) = m + 1.
Then, with the bijection ψp , we can impose a new order � on {1,2, . . . , p} induced by the order

on 〈p〉 in (5.4.1):

1 � 2m � 2 � 2m − 1 � · · ·�m �m + 1;
1 � 2m + 1 � 2 � 2m � · · ·�m �m + 2 �m + 1

and we keep using the convention of I ′ , δI ′ and t′ used for the symplectic groups (Notation 4.8.1).
This conversion procedure is to make our labeling (uc, vc) of isotropic pairs (Section 5.2) compatible
with those used in [24,19].

To I = [w1, . . . , ws] ∈ L〈p〉, we attach a determinant function δI ′ as we define in (5.8.1). For a
multiple chain t = (I1 � · · · � Ir) of L〈p〉, let t(a,b) denote the a-th smallest element in the b-th
column Ib of the tableau t. Also, let α2c and β2c be the numbers of elements less than or equal to vc
in I1 and I2 respectively.

Definition 5.8.1. (Cf. [24,28].) Then the corresponding monomial

t′ = δI ′1δI ′2 · · · δI ′r ∈C[Mp,m]Um

is called an O -standard monomial, if, in the chain t = (I1 � · · · � Ir),
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(1) α2c + β2c � 2c for 1 � c � m, and
(2) if α2c + β2c = 2c for some c with t(α2c,1) = uc and t(β2c,b) = vc for some b, then t(β2c − 1,

b) = uc .

In [24] and [28], the above conditions (1) and (2) are used to define Young tableaux describing
weight basis elements of irreducible O p representations.

5.9. To a product of δI ′ ’s in C[Mp,m]Um , we apply the straightening relations in Proposition 3.5.2 to
obtain a linear combination of standard monomials for GLp :∏

i

δI ′i =
∑

r

cr

∏
j�1

δK ′
r, j

.

If there is a non-zero term
∏

j δK ′
r, j

which is not an O -standard monomial, then apply relations from

the ideal IO . This replaces the entries of Kr, j ’s corresponding to isotropic pairs (ua, va) with the sum
of pairs (ub, vb)’s (and (∞,∞) for p = 2m + 1) for a � b, thereby expressing

∏
j δK ′

r, j
as a linear com-

bination of O -standard monomials. For further details, we refer to [19]. A combinatorial description
of this straightening procedure in the language of tableaux is given in [24].

The following is shown in [19]. See also [24] and [28].

Proposition 5.9.1. (See [19, Theorem 3.6, Proposition 3.9].) O -standard monomials project to a C-basis of
the flag algebra FSO for SOp. In particular, for a Young diagram F with �(F ) � m, O -standard monomials of
shape F form a weight basis for the O p-irreducible representation σ F

p ⊂FSO.

5.10. Our next task is to find an explicit model for the USOq -invariant subalgebra of F (k)
SO , which

we will denote by BSO . Then, from (1.3.1) and (5.7.1), we have

BSO =
∑

�(F )�k

(
τ F

p

)USOq

=
∑

�(F )�k

∑
D

m
(
τ D

q , τ F
p

)(
τ D

q

)USOq .

Theorem 5.10.1. The algebra BSO is generated by

G = {δI ′ + ISO: I ∈ LSO},
and it is graded by Λn,n. For each (F , D) ∈ Λk,k the O -standard monomials t′ corresponding to standard
tableaux t for (SOp, SOq) whose shapes are F/D form a C-basis of the (F , D)-graded component. The dimen-
sion of the (F , D)-graded component is equal to the branching multiplicity of τ D

q in τ F
p .

Proof. Let R be the subalgebra of F (k)
SO generated by G . We will show that R = BSO . For I ∈ LSO ⊂

L〈p〉, we defined the polynomial δI ′ on the space Mp,m in (5.8.1). By (5.4.2) and (5.8.2), it is the
determinant of a submatrix of Q ∈ M2m,m obtained by taking consecutive columns {1,2, . . . , |I|}, and
either consecutive rows {1,2, . . . , r} or partially consecutive rows {1,2, . . . , r} ∪ {b1, . . . ,bs} or only
{b1, . . . ,bs} of Q for r � n and bi ∈ {n + 1,n + 2, . . . , p − n}.

Since the left action of Uq ⊂ GLp , under the embedding given in Section 5.2, operates the rows of
Mp,m , all the determinants δI ′ for I ∈ LSO are invariant under the action of Uq , and therefor invariant
under the action of USOq . Since the ideal IO is stable under the action of O p , the generators of the
algebra R are invariant under the unipotent subgroup USOq of SOq , and so are their products. Also,
since every I ∈LSO satisfies |I| � k, we have R⊆ BSO .

On the other hand, for every chain I � J in LSO , δI ′δ J ′ satisfies the conditions (1) and (2) in Def-
inition 5.8.1. This can be easily seen from the statement (3) of Corollary 3.5.4 and the fact that I
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and J from LSO do not contain vh for 1 � h � n. This implies that standard monomials t′ corre-
sponding to standard tableaux t for (SOp, SOq) project to linearly independent elements in the algebra
BSO ⊆ FSO . They span the whole algebra BSO , because for each (F , D) ∈ Λk,k the number of standard
tableaux in TSO(F , D) is equal to the multiplicity of τ D

q in τ F
p by Proposition 5.3.2. Furthermore, they

are scaled by weight D under the action of the diagonal subgroup {diag(a1, . . . ,an,a−1
n , . . . ,a−1

1 )} or
{diag(a1, . . . ,an,1,a−1

n , . . . ,a−1
1 )} of SOq . This shows that standard monomials t′ with t ∈ TSO(F , D)

are the highest weight vectors of the copies of τ D
q in τ F

p . �
In this sense, we call BSO the stable range branching algebra for (SOp, SOq). Recall that we obtained

BSO by lifting the elements of the Hibi algebra HSO over the distributive lattice LSO which is iso-
morphic to the distributive lattice Lq

p,k . Now we compare it with the algebra Bq
p,k (Definition 3.6.1)

obtained from the Hibi algebra Hq
p,k for the general linear groups.

Proposition 5.10.2. The stable range branching algebra BSO for (SOp, SOq) is isomorphic to the length k
branching algebra Bq

p,k for (GLp,GLq).

Proof. From the isomorphism LSO ∼=Lq
p,k of distributive lattices, with I �→ Î , we can consider a bijec-

tion between the generating set of BSO and the generating set of Bq
p,k:

{δI ′ + IO : I ∈ LSO} ←→ {
δ Î : Î ∈ Lq

p,k

}
.

Then, to see that this bijection gives rise to an algebra isomorphism, let us show that the straightening
relations among δ Î ’s in Bq

p,k agree with those of (δI ′ + IO )’s in BSO ⊂FSO .
As explained in Section 5.9, to express a product of δI ′ ’s as a linear combination of O -standard

monomials projecting to the quotient FSO = C[Mp,m]Um /IO , we first apply the straightening relations
in C[Mp,m]Um (Proposition 3.5.2) and then relations from the ideal IO .

A product of representatives
∏

i δI ′i , as an element in C[Mp,m]Um , can be expressed as a linear
combination of GLp-standard monomials:∏

i

δI ′i =
∑

r

cr

∏
j�1

δK ′
r, j

(5.10.1)

in C[Mp,m]Um .
Now we claim that for each non-zero term

∏
j δK ′

r, j
, the indices Kr, j ’s form a multiple chain in

LSO , therefore (5.10.1) gives O -standard monomial expression of
∏

i δI ′i projecting to BSO ⊂ FSO . This
follows directly from the quadratic relation (3.5.2). For every chain I � J in LSO , δI ′δ J ′ satisfies the
conditions (1) and (2) in Definition 5.8.1, which can be easily seen from the statement (3) of Corol-
lary 3.5.4 and the fact that I and J from LSO do not contain vh for 1 � h � n.

Moreover, from Theorem 5.10.1 and Proposition 5.3.2, the (F , D)-graded components of both alge-
bras are of the same dimension with bases labeled by the same patterns for all (F , D). This shows
that two graded algebras are isomorphic to each other. �

With this characterization BSO ∼= Bq
p,k , from Theorem 3.8.1, we have

Corollary 5.10.3. The stable range branching algebra BSO for (SOp, SOq) is a flat deformation of the Hibi
algebra HSO for (SOp, SOq), which is isomorphic to Hq

p,k.
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