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1. Introduction

11. Let us consider a pair of complex algebraic groups G and H with embedding H C G and
their completely reducible representations V¢ and Vy. If Vg is irreducible, then a description of
the multiplicity of Vg in V¢, regarded as a representation of H by restriction, is called a branching
rule for (G, H). By Schur’s lemma, the branching multiplicity is equal to the dimension of the space
Hompy (Vy, Vi), which we will call the multiplicity space.

12. In this paper, we shall consider branching rules of the polynomial representations for the
following pairs (G, H) of complex classical groups: (GLm, GLp), (SP2m>SP2r), (SOp, SOq). Our goal is to
study branching rules for (G, H) collectively in the context of toric degenerations of spherical varieties
and to obtain an explicit description of the multiplicity space HomH(VZ , Vé) when the length £(1)
of highest weight A for G satisfies the following stable range condition:

(1) £(x) <m for (GLp, GLy);
(2) £(0) < n for (Spym, Span)s (SO2m, SO2n+1), (SO2m+1,S02n+1);
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(3) £() <n for (SOzm, SO2n), (SO2m+1, SO2n).

We shall construct an algebra whose graded components are spanned by the highest weight vec-
tors of irreducible representations of H appearing in each irreducible representation of G.

13. To give a slightly more detailed overview, let us consider the ring F¢ of regular functions
over G/U; where Ug is a maximal unipotent subgroup of G. This ring is called the flag algebra
for G, because it can be realized as the multi-homogeneous coordinate ring of the flag variety. As
a G-module, the flag algebra F¢ contains exactly one copy of every irreducible representation of G
[25,26], and in this context the author studied polynomial models for F¢ and their flat degenerations
[18,19].

By highest weight theory, the Uy-invariant subspace of Vé consists of the highest weight vectors
of irreducible representations of H appearing in Vé. Therefore, the Up-invariant subalgebra of F¢
leads us to study the branching rules for (G, H) collectively:

P =3 (Ve

1€G

_ZZ (Vi Ve (v (13.1)

1eG ,ueH

where m(V};, V%) is the multiplicity of V}; in V.
Moreover, we can impose a graded structure on ]-"g H so that its graded components correspond to
the multiplicity spaces:

Un o
m(Viy, Ve)(Vig) " = Homy (V. Ve)

for (A, ) € G x H. In this sense, we may call fg” the branching algebra for (G, H). This algebra was
introduced by Zelobenko. See [33] and [34].

14. In this paper, we describe isomorphisms between stable range branching algebras for the pairs
of the symplectic or orthogonal groups and suitable stable range branching algebras for the pairs of
the general linear groups. Starting from combinatorial data of stable range branching multiplicities, we
shall construct an affine semigroup and its semigroup algebra graded by the pairs of highest weights
for the classical groups G and H listed in Section 1.2. This algebra can be realized as a Hibi algebra
over a distributive lattice. Then, by using toric deformation techniques, we lift the Hibi algebra to
construct a polynomial model of the branching algebra for (G, H). We study its finite presentation
and standard monomial type basis. It turns out that there is a particular type of distributive lattices
whose Hibi algebras can uniformly describe stable range branching algebras for all the pairs (G, H)
we consider. These algebraic statements will enrich well-known combinatorial coincidences between
the branching pairs listed in Section 1.2.

Recently, Howe and his collaborators studied branching algebras for classical symmetric pairs,
especially their toric degenerations and expressions of branching multiplicities in terms of Littlewood-
Richardson coefficients [16,17]. In the cases this paper concerns, using known combinatorics of
branching rules, we can explicitly describe the multiplicity spaces and their degenerations. More
specifically, we show that the stable range branching algebras are deformations of semigroup algebras
of generalized semistandard tableaux or equivalently Gelfand-Tsetlin patterns, and therefore provide
a precise connection between the multiplicity space and the combinatorial objects which count its
dimension.

We remark that this Hibi algebra structure in branching problems has interesting counterparts in
tensor product decomposition problems, which can be explained by reciprocity properties between
branchings and tensor products in representation theory. For this direction, we refer readers to [15,
14,20].
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1.5. This paper is arranged as follows: In Section 2, we develop the combinatorial tools we will use.
In Section 3, we study the branching algebra for (GL;;, GL,) and its toric degeneration. In Section 4
and Section 5, we study the distributive lattices and affine semigroups associated with the branching
rules for (Spyy,, Spay) and (SOp, SOy), and construct the corresponding stable range branching algebras.

2. Combinatorics of branchings

This section is to prepare us the combinatorial ingredients we will use to construct stable range
branching algebras.

2.1. The Gelfand-Tsetlin (GT) poset for GL;, is the poset
Ln={x":1<i<m, 1<j<i}

satisfying xE.iH) > x?) > xﬁ?) for all i and j. The elements of I3; can be listed in a reversed triangular

)

array so that x;i are weakly decreasing from left to right along diagonals, as GT patterns are originally

drawn [6]. Counting from bottom to top, we will call x = (xgr), xg), ... x"y the r-th row of I}.
Definition 2.1.1.
(1) For m > n, the GT poset for (GLy, GLy) is the following subposet of I;;:
= {x?) € Mp:n<i<m}.
(2) In I, for m > k we define the GT poset of length k as
re={ 0 elp: j<k}.

mhk — %)

For example, F634 can be drawn as

(6) (6) (6) (6)
X3 X, X3 Xy
x§5) x;S) ng) Xf) o)
(4) (4) (4) (4) o
X Xy X3 Xy
x§3) x§3) xg3)
2.2. Next, let us consider the set Ly, of all non-empty subsets of {1, 2, ..., m}. We shall write
I =[i1,...,iq]
for the subset consisting of elements iy, ..., iz ordered so that 1 <iy <--- <ig <m. The length |I| =a

of I is the number of elements in I.

The following partial order =, called the tableau order, can be imposed on L,: for two elements [
and J of Ly, we say I < J, if |I| > |J| and the c-th smallest element in I is less than or equal to the
c-th smallest element in J for 1 <c < |J|. Then, £, with < forms a lattice whose meet A and join

v are, for I =[iy,...,iq] and | =[j1,..., jp] with a <b,
I A J =[min(i, j1), ..., minq, jao), ig41. .- ., ip]
I'v ] =[max(i, j1). ..., max(ia, ja)]-

Moreover, L, is a distributive lattice, i.e., for all x, y, z € L, the following identity holds: xA (yVvz) =
(xAY)V (xAz). It is straightforward to check that the following subposets are also distributive lattices.
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Definition 2.2.1.

(1) For m > n, the distributive lattice £}, for (GLn,GL,) is the subposet of L consisting of the
following elements:

[1,2,...,r—1,r,aq,az,...,4as],
[1,2,...,r—1,1],
lai,az, ..., a]

wherer<nandn+1<a <---<as<m.
(2) For k <m, we let L‘” , denote the subposet of L], consisting of elements of length not greater
than k:

m k— {I € £n |I| }

2.3. Recall that a subset S of a poset (P, <) is called order increasing, if the following condition
holds: for x,y € P, if x€ S and x < y, then y € S. The poset structure of £" mk €an be read from the
GT poset I, of length k. For this, let us impose a partial order on the set of order i increasing subsets
of I'" mk as follows For two order increasing subsets A and B of I mk, we say A is bigger than B,
if A C B as sets. Note that here we use the reverse inclusion order on sets, because we use order
increasing sets instead of order decreasing sets.

Proposition 2.3.1. There is an order isomorphism between L m.k and the set of order increasing subsets of I'" Mk

This is an easy computation similar to [18, Theorem 3.8]. For each I € £L" ., we define the corre-

sponding order increasing subset A of I}, as

m,k’

A= (0 x) (231)
n<i<m

where s; is the number of entries in I less than or equal to i. For example, the subset of Fé 4 given
in (2.1.1) corresponding to I =[1,4,6] € [Zé 418

Xg(i) X§6) X:()’G)
ng) X;S)

X§4) Xé4)
Ng

Then, it is straightforward to check that this correspondence gives an order isomorphism. In fact, this
proposition gives an example of Birkhoff’s representation theorem or the fundamental theorem for
finite distributive lattices [29, Theorem 3.4.1]. See [18, §3. 3] for further details.

For k <n and d > 0, we can identify I7", with anj;dk by shifting the i-th row x® up to the

(i + d)-th row x(+ for n <i<m, and then the above proposition gives

Corollary 2.3.2. For k < n and d > 0, there is an order isomorphism between distributive lattices

~ pn+d
k £

m m+d,k*
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2.4. A shape or Young diagram is a left-justified array of boxes with weakly decreasing row lengths.
We identify a shape with its sequence of row lengths D = (r1, 12, ...). The following example shows
the shape D = (4,2,1):

If | is maximal with r; # 0, then we call [ the length of D and write ¢(D) = 1. If we flip a shape D over
its main diagonal that slants down from upper left to lower right, then we obtain its conjugate Dt.
With the previous example, we have £(D) =3 and D' = (4,2,1)! =(3,2,1,1). For F = (f1, f2,...)
and D = (dy,dy,...), if f > d, for all r, then we write F 2 D and let F/D denote the skew shape
having F as its outer shape and D as its inner shape.

2.5. Consider a multiset {I1, ..., Is} C L with |Ic| =1 for each c. A concatenation t of its elements
is called a tableau, if they are arranged so that I. > I.4q for all c. The shape sh(t) of t is the Young
diagram (l1, ...,I5)! and the length £(t) of t is the length of its shape. If {I1, ..., I} is taken from the
subposet £}, then we shall specify the outer and inner shapes of t.

Definition 2.5.1. A standard tableau t for (GLy, GL,) is a multiple chain

t=(hi -+ <1y)

in L. The shape sh,(t) of t is F/D where

F=(hl,....IIs)" and D=(d,...,dn)

and d, is the number of r’sin t for 1 <r <n.

For example, the multiple chain [1,2,3,6] < [1,2,5,6]<[1,2,6] <[1,4] < [5] < [5] in £2‘4 forms
a standard tableau for (GLg, GL3) of shape (6,4, 3,2)/(4,3,1):

1[1]1]1]5]5]

2[2[2]4

3[5/6

616 (2.5.1)

Recall that a tableau is called semistandard, if its entries weakly increase along each row and strictly
increase along each column (e.g., [30, p. 309]). Then, after erasing r < 3, we can identified the standard
tableau (2.5.1) with the following skew semistandard tableau

5]5]

2.6. The following set of pairs of Young diagrams will be used frequently: for a > b,

Aqp={(F,D): £(F)<a, £(D)<b, F2D}.

We note that if (F, D) € Aqp, then €(D) < min(¢(F), b). This is because F © D implies £(F) > €(D).
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2.7. Let TJ(F, D) denote the set of all standard tableaux for (GLy,, GL,) whose shapes are F/D. For
each k with n <k <m, we consider the following disjoint union over Ay,

= U TED.

(F.D)eAyn

As illustrated by the example in Section 2.5, if we identify the elements of £}, with single-column
tableaux, then our definition of standard tableaux for (GLp, GL;) of shape F/D agrees with the usual
definition of skew semistandard Young tableaux of shape F/D with entries from {n+1,...,m}.

By setting tableaux in the context of a finite distributive lattice (Definition 2.5.1), we can exploit an
additional structure: Proposition 2.3.1 leads us to study E”m,k in terms of the order increasing subsets
of Fn’;,k, and the order increasing subsets of Fn’;,k give rise to the order preserving maps from Frg’k to
{0, 1}. More generally,

Definition 2.7.1. A GT pattern for (GLy, GL,) is an order preserving map from the GT poset I for
(GLp, GLy) to the set of non-negative integers:

p:F#-)Z}Q.

The r-th row of p is (p(xgr)),...,p(xﬁr))) for n <r <m. The type of p is F/D where F and D are its
m-th row and the n-th row respectively.

Note that if £(F) <k, then the support of every GT pattern p of type F/D lies in the GT poset I
of length k. Therefore, we have GT patterns defined on Fn'}.k
p: "

mk ™ ZBO'

Let P} (F, D) denote the set of all GT patterns for (GLn, GL,) whose type is F/D. Then for each k
with n <k <m, we consider the following disjoint union over Ay ,:

ne= | Pn.D). (2.7.1)
(F,D)eAgn

2.8. Since the sum of two order preserving maps is an order preserving map, qu « Is a semigroup

with function addition as its multiplication, or more precisely a monoid with the zero function as its

identity. We further note that 77 , is generated by the order preserving maps from Fn';_k to {0, 1}.

Then, by identifying each GT pattern p with (p(x;i))) e ZN where N is the number of elements in

I, we see that P} can be understood as an affine semigroup, i.e., a finitely generated semigroup

which is isomorphic to a subsemigroup of ZN containing 0 for some N [3].
This semigroup structure on GT patterns provides a simple bijection between 7, and P} .

Proposition 2.8.1. For each (F, D) € Ap n, there is a bijection between 7, (F, D) and P} (F, D).

Proof. The bijection in Proposition 2.3.1 provides the bijection between L}, and the set of character-
istic functions of order increasing subsets of I;1. This bijection can be extended to multiple chains in
L1 as follows. Let t=(I1 < --- < I¢) be a multiple chain in £}, and p;, be the characteristic function
of the order increasing set A;, corresponding to I, given in (2.3.1) for each r. Then we can consider
the following correspondence:

o
t=(i < <) pi=) pi, (281)
r=1

Since the order preserving characteristic functions on I, generate P/, this correspondence gives a
bijection between 7,(F, D) and P}}(F, D). For further details, see [18, §3.2]. O
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2.9. We remark that by identifying GT patterns p with their images (p(x?))), our definition is
equivalent to the usual definition of GT patterns. The correspondence given in the above proposition
is the same as the well-known conversion procedure between the set of semistandard tableaux and
the set of GT patterns (e.g., [9, §8.1.2]), which is usually explained by successive applications of the
Pieri’s rules. )

For example, a pattern p € 73334 can be visualized by listing its value at x;’) € 1’54

(2.9.1)

corresponding to the elements [1,2,3,6] <[1,2,5] <[4,5,6] of 62’4. This multiple chain can be
identified with the following standard tableau in 7’6%4

1]1]4
2]2]5
3[5]6
6] (2.9.2)

of shape (3,3,3,1)/(2,2,1). Note that to (2.9.2), we can apply the usual conversion procedure (e.g.,
[9, §8.1.2]) to obtain its corresponding pattern—by successively striking out the boxes with 6, 5, and
4 in the tableau (2.9.2), we obtain each row of the pattern (2.9.1).

2.10. Now we study an algebra constructed from the distributive lattice L’m,

.- In fact, from any
distributive lattice one can associate an algebra.

Definition 2.10.1. (See [10].) Let L be a finite distributive lattice. The Hibi algebra 7 (L) over L is the
quotient ring of the polynomial ring C[z,: y € L] by the ideal generated by zyzg — zZyrgZavp for all
incomparable pairs («, B8) of L:

H(L) =Clzy: y € L1/(zazp — ZanpZavp)-

Let us consider the Hibi algebra over L}

mk

=H(Lm)-
We shall identify the monomials [], z;, in ’r’-[” . With the tableaux consisting of elements I, € E
For example, the above tableau (2.9.2) will be used to denote the monomial

Z[1236]2[125]2[456] € H2,4.

Recall that standard tableaux are multiple chains in ﬁka (Definition 2.5.1). Then the following prop-
erty is a consequence of the general theory of Hibi algebras [10,13].
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Lemma 2.10.2.

(1) The set 7'11 of all standard tableaux for (GLy,, GL,) whose shapes are F /D with £(F) < k form a C-basis
for the H1b1 algebra Hy,

(2) In particular, H" mk is graded by Ay n, and the set 7, (F, D) of standard tableaux for (GLm, GLy) of shape
F/D forma C- baszsfor the (F, D)-graded component of?-[fn’

It is shown in [18, Corollary 3.14] that the Hibi algebra over L, is isomorphic to the semigroup
algebra of GT patterns defined on I3,. This fact combined with the above lemma leads us to study
the Hibi algebra Hm i over L”m « in terms of the semigroup algebra C[P], x of the affine semigroup
Pp.i given in (2.7.1).

Note that for p; and py € P" ok of types F1/D1 and F,/D, respectively, the type of (p; + p2) is
(F1 + F)/(D1 + D3), and therefore crpy, & is graded by pairs of shapes

ClPnd= @D C[Puleo

(F,D)eAgn

where C[P}}](r.p) is the space spanned by P}, (F, D).

Proposition 2.10.3.

(1) The semigroup algebra C[P}, |1 of the GT patterns for (GLm, GLy) is isomorphic to the Hibi algebra Hm K
over £”m!

(2) Theset P} (F, D) of GT patterns for (GLy, GLy) of type F /D is a C-basis for the (F, D)-graded component
CIPR)k.p)-

Proof. Note that the algebra C[P}, ] is generated by the set of characteristic functions of order in-
creasing subsets of I'" i and that, for order increasing subsets A and B of I, their characteristic
functions satisfy x4 + XB = XAnB + Xaup. With this observation, one can show that the isomorphism
in Proposition 2.3.1 can be extended to an algebra isomorphism between C[P}, k] and H . For fur-
ther details, see [13, Theorem 4.3] and [18, §3.2]. The second statement follows from Proposmon 2.81
and the above lemma. O

3. Branching algebras for (GL;;, GL;)

In this section, our goal is to construct an algebra encoding branching rules for (GLy, GL,) and
study its toric degeneration. For later use, we will construct a family of algebras parametrized by the
length of highest weights for GL,.

3.1. Recall that the set of Young diagrams F with ¢(F) < m can be used as a labeling system of
irreducible polynomial representations of GLy by identifying dominant weights (f1 >--- > fn) € ZZ,

of GL; with Young diagrams (cf. [9, §3.1.4]). We let p,fl denote the irreducible polynomial representa-
tion of GL;; labeled by Young diagram F.

Then the branching algebra for (GLp, GL,) will be graded by the set Ap, defined in Section 2.6
and its graded components will correspond to the multiplicity spaces Homgy, (p,?, p,ﬁ) for (F, D).

3.2. For Young diagrams F = (f1, f2,...) and D = (dy, d>, ...), we write

F3ID

if fr>d; > fr41 for all r, and say D interlaces F.
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Proposition 3.2.1. (See [9, §8.1.1].)

(1) For Young diagrams F and D with £(F) < m and ¢(D) < m — 1, the multiplicity of ,0,271 in pnﬁ is 11if
F 3 D, and 0 otherwise.
(2) The number of GT patterns in P (F, D) is equal to the multiplicity m(p?, pF) of pP in pk.

From Proposition 3.2.1 and Proposition 2.8.1, we have

Corollary 3.2.2. For (F, D) € Am.n, the branching multiplicity m(o?, pF) is equal to the number of standard
tableaux for (GLp,, GL;) whose shapes are F/D.

3.3. To construct a family of branching algebras for (GL;, GL,) parameterized by the length k, let
us review a polynomial model for the flag algebra. We assume m > k and let GL, x GL, act on the
space My s =C" ® Ck of m x k complex matrices by

(21,22 Q=(g) Qg (33.1)

for g1 € GLm, 82 € GLi, and Q € My, k. Then under the GL; x GLj action, the coordinate ring C[Mp, k]
of My, x has the following decomposition:

ClMmil= Y poh®pf
0(F)<k

where the summation is over F with length not more than k. This result is known as GL; — GLj
duality (e.g., [9,12]). If Uy is the subgroup of GL, consisting of upper triangular matrices with 1's on
the diagonal, then by taking Uy =1 x Uy invariants, we have

CMni” = 3 o @ (pf)™".
e(Fy<k

3.4. This representation decomposition turns out to be compatible with the multiplicative structure
of the algebra. Since the diagonal subgroup Aj of GL, normalizes Uy, C[Mm,k]uk is stable under the
action of Ag. Note that by highest weight theory (e.g., [9, §3.2.1 and §12.1.3]), (p,f)”k is the one-

dimensional space spanned by a highest weight vector of ka, and Ay acts on (,okF)Uk by the character

¢r (diag(ar, ..., ay)) =a{‘ "'al{k

given by Young diagram F = (f1, f2, ..., fi). Thus, pf ~ pF @ (p[)Ux is the space of Ay-eigenvectors
of weight ¢f in C[My, ]V and the C-algebra C[My, ;]9 is graded by the semigroup A,f of dominant
polynomial weights for GL, or equivalently the subsemigroup ;\,:“ C fﬁ of dominant weights for GLy;:

CMm " = )" oy,
e(F)<k

ot o S o T2 (341)

where we identify (r1,...,1%) € Z’;O with (r1,...,1,0,...,0) eZgo.

3.5. A finite presentation of (C[Mm,k]uk in terms of generators and relations is well known—all the
Ug-invariant minors on My, form a generating set and they satisfy the Pliicker relations. To explain
more details, let us consider a subposet Ly, = llgmk of Ly consisting of elements I = [i1, iy, ..., if]
such that |I| < k (cf. Definition 2.2.1).

For each Q € M, x, we let §;(Q) denote the determinant of the submatrix of Q = (t ) obtained
by taking the iy, iy, ..., i--th rows and the 1,2, ..., r-th columns:



S. Kim / Journal of Combinatorial Theory, Series A 119 (2012) 1132-1157 1141

tiyn tiiz - tigr
tiz] ti22 e tizr

$I(Q)=det| . (3.5.1)
tir tio - lir

Definition 3.5.1. A product §;,6y, - - - §;, is called a standard monomial (or GLy, standard monomial), if its
indices form a multiple chain t=(I1 I < --- < I;) in Ly k. We write

Av=01,81,---81

Then we define the shape of a standard monomial A; to be the shape of t, i.e., (|I1], |2, ..., |I:])’.

Proposition 3.5.2. (See [8, pp. 233, 236].)

(1) Forl, J € Ly, the product §;8 € C[Mm,k]uk can be uniquely expressed as a linear combination of stan-
dard monomials

818y =Y _ cr8s, 81, (3.5.2)
r

where, for each r with ¢; #0, Sy < Ty in Ly and Sy U T, =1U ] as sets.

(2) On the right-hand side, 51 81 j appears with coefficient 1, and Sy < I A Jand IV J < Ty for all r with
cr # 0. Moreover, for each (Sy, Ty) # (I A J, IV ]), let h be the smallest integer such that the sum s of the
h-th entries of S, and T, is different from the sum sq of the h-th entries of I and J. Then s > sg.

By applying the straightening relations (3.5.2), we can find a C-basis for (C[Mm,k]uk. The following
is well known. See, for example, [3,4,8,11]. For this particular form, see [18, Theorem 4.5, Remark 4.6].

Proposition 3.5.3. Standard monomials A associated with multiple chains t in Ly form a C-basis for
C[My 1Ux. More precisely, standard monomials A, with sh(t) = F form a weight basis for the GLy, irreducible
representation pf  C[Mp, ]V with highest weight F.

We specify the following properties of the standard monomial expression of §;8; for I, ] € £"m!k of
length not more than k, which can be easily derived from the above proposition.

Corollary 3.5.4. Let I and | be incomparable elementsin L7  with |I| > | J|. Consider the standard monomial
expression of the product 6;8 given in (3.5.2). Let us denote the standard tableau S < T by t;. Then, for each

r with non-zero c;,

(1) the shape shy () is F/D where F = (|I|, | J|)t and D = (d1, da, ...) where d, is the number of h’s in the
disjoint union 1U | for 1 <h <n;

(2) all the entries in the h-th row of t are bigger than or equal to h for 1 <h < min(n, |I|);

(3) if we denote the numbers of entries less than or equal to h in S, and T, by ay, and By, respectively, then
op + B < 2h for 1 <h < min(n, |1]).

Example 3.5.5. For [ =1, 2,5,6] and | =[1, 3, 4] from 5%,4' we have

8[125610[134] = 8[1246]0[135] — 8[1236]0[145] + S[1235]9[146] — 8[1245]0[136] — O[1234]5[156]-

Note that sh,(t;) = (2,2,2,1)/(2, 1) for all the terms t. on the right-hand side.
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3.6. Let m > n. To consider the branching rules for (GLy, GL,), we use the following embedding of
GL, in GLy: for X € GLy,

X 0
[0 I]EGLm

where [ is the (m —n) x (m —n) identity matrix and 0’s are the zero matrices of proper sizes.
From (3.4.1), by taking Up-invariants, we have

C[Mm,k]UHXUk= Z (pn[-:l)Un

((F)<k

3 S m(eP. k) (oP) " (3.61)

(F)<k D

where m(p?L, pb) is the multiplicity of pP appearing in pf, and (oP)Ur is the one-dimensional space
spanned by a highest weight vector of p,?.

Definition 3.6.1. For m > k, the length k branching algebra for (GLy, GLy) is the (U, x Uy)-invariant
ring of C[Mp, k]

By i = ClMp ] <V,
3.7. Note that for [ € L] m.k all the minors §; are invariant under the subgroup U, x Uy of GL, x GLy
with respect to the action (3 3.1). In fact, the length k branching algebra for (GLy, GL,) is generated
by {8;: 1€ L] ).

Theorem 3.7.1. For each k with m > k, the branching algebra B"

ne= @D Bh(F.D)

(F,D)eAyn

for (GLm, GLy) is graded by Ay n

m,k

and the standard monomials A for t € T (F, D) form a C-basis of the (F, D)-graded component B}, «(F, D).

Proof. For I € L‘,”m i the determinant functions &, considered as elements of C[My,, 1Yk, satisfy the
relations (3.5.2). Also, by keeping track of the entries of I and J in this relation, we can easily see
that all S; and T, appearing on the right-hand side of (3.5.2) are elements of L& o and that all the
standard tableaux t; = (S; < T;) have the same shape as in the first statement of Corollary 3.5.4.
By applying these relations repeatedly, we can express every monomial in {8;: I € £ &) as a linear
combination of standard monomials of the same shape. In particular, the algebra B" k is graded by
the shapes shy(t) € Ax, of standard monomials for (GLn, GL,;). Now, it is enough to show that for
each shape F/D with (F, D) € Ay, the number of standard monomials A; for t € 7,7 (F, D) is equal

to the multiplicity of p? in p}, which is Corollary 3.2.2. O

Note that the standard monomials A; for t € 7.}(F, D) are invariant under the action of U, and
scaled by the character ¢p under the action of the diagonal subgroup of GL;:

diag(as, ..., an) - A= ¢p(diagas, ..., an))A
= (af' - af") Ay (3.71)

for D =(dy,...,dyn). This shows that standard monomials A; for t € 7}(F, D) are the highest weight
vectors of the copies of ,onD in ,0;. Accordingly, we have
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Proposition 3.7.2. The standard monomials Ay witht € 7.} (F, D), as C-basis elements ofBr';Lk(F, D), are the
highest weight vectors of the copies of p,? in ,o,fl. Therefore, we have

By (F, D) = Homy, (0y , pyy)-

3.8. Toric degenerations of the branching algebras B,’;,k can be induced by the same methods used

for the case of the flag algebra (C[Mmyk]uk in the literature, for example, [7,18,23,27,31]. See also [32,
Theorem 1], for the properties of the algebra of polynomials on a semisimple algebraic group and its
associated graded algebra.

Theorem 3.8.1. The length k branching algebra Bgl_k for (GLp, GLy) is a flat deformation of the Hibi algebra
Hy,  over LT .

Proof. Let us impose a filtration on B} , by giving the following weight on each monomials. Fix an

integer N greater than 2m, and then define the weight of I =[i1,...,iq] € LZ?n_k as
wt(l) = i;N™. (3.8.1)
r>1

The weight of a standard tableau t consisting of I, is defined to be the sum of individual weights,
ie, wt(t) =)  wt(lc). Then we can define a Z-filtration F*' = {F}} on B! , = C[My, ]U"*Ur with

m,
respect to the weight wt. Set Fé"t(l’j’:}1 ) to be the space spanned by

{A we) >d}.

The filtration F"* is well defined, since every product []§;. can be expressed as a linear combina-
tion of standard monomials with bigger weights by Proposition 3.5.2. For all pairs A, B € E"m,k, since
wt(A) + wt(B) = wt(A A B) + wt(A Vv B), 8485 and §4,584vB belong to the same associated graded
component. Therefore, we have s, - oS =SanB - grSave Where sc are elements corresponding to 8¢ in
the associated graded ring ngt(BZ,k) of Br”mk with respect to the filtration FW!. Then it is straight-
forward to show that the associated graded ring gr* (B{;yk) forms the Hibi algebra over ﬁ%.k' From a

general property of the Rees algebras (e.g., [1]), the Rees algebra R* of By, | with respect to Fwe:

R' = @ F;w( ka)td

d>0

is flat over C[t] with its general fiber isomorphic to B;,k and special fiber isomorphic to the associ-
ated graded ring which is H" |

m,k*

We remark that Spec(H, ,) is an affine toric variety in the sense of [31]. Then, the rational poly-
hedral cone corresponding to the affine toric variety and the integral points therein can be realized

from our description of the affine semigroup Pr”n_k given at the beginning of Section 2.8.
4. Stable range branching algebra for (Spy,,, SP2,)

In this section, starting from combinatorial descriptions of stable range branching rules, we study
the affine semigroup algebra and its associated Hibi algebra for (Spy,,,Sp,,). Then we construct an
explicit model for the stable range branching algebra. Along with these, we also show that these
algebraic objects are isomorphic to their (GLyn, GLy;) counterparts with a proper length condition.

Recall that we can label irreducible rational representation of Sp,,, after identifying dominant
weights with Young diagrams, by Young diagrams with less than or equal to m rows (cf. [9, §3.1.4]).
We let ‘L'ZI;ﬂ denote the irreducible representation of Sp,,, labeled by Young diagram F.
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4.1. Let Jm = (jq,p) be the m xm matrix with jgm4+1-q =1 for 1 <a <m and 0 otherwise. Then we
define the symplectic group Sp,,, of rank m as the subgroup of GLy; preserving the skew symmetric
bilinear form on C2™ induced by

—Jm O
Note that, for the elementary basis {e;} of the space C2™, e j and ez;41—j make an isotropic pair
for 1 < j < m with respect to this bilinear form. Also, the subgroup of upper triangular matrices with

1's on the diagonal can be taken as a maximal unipotent subgroup of Sp,,. We will denoted it by

U5p2m-
For n < m, we identify Sp,, with the subgroup of Sp,, preserving the skew symmetric bilinear
form restricted to the subspace of C2™ spanned by

{ea, e2m+1-a: 1< a < n}.

Then Sp,, can be embedded in Sp,,;, as follows.

X v X 0 Y
[ i||—>010 (411)
zZw

Z 0w

where X, Y, Z, W are n x n matrices, I is the 2(m —n) x 2(m — n) identity matrix, and O’s are the
zero matrices of proper sizes.

4.2. In order to construct an affine semigroup encoding stable range branching rules for
(SPom» Span), we review the following combinatorial description of branching multiplicities.

Lemma 4.2.1. (See [9, Theorem 8.1.5].) For Young diagrams F and D with £(F) < m and ¢(D) < m — 1, the
multiplicity of TzD(m—u in tsz as an Spy,_1) representation is equal to the number of Young diagrams E
satisfying the interlacing condition F J E J D.

For example, if F = (5,3,3,2,1) and D = (4, 3,2, 2), then the multiplicity of 7 in tf; is equal to
the number of E = (eq, ey, ...,e5) in

5 3 3 2 1
e1 () e3 €4 és
4 3 2 2

so that the entries are weakly decreasing from left to right along diagonals.

Note that this branching is not multiplicity free and rather similar to the two-step branchings for
the general linear groups. To obtain a description of the multiplicity spaces for (Spy;,,Spy,), we can
simply iterate the above lemma. Because of the length condition £(Ey) < k of Sp,, representations
‘l:zi" for n <k <m, it will be quite different from the (GLyy, GL,) case (Proposition 3.2.1). Within the
stable range ¢(F) < n, however, we have exactly the same description.

In the previous example, if we set F = (5, 3, 3,2, 0) so that £(F) =4, then the multiplicity of tsD

in T1Fo is equal to the number of E = (e, €3,...,e5) in

5 3 3 2 0
€1 e e3 €4 és
4 3 2 2

and the interlacing condition makes e; = 0. Therefore the multiplicity of TSD in ‘rfo is equal to the
multiplicity of the GLg representation pg in the GLyo representation pfo.
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Remark 4.2.2.

(1) For complete GT patterns for Sp,,, we refer to [22] and [28]. See also [18, §5] for their ring
theoretic interpretation.

(2) The branching algebra for (Spy;, Spom—>) has interesting algebraic and combinatorial properties
with an extra structure from the action of SL; x --- x SL,. For this, we refer to [21].

4.3. Recall that Pzz” (F, D) is the set of all GT patterns for (GLyp, GLyn) whose types are F/D.

m

Within the stable range ¢(F) <n, F 2 D implies £(D) < n, and therefore the support of every GT

pattern in P3" (F, D) lies in the GT poset I'2" = of length n:
X§2m) X;Zm) o K2
@m—1) @m—1) @m—1)
Xl XZ e Xn
xgzn) X;zn) o X2

Proposition 4.3.1. Let F and D be Young diagrams with F 2 D and ¢(F) < n. Then the branching multiplic-
ity m(‘l:an, 1:2’;1) is equal to the number of elements in 7322;’1(F, D), and therefore it is equal to the number of
elements in T,2"(F, D).

Proof. From Lemma 4.2.1, by using the same argument used to prove (2) of Proposition 3.2.1, the
set P3" (F, D) of GT patterns of shape F/D counts the multiplicity of 7)) in tJ . The last statement
follows from Proposition 2.8.1. O

We call the affine semigroup P2?

2m,n’
associated semigroup algebra (C[’Pzzr':1 ,] the semigroup algebra for (Spyp,Sp,,). Then it is graded by
Ap.n defined in Section 2.6

C[Pzzgl,n]: @ C[PZZII;;](F,D)'
(F.D)eAnn

defined in (2.7.1), the semigroup for (Spam,Sp,) and call its

4.4. To define tableaux and standard monomials for the symplectic groups, we shall use the fol-
lowing ordered letters:

2m)={u1 <vi<up<vy<---<Up<Vp} (4.4.1)

If we let £(2m) denote the set of all non-empty subsets ] of (2m), then on £(2m) we can impose
the tableau order <, as it is done in Section 2.2 for £, through the bijection

t(uc)y=2c—1 and (ve)=2c (4.4.2)

for 1 <c <m. Then £{2m) is a distributive lattice isomorphic to Lym.
For m > n, we consider the subposet £(n,2m) of £({2m) with all the elements J C (2m) of the
forms

[ug,uz, ..., Uuc, y1, Y2, .-, ¥sl,
[ug,uz, ..., ucl,
[Y1,¥2,..., ¥s] (4.4.3)

where ¢ <n and up41 < y1 <y2 <--- < Ys < V. In particular, if u. € J for ¢ <n, then {up: 1<
h<cic].
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Now, for k <n, let £(n,2m); be the subposet of £(n,2m) consisting of | € L(n,2m) with |J| <k.
Then, through the map (4.4.2), it is straightforward to see that £{n,2m); is isomorphic to L"

2m—n,k
given in Definition 2.2.1, and therefore isomorphic to £§21 « by Corollary 2.3.2.
Definition 4.4.1.

(1) The distributive lattice for (Spyy,, Spo,) is

Lsp = L{n,2m)y,
~ 2
= [’an,n'

(2) The Hibi algebra for (Spyp,, Spyn), denoted by Hsp, is the Hibi algebra over the distributive lattice
Lsp.

Note that from Lgy = ‘C%Z‘z,n’ the Hibi algebra Hsp for (Spyp, Span) is isomorphic to H%gtn. Then
from Proposition 2.10.3 for (GLym, GLy,) we have

Corollary 4.4.2. The Hibi algebra for (Spym,, Spyy,) is isomorphic to the semigroup algebra for (Spym., SPan):
Hsp = C[ P -
4.5. Next, we define standard tableaux for (Spy;,, SPan)-
Definition 4.5.1.

(1) A standard tableau t for (Spyy,, Spa,) is a multiple chain in Lgp:

t=(1 < <o)
(2) The shape shy(t) of a standard tableau t for (Spyy,, Spy,) is F/D where

F=(lil,....1Is))" and D=di,...,dn)

with d; being the number of up’s int for 1<h <n.

We write 7sp(F, D) for the set of all standard tableaux for (Spyp,, Spa;,) whose shapes are F/D, and
consider the disjoint union

Tp= |J To(F.D)

(F,D)eAnn

over Ap . Then as in the case of the general linear groups, 7sp gives rise to a C-basis for the Hibi
algebra for (Spyp,, Span). As in Section 2.10, we shall identify monomials in the Hibi algebra Hs, with
tableaux whose columns are elements of Lg.

Proposition 4.5.2.

(1) The Hibi algebra Hsp for (Spam, Spay) is graded by App, and for each (F, D) € Apn, Tsp(F, D) forms
a C-basis for the graded component Hsp(F, D) of Hsp.

(2) The number of standard tableaux for (Spy;,, Spa,) of shape F/D is equal to the branching multiplicity
m(tD, k) oft) intf .

Proof. From the isomorphism Lg, = L’%;‘m, we can easily see that there is a bijection between

Tsp(F, D) and 7;2”’;(F,D). Then (1) follows from Lemma 2.10.2 and (2) follows from Proposi-
tion 43.1. O
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4.6. We remark that every standard tableau for (Spy,,, Spy,) of shape F/D can be realized as a
skew semistandard tableau of shape F/D having entries from {u;+t1, Vat1,--.,Um, Vim}. For example,
for m =10 and n =6, the standard tableau of shape F = (6,5,3,0,0) and D = (4,3,1)

[u1, uz, us] < [uq, uz, v4l X [ug, uz, val < [ur, ug] < [va, us] < [us]

in Lsp = £(3,10)3 can be identified with the skew semistandard tableau

Vg u5|
Ug4|Us

V4|Vg

where the empty boxes in h-th row are considered as the ones with uy for 1 <h <n.
We also remark that, as it is shown in Proposition 2.3.1, we can attach an order increasing subset

A; of Fzzm”,n to each I € Lgp:
A= | Ay (4.6.1)
2n<j<2m
where A;j) C 2" are defined as
Qi—1) _ [.Qi-1) _Qi-1) Qi-1)
ATV =TT ke )
@) _ (2D @) i)
A = {7 x5 e X ).

Here s; and t; are the numbers of elements in I less than or equal to u; and v; respectively. Then we
can relate every element of 7sp to a sum of characteristic functions of these order increasing subsets
as given in Proposition 2.8.1 and (2.8.1). This gives a direct proof for Corollary 4.4.2.

4.7. Now we want to lift the elements of the Hibi algebra Hs, to construct the stable range
branching algebra for (Spy;,, Spyy,)- For this purpose, we briefly review the polynomial model of Sp,,-
representation spaces studied in [18].

From (3.4.1), as a GLy;; module, C[Myy m]Y™ decomposes into irreducible representations szm for
£(F) < m. By taking Sp,,,;, as a subgroup of GLyy, we let Sp,,;, x GL, act on the space My, m = C*m @
C™ as in (3.3.1).

Then we take the quotient of C[Mymm]Um by the ideal Zsp = > ZF where ZF is the Spy,-
invariant complement space to t} in pf . ie, pf =tf @®ZF for each F (cf. [5, §17.3]). Then this
quotient algebra can be taken as a polynomial model of the flag algebra for Sp,,, in that it contains
exactly one copy of every irreducible representation rZFm:

]:Sp = C[MZm,m]Um /ISp

_ F
= Z Tom-

e(F)<m

Moreover, this decomposition is compatible with the graded structure of the algebra, i.e., ranll .
ranzl C ran‘1+F 2, Therefore, for the stable range ¢(F) < n, we can consider its subalgebra consisting of
of with ¢(F) <n:

Fp' = ) Un (4.71)
(F)<n
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4.8. To describe generators of Fsp, to each I =[wy,...,w,] € £(2m) with r <m, we attach a
determinant function §p as follows. For Q € My, m, we let §;(Q) denote the determinant of the
submatrix of Q = (ts ) obtained by taking the i},i’,...,i,-th rows and the 1,2, ..., r-th columns:

T T A
T R
Sp(Q)=det| _ (4.8.1)
(78 T 575 MR 173
where {i},1),...,i;} is the image of the set {wq, wa,..., w;} C (2m) under
voi{u, vi, .., Um, vt — {1,2,...,2m}
Y(@Uu)=c and Y(vo)=2m+1-c (4.8.2)

for1<c<m.

This conversion procedure is to make the labeling (uc, v¢) of isotropic pairs compatible with ours
(c,2m+1 —c¢) for the skew symmetric form defined in Section 4.1. Note that (c,¢) and (2c — 1, 2¢)
are used for the isotropic pairs in [2] and [18].

Notation 4.8.1. To avoid a possible ambiguity, we impose a new total order < on {1,2,...,2m} in-
duced by ¢ in (4.8.2) and the order of (2m) given in (4.4.1):

1<2m<2<2m—-1<---<m<m+1.

(1) To emphasize the order <, we shall use the prime symbol as in i; for the elements i; of
{1,2,...,2m}.
(2) In the determinant (4.8.1), we may further assume that

g y
i <iy <<y

to fix the sign of the determinant.
(3) We also let I’ denote the image of I € £{2m) under . Similarly, we let t' denote the multiple
chain (I < I}, < --- < I) corresponding to the multiple chain t=(Iy g I> <--- < I¢) in £L{2m).

For the flag algebra Fsp, we are interested in 8y with I € £{2m) whose h-th smallest entry is not
less than up for all h > 0.

Definition 4.8.2. (See [2,18].) Fix the element Jo = [u1, U2, ..., uy] € £{2m) of length m. For a multi-
ple chain t=(I1 I < --- < I¢) of £{2m), its associated monomial

At/ = 81% 81/2 cee 81‘/: (S C[MZm,m]Um

is called an Sp-standard monomial, if I = Jo for all s.

4.9. To a product of 8;'s, as an element of C[Maym]U™, apply the straightening relations in Propo-
sition 3.5.2 to obtain a linear combination of standard monomials for GLyp:

[Tor=2 e ]Téq,
i roojz1
If there is a non-zero term ]_[j 51<;j which is not an Sp-standard monomial, then apply relations from

the ideal Zgp. This replaces the entries in K; j’s corresponding to isotropic pairs (ug, V) with the sum
of entries corresponding to (up, vp) for a < b, thereby expressing ]_[j BK;J_ as a linear combination

of Sp-standard monomials. For further details, we refer to [18]. A combinatorial description of this
procedure in the language of tableaux is given in [2].
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Proposition 4.9.1. (See [18, Theorem 5.20].) Sp-standard monomials project to a C-basis of the flag algebra
Fsp for Spy,. In particular, for a Young diagram F with £(F) < m, Sp-standard monomials of shape F project
to a weight basis for the Sp,,,, irreducible representation rsz C Fsp.

We also note that, from the graded structure ranl1 . 7,'21:”21 C tanlfF 2

subalgebra .FS(Z) in (4.7.1), it is enough to consider &;’s with I € £{2m) and |I| <n.

of Fgp, in order to obtain the

4.10. We want to find an explicit model for the Usp, -invariant subalgebra of ]-'S(;>, which will
denote by Bsp. Note that, from (1.3.1) and (4.7.1), we have

U
Bsp = Z (Tsz) an

L(F)<n

0]
= 2 D m(to o) (m) ™

LF)<n D
Theorem 4.10.1. The algebra Bsy, is generated by

G={8y +ZLsp: I € Lgp},

and it is graded by Ap n. For each (F, D) € Apy the Sp-standard monomials Ay corresponding to standard
tableaux t for (Spy;,, Spo,) Whose shapes are F/D form a C-basis of the (F, D)-graded component. The di-
mension of the (F, D)-graded component is equal to the branching multiplicity of rz?., in tsz.

Proof. Let R be the subalgebra of ]—'5(;) generated by G. We will show that R = Bsp. Recall that, for
I € Lsp C L{2m), we defined the polynomial §; on the space My i in (4.8.1). By (4.4.3) and (4.8.2), it
is the determinant of a submatrix of Q € Myp, i, obtained by taking consecutive columns {1, 2, ..., |I|}
and either consecutive rows {1, 2, ..., r} or partially consecutive rows {1, 2, ...,r}U{bq, ..., bs} or only
{b1,...,bs} of Q forr<nand bje{n+1,n+2,...,2m —n} for all i.

Since the left action of Uy, C GLyn under the embedding (4.1.1) operates the rows of Mym m, all
the elements 8 for I € Lgp are invariant under the action of Uy, and therefor invariant under the
action of Usp,, . Since the ideal Zsp is stable under the action of Sp,,, the generators of the algebra R
are invariant under the unipotent subgroup Usp,, of Sp,,, and so are their products. Also, since every
I € Lgp satisfies |I| <n, we have R C Bsp.

On the other hand, every element in Lsp is greater than Jo = [uy, ua, ..., un] with respect to the
tableau order, and therefore standard tableaux t for (Spy,;, Sp,) (Definition 4.5.1 and Proposition 4.9.1)
give rise to Sp-standard monomials Ay (Definition 4.8.2) for Fgp. That is, Sp-standard monomials
corresponding to standard tableaux for (Spyp,, Spa,) project to linearly independent elements in Bsy €
Fsp. They span the whole algebra Bgp, because for each (F, D) € Ay, the number of standard tableaux
in 7sp(F, D) is equal to the multiplicity of 7:2Dn in ‘L'{;n by Proposition 4.3.1. Furthermore, they are
scaled by weight D under the action of the diagonal subgroup {diag(as, .. ,,an,an‘l, e al’l)} of Span
as given in (3.7.1). This shows that standard monomials Ay with t € 7s,(F, D) are the highest weight
vectors of the copies of 72 inzf . O

In this sense, we call Bsp the stable range branching algebra for (Spyp,, Spa,). Recall that we obtained
Bsp by lifting the elements of the Hibi algebra Hg, over the distributive lattice Lsp, which is isomor-

phic to the distributive lattice [Z%”m,n. Now we compare it with the algebra B%Zm (Definition 3.6.1)

obtained from the Hibi algebra H%"m’n for the general linear groups.

Proposition 4.10.2. The stable range branching algebra Bsy for (Spyp, Spay) is isomorphic to the length n
branching algebra B2 _ for (GLym, GLa).

2m,n
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Proof. From the isomorphism Lg, = £2  of distributive lattices, with I~ I, we can consider a

2m,n
bijection between the generating set of Bs, and the generating set of Bgr'; 0

{8y +Tsp: 1 € Lspy <« {8 Teram ).

2m,n

Then, to see that this bijection gives rise to an algebra isomorphism, let us show that the straightening
relations among §;’s in B%fn’n agree with those of (8 + Zsp)’s in Bsy C Fsp.

As explained in Section 4.9, to express a product of §;’s as a linear combination of Sp-standard
monomials projecting to the quotient Fsp = C[Map, g ]Ym /ZLsp, we first apply the straightening rela-
tions in (C[Mzm_m]Um (Proposition 3.5.2) and then relations from the ideal Zsp.

For elements I; € Lsp C £(2m), the corresponding product []; 8,14, as an element in (C[Mz,n,m]”m,

can be expressed as a linear combination of GLy;;-standard monomials:

[Tor=>"cT]sk, (410.1)
i

roogz

in C[MZm‘m]Um. Now we claim that for each non-zero term ]_[]- 8,(;.1, its indices K; ;'s form a multiple
chain in Lgp, i, the monomial ]_[j 31<;'j is already Sp-standard. Therefore, the expression (4.10.1)
provides the Sp-standard monomial expression of []; 8,}4 projecting to Bsy C Fsp. This follows directly
from the quadratic relation (3.5.2), that is, for I, | € Lgp,

Sydy =Y crds;dy,.
T

On the right-hand side, for each non-zero term 35,811, the chain S; < T, satisfies the condition S; = Jg
and T; %= Jo in Definition 4.8.2. This can be easily seen from the statement (2) of Corollary 3.5.4 and
the fact that I and J from Ls, do not contain v, for 1 <h <n.

Moreover, by Theorem 4.10.1 and Proposition 4.3.1, the (F, D)-graded components of both algebras
are of the same dimension, and they have C-bases labeled by the same patterns for all (F, D) € Ap .
Therefore, two graded algebras are isomorphic to each other. O

With this characterization Bs = B2"

. from Theorem 3.8.1, we have

Corollary 4.10.3. The stable range branching algebra Bsp for (Spyy,, Spay) is a flat deformation of the Hibi
algebra Hsp for (Spom, Spoy), which is isomorphic to H3, .

5. Stable range branching algebra for (S0, SO;)

Through out this section, for m >n > 2, we set

p=2m+1 or 2m;
q=2n+1 or 2n;
k::n %fq:Zn—H,
n—1 ifqg=2n.
Following the same techniques we developed for the symplectic groups, we construct the stable range

branching algebra Bsp for (SO, SOg). The results and their proofs in this section are analogous to the
case of (Spym, SPan)-

5.1 Let us review a labeling system for the irreducible rational representations of SO, (cf. [9,
§3.1.4]). For the even orthogonal group Oy, of rank m, every Young diagram F with ¢(F) <m can
label exactly one irreducible representation osz, which can be also realized as an SOy, irreducible
representation. A diagram of length m labels an irreducible representation of O3, which decomposes
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into two irreducible representations of SO,p,. For the odd special orthogonal group SOym;4+1 of rank m,
every irreducible rational representation asz 41 can be uniquely labeled by a Young diagram F with
£(F) < m. Then these representations are also Oypy1-irreducible.

5.2. Let Jm = (jqp) be the m x m matrix such that jgmt+1—¢ =1 for 1 <a<m and 0 otherwise.
Then we define the special orthogonal groups SOy, and SOzm41 as the subgroups of SLyy, and SLypm41
preserving the symmetric bilinear forms on C?>™ and C2™+! induced by

0 0 Jm
[O Jm] and 0 1 0
Jmn O

Jn 0 O

respectively where 0’s are the zero matrices of proper sizes. Then, the pairs (ej, e,41—j) of the el-
ementary basis elements for CP make isotropic pairs with respect to the above symmetric bilinear
form. Also, the subgroup of upper triangular matrices with 1's on the diagonal can be taken as a
maximal unipotent subgroup of SO,. We will denote it by Uso,-

For m > n, let us identify SO, as the subgroup of SO, preserving the symmetric bilinear form on
the subspace of CP spanned by {ej,ep+1—j: 1< j<n}. Then we can embed SOy, in S0, as follows

X 0 Y
X Y
—- |0 I O
zZ W
Z 0 W

where X, Y, Z, W are blocks of size n x n, I is the (p — 2n) x (p — 2n) identity matrix, and 0’s
are the zero matrices of proper sizes. Similarly, we embed SO3;,+1 in SO2m+1 by considering the
(2n + 1)-dimensional subspace of C2"*1 spanned by {ej,eamy2—j: 1 <a<n} and epy1. For SO2q11
in SO.m, we use the (2n + 1)-dimensional subspace of C¥™ spanned by {ej,eamy1—j: 1< j<n} and
(em + em+1)-

5.3. Our next task is to construct an affine semigroup encoding stable range branching rules for
(S0p,504). Note that (f1,..., fm) € Z™ is a dominant weight for SOym+1 and SOm, if f1 > -+ >
fm>0and f1 2> fm—12|fml > 0 respectively.

Lemma 5.3.1. (See [9, Theorems 8.1.3 and 8.1.4].)

(1) Let F =(f1,..., fm)and D = (d1, ..., dn) be dominant weights for SOym41 and SOy, respectively. Then
the branching multiplicity ofozen in Usz+1 isequal to 1if (dq, ..., |dnl) interlaces (f1, ..., fm), i.e.,

fl f2 fm—l fm
dq dy dm—1 |dm |

and 0 otherwise;
(2) Let F=(f1,..., fm) and D = (dq, ...,dm_1) be dominant weights for SO, and SO2my,_1 respectively.
Then the branching multiplicity of o0, inoJisequalto 1if (d, ..., dn) interlaces (f1, ..., |fm)). ie.,

f] f2 fmfl |fm|
di dy dm—1

and 0 otherwise.

By iterating these results, we may obtain patterns counting the branching multiplicities for
(S0p,S0q). Such patterns are different from the GT patterns for (GLp, GLg). Within the stable range,
however, they are the same as the ones for (GLp, GLg) with restrictions on lengths. That is because, as
in the case for the symplectic groups, the length restriction ¢(F) < k forces £(D) < k via the interlac-
ing conditions in Lemma 5.3.1. Therefore, as is shown in Proposition 4.3.1 for the symplectic groups,
we have



1152 S. Kim / Journal of Combinatorial Theory, Series A 119 (2012) 1132-1157

Proposition 5.3.2. Let F and D be Young diagrams with F 2 D and £(F) < k. Then the branching multiplicity
m(UqD, UPF) is equal to the number of elements in Pg (F, D), and therefore it is equal to the number of elements

in T,'(F, D).

As in the case of (GLp,GLg) in (2.7.1), we can consider the affine semigroup Pg i Of the order
preserving maps from the GT poset F; . of length k:

(p) (p)

(p)
X X X
(p—1 (p—1) (p—1)
(@ (@) (@

to non-negative integers. We call Pg_k the semigroup for (SO,,S0q), and define its associated semi-
group algebra:

C[Pg,k] = @ C[Pg](F,D)
(F,D)e Ak

and call it the semigroup algebra for (SOp, SOg).

54. Let us define the distributive lattice for (SOp, SOq) and study its Hibi algebra. We shall closely
follow the construction developed in Section 4.4 for the symplectic groups. Consider the ordered
letters:

2m)={u1 <vi<uy<vy<---<Up<Vm}, (5.4.1)
Cm+1)={uj<vi<uUy<vy<- - <Up<Vy <0}

for p =2m and 2m + 1 respectively.

If we let £(p) denote the set of all non-empty subsets J of (p), then on £(p) we can also impose
the tableau order < as in Section 2.2 and Section 4.4. Then L£(p) is a distributive lattice isomorphic
to Lp, as in the case of the symplectic groups, through the bijection (4.4.2) (and ¢(c0) =2m + 1 for
p=2m+1).

Then, we define £(n, q, p) to be the set of non-empty subsets | of £(p) of the following forms:

[u17u27-"suC7yl!y27"'7yS]7
[ula us, "'auC]v
(V1. Y25 ---5¥s] (5.4.2)

where ¢ <n and, for g=2n and 2n+1,

Up1 S Y1 <Y2<--<Ys;
Vit SY1<y2<---<Ys,

respectively. In particular, if uc € J for ¢ <n, then {up: 1<h<c}cC].
Now, let £{n, q, p), be the subset of £L(n, q, p) consisting of | with |J| <k. Then, as is the case for

the symplectic groups (Section 4.4), we can identify £(n, q, p)x with the distributive lattice ﬁ';_q Tk

and therefore with E:k by Corollary 2.3.2.

Definition 5.4.1. The distributive lattice for (SOp, SOq) is £(n, q, p)k, and it will be denoted by Lso.

Lso = L(n,q, p)k
~ f
=7l
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Then we define the Hibi algebra for (SOp,SOq), denoted by Hso, to be the Hibi algebra over the
distributive lattice Lso. From the isomorphism of distributive lattices, we have Hgp = Hg.k. Then
from Proposition 2.10.3 for (GLp, GLg), we have

Corollary 5.4.2. There is an algebra isomorphism
~ q
Hso =C[P, ]

5.5. As in the previous cases (Section 2.10), we shall identify the monomials in the Hibi algebra
Hso with tableaux whose columns are elements of Lsg.

Definition 5.5.1. A standard tableau t for (S0p,S0g) is a multiple chain I < --- < I in Lso. The shape
shy(t) of tis F/D where F = (|I1|,...,|Is])! and D = (d1, ..., dy) with d; being the number of u,’s in
tfor1<r<n.

We write Tso(F, D) for the set of all standard tableaux for (SOp, SO4) whose shapes are F/D, and
set

To= |J Tso(F,D).
(F,D)e Ay

Then, as in the case of the symplectic groups, 7so gives rise to a C-basis for the Hibi algebra for
(50p, SOg).

Proposition 5.5.2.

(1) The Hibi algebra Hso for (SO, S0q) is graded by Ay y and Tso(F, D) forms a C-basis of the graded
component Hso(F, D).

(2) For (F, D) € I}, the number of standard tableaux for (SO, SOq) of shape F /D is equal to the branching
multiplicity m(o, o) of o in o).

Proof. From the isomorphism Lso = llg o it is straightforward to see that there is a bijection be-

tween Tso(F, D) and T;(F, D). Then (1) follows from Lemma 2.10.2 and (2) follows from Proposi-
tion 5.3.2. O

5.6. We can also find a correspondence between Lsp and the set of order increasing subsets of the
GT poset Fg « in the same way explained in Section 4.6. Namely, define the order increasing subset

A of Fg,k corresponding to I € Lgp as

A= | (.0 (5.6.1)
q<j<p

where, for n +1<h <m, sy;,_1 and sy, are the numbers of elements in I less than or equal to uy
and vy, respectively; and sp, is the number of elements in I less than v, and syp4q is the number
of elements in I. Then every element of 7sp can be related to a sum of characteristic functions of
these order increasing subsets as given in Proposition 2.8.1 and (2.8.1). This gives a direct proof for
Corollary 5.4.2.

5.7. To construct the stable range branching algebra for (SOp,S0q), we review the polynomial
model of SO,-representation spaces studied in [19].
From (3.4.1), (C[Mp,m]um consists of GLp-irreducible representations ,05 with £(F) < m. By taking
0, as a subgroup of GL,, we let O, x GLy act on the space M, = CP ® C™ via the action of
GLp x GLy, given in (3.3.1). Then we take the quotient of (C[Mp_m]um by the ideal Zp = ZFIF where
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ZF is the 0 ,-invariant complement space to the O p-irreducible representation o} in py, ie., pj =
apF @ IF for each F (cf. [5, §19.5]).

Then [19] shows that this quotient algebra can be taken as a polynomial model for the flag algebra
for SO, in that it contains exactly one copy of each irreducible representation GPF with ¢(F) <m:

Fso=C[Mp m1m/Zo
_ F
= Z %p
LF)<m
and it is graded by Young diagrams, i.e., opF‘ ~osz C 0;1+F2_ We note that ozf;n with ¢(F) =m are
irreducible O,;,;, representations, but they are not irreducible as SO,, representations.
To take the stable range ¢(F) < k, we consider its subalgebra consisting of olf with £(F) <k:

l
Fo=3 of. (5.71)
L(F)<k
5.8. To describe generators of Fso, to each I =[w1,..., wr] € L{p), we attach a determinant func-

tion &y as follows.
For Q € My m, we let 8;(Q) denote the determinant of the submatrix of Q = (t) obtained by

taking the i7,i/,...,i;-th rows and the 1,2,...,r-th columns:
tr1 Lo oo Ly
SR R
Sp(Q)=det| , (5.8.1)
tipr tip o L
where is {i{,},...,i}} is the image of the set {wq, wa,..., w;} C (p) under yr,:
Yom : {U1, V1, ..., Um, Vm} — {1,2,...,2m},
Yom(ue) =c and  Yom(ve) =2m+1—c,
Yom1 : {U1, V1, ..o, Um, Vi, 00} — {1,2,...,2m, 2m + 1},
Yom+1(Uc) =¢ and  Yomyq(ve) =2m+2—c¢ (5.8.2)
for p =2m and 2m + 1 respectively, for 1 <c<m and ¥omy1(c0) =m+ 1.
Then, with the bijection ,, we can impose a new order < on {1,2,..., p} induced by the order

on (p) in (5.4.1):
1<2m<2<2m—-1<---<m<m+1,
l1<2m+1<2<2m<---<m<m+2<m+1

and we keep using the convention of I’, §; and Ay used for the symplectic groups (Notation 4.8.1).
This conversion procedure is to make our labeling (uc, v) of isotropic pairs (Section 5.2) compatible
with those used in [24,19].

To I =[wq,...,ws] € L(p), we attach a determinant function §; as we define in (5.8.1). For a
multiple chain t= (I < --- < I;) of £(p), let t(a,b) denote the a-th smallest element in the b-th
column I of the tableau t. Also, let ayc and B¢ be the numbers of elements less than or equal to v,
in I1 and I, respectively.

Definition 5.8.1. (Cf. [24,28].) Then the corresponding monomial

Ay = (Sl/l 8]/2 cee 5]; S C[Mp,m]um

is called an O-standard monomial, if, in the chain t= (I <--- < I}),
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(1) azc + Boc < 2c for 1 <c<m, and
(2) if aac + Bac = 2¢ for some ¢ with t(aye, 1) = uc and t(Bac, b) = v, for some b, then t(Byc — 1,
b) =uc.

In [24] and [28], the above conditions (1) and (2) are used to define Young tableaux describing
weight basis elements of irreducible O representations.

5.9. To a product of §p’s in (C[Mp_m]um, we apply the straightening relations in Proposition 3.5.2 to
obtain a linear combination of standard monomials for GL,:

Hs,/_Zcrl_[aK

r j=>1

If there is a non-zero term ]_[j 5,( which is not an O-standard monomial, then apply relations from

the ideal Zp. This replaces the entrles of K; ;'s corresponding to isotropic pairs (ugq, v¢) with the sum
of pairs (up, vp)'s (and (0o, o0) for p =2m+1) for a < b, thereby expressing ]_[] 51<;j as a linear com-
bination of O-standard monomials. For further details, we refer to [19]. A combinatorial description
of this straightening procedure in the language of tableaux is given in [24].

The following is shown in [19]. See also [24] and [28].

Proposition 5.9.1. (See [19, Theorem 3.6, Proposition 3.9].) O -standard monomials project to a C-basis of
the flag algebra Fso for SOp. In particular, for a Young diagram F with £(F) < m, O-standard monomials of
shape F form a weight basis for the O p-irreducible representation opF C Fso-

5.10. Our next task is to find an explicit model for the Uso, -invariant subalgebra of ]-'S(f)) , which
we will denote by Bsp. Then, from (1.3.1) and (5.7.1), we have

Bso= (rpF)USO"

0(F)<k

Z Zm(TqD’ TPF) (TqD)USOq .

LF)<k D
Theorem 5.10.1. The algebra Bsg is generated by

G ={8r +Iso: I € Lso},

and it is graded by Ap . For each (F, D) € Ay the O-standard monomials Ay corresponding to standard
tableaux t for (SOp, SOq) whose shapes are F /D form a C-basis of the (F, D)-graded component. The dimen-
sion of the (F, D)-graded component is equal to the branching multiplicity of ‘L'qD in IIf.

Proof. Let R be the subalgebra of ]-'s((k)) generated by G. We will show that R = Bsg. For I € Lso C
L{p), we defined the polynomial é; on the space M, in (5.8.1). By (5.4.2) and (5.8.2), it is the
determinant of a submatrix of Q € Myp,;y obtained by taking consecutive columns {1,2,...,|I|}, and
either consecutive rows {1,2,...,r} or partially consecutive rows {1,2,...,r} U {bq,...,bs} or only
{b1,...,bs} of Q forr<nand bje{n+1,n+2,...,p —n}

Since the left action of Ug C GLp, under the embedding given in Section 5.2, operates the rows of
Mp,m, all the determinants &y for I € Lso are invariant under the action of Ugq, and therefor invariant
under the action of Usp,. Since the ideal Zo is stable under the action of Op, the generators of the
algebra R are invariant under the unipotent subgroup Uso, of SOq, and so are their products. Also,
since every I € Lsp satisfies |I| <k, we have R C Bsp.

On the other hand, for every chain I < J in Lso, y8) satisfies the conditions (1) and (2) in Def-
inition 5.8.1. This can be easily seen from the statement (3) of Corollary 3.5.4 and the fact that I
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and J from Lsp do not contain v, for 1 < h < n. This implies that standard monomials Ay corre-
sponding to standard tableaux t for (SO,, SOq) project to linearly independent elements in the algebra
Bso € Fso. They span the whole algebra Bsp, because for each (F, D) € Ay the number of standard
tableaux in 7so(F, D) is equal to the multiplicity of tqD in rpF by Proposition 5.3.2. Furthermore, they

are scaled by weight D under the action of the diagonal subgroup {diag(ay, .. .,an,anl, .. .,a]’])} or
{diag(ay, ..., an, 1,an‘1,...,a1’1)} of SOq. This shows that standard monomials Ay with t € Tso(F, D)
are the highest weight vectors of the copies of 7 in 7;. O

In this sense, we call Bso the stable range branching algebra for (S0, SOq). Recall that we obtained
Bsp by lifting the elements of the Hibi algebra #Hso over the distributive lattice L£sp which is iso-

morphic to the distributive lattice EZ - Now we compare it with the algebra BZ « (Definition 3.6.1)

obtained from the Hibi algebra 7—[;,( for the general linear groups.

Proposition 5.10.2. The stable range branching algebra Bso for (SO,,SOq) is isomorphic to the length k
branching algebra ngkfor (GLp, GLg).

Proof. From the isomorphism Lsp = £, of distributive lattices, with I — 1, we can consider a bijec-

p.k
tion between the generating set of Bsp and the generating set of Bg_k:

r+Zo:l€Lso) «— [&:1eL) ]
Then, to see that this bijection gives rise to an algebra isomorphism, let us show that the straightening
relations among &;'s in Bg.k agree with those of (8 +Zp)’s in Bsp C Fso.

As explained in Section 5.9, to express a product of §;’s as a linear combination of O-standard
monomials projecting to the quotient Fso = (C[Mp,m]um /Zo, we first apply the straightening relations
in (C[Mp,m]um (Proposition 3.5.2) and then relations from the ideal Z.

A product of representatives []; 51'{, as an element in (C[Mp,m]um, can be expressed as a linear

combination of GLp-standard monomials:

[Toy=>c 1o, (510.1)
i

roogzt

in C[Mp p]Ym.

Now we claim that for each non-zero term [J; SK;J,, the indices K ;'s form a multiple chain in
Lso, therefore (5.10.1) gives O-standard monomial expression of [; 5,; projecting to Bsp C Fso. This
follows directly from the quadratic relation (3.5.2). For every chain I < J in Lgo, 8p8 satisfies the
conditions (1) and (2) in Definition 5.8.1, which can be easily seen from the statement (3) of Corol-
lary 3.5.4 and the fact that I and ] from Lso do not contain vy, for 1<h <n.

Moreover, from Theorem 5.10.1 and Proposition 5.3.2, the (F, D)-graded components of both alge-
bras are of the same dimension with bases labeled by the same patterns for all (F, D). This shows
that two graded algebras are isomorphic to each other. O

With this characterization Bsp = BY

ok from Theorem 3.8.1, we have

Corollary 5.10.3. The stable range branching algebra Bso for (S0, S0q) is a flat deformation of the Hibi
algebra Hso for (SO, SOq), which is isomorphic to qu‘k.
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