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Abstract

We describe in this paper two on-line algorithms for covering planar areas by a square-shaped tool attached
to a mobile robot. LetD be the tool size. The algorithms, calledSpanning Tree Covering (STC) algorithms,
incrementally subdivide the planar area into a grid ofD-size cells, while following a spanning tree of a grid
graph whose nodes are 2D-size cells. The two STC algorithms cover general planar grids. The first,Spiral-STC,
employs uniform weights on the grid-graph edges and generates spiral-like covering patterns. The second,Scan-
STC, assigns lower weights to edges aligned with a particular direction and generates scan-like covering patterns
along this direction. Both algorithms cover any planar grid using a path whose length is at most(n+m)D, where
n is the total number ofD-size cells andm� n is the number ofboundary cells, defined as cells that share at least
one point with the grid boundary. We also demonstrate that any on-line coverage algorithm generates a covering
path whose length is at least(2− ε)lopt in worst case, wherelopt is the length of the optimal off-line covering path.
Since(n+m)D � 2lopt, the bound is tight and the STC algorithms are worst-case optimal. Moreover, in practical
environmentsm� n, and the STC algorithms generate close-to-optimal covering paths in such environments.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In themobile robot covering problem, a tool of a specific planar shape is attached to a mobile robot.
Given a continuous planar work-area bounded by obstacles, the mobile robot has to move the tool along a
path such that every point of the work-area is eventually covered by the tool. The definition of the problem
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allows for both closed and non-closed covering paths. In the on-line version of the problem the robot has
no a priori information about the environment. Rather, the robot must collect information about obstacles
in the environment during the coverage process. Note that on-line coverage isdistinct from other on-line
mobile robot tasks, such as map building [5,21] and vehicle routing [4]. The optimal off-line covering
problem can be formulated as a generalization of the Traveling Salesperson Problem (TSP) to continuous
domains, and thus is NP-hard [1]. Since the off-line covering problem is NP-hard, we seek competitive
polynomial-time algorithms for the on-line version of the problem.1 The mobile robot covering problem
has several important applications, such as floor cleaning and coating [8], hazardous waste cleaning [11],
and field demining [19].

Let us mention several relevant papers, focusing on aspects related to this paper. The mobile robot
covering problem has been studied by Arkin et al. [1] and Ntafos [20]. Much like our approach, they im-
pose a tool-based grid approximation over the continuous work-area. Ntafos considers only simple grids
with no internal holes, and his algorithm covers the grid within 33% of its optimal covering path. Arkin
et al. consider grids which do not possess any local cut nodes (i.e. nodes whose removal would locally
disconnect the graph). Their algorithm covers such grids within 32.5% of their optimal covering path.
The algorithms of Ntafos and Arkin run in O(n) time, wheren is the total number of grid cells. Two other
algorithms that can cover general planar grids are by Grigni et al. [10] and Mitchell [18]. Both algorithms
cover general planar grids withinε of their optimal covering path innO(1/ε) time. A randomized algo-
rithm by Arora [2] covers general planar grids withinε of their optimal covering path inn(logn)O(1/ε)

expected time. The non-random version of Arora’s algorithm runs inn3(logn)O(1/ε) time. However, all of
these algorithms arestrictly off-line. While off-line coverage is suitable for applications such as pocket
machining [1,12], mobile robot covering tasks usually take place in partially or completely unknown
environments. We present on-line algorithms that can be implemented on a mobile robot with sensors.

The on-line covering problem has been first considered by Kalyanasundaram and Pruhs [17] in the
context of on-line TSP tours on weighted planar graphs. Assuming that the traveling agent acquires local
information about the graph while executing the tour, they have shown that the problem has a competitive
ratio of at most sixteen. In the special case of graphs with uniform weights such as grid graphs, the trivial
DFS algorithm covers the graph with a path whose length is at most twice the length of the optimal
path. Our first algorithm,Spiral-STC, runs on uniform weight grid graphs and has the same competitive
ratio as DFS. However,Spiral-STC generates a covering path whose length is bounded by(n + m)D

(n is the total number of grid cells,m � n is the number of boundary cells defined below, andD is
the tool size), while DFS generates a path whose length is always 2nD. In practicem � n and the
Spiral-STC algorithm significantly improves on DFS. Our second algorithm,Scan-STC, generates fixed-
scanning covering patterns and has the same(n+m)D path-length bound.Scan-STC additionally strives
to minimize the number of path-segments orthogonal to the desired scanning direction.

With the exception of a paper by Icking et al. discussed below, all competitive on-line covering
algorithms for mobile robots use environmental markers such as pebbles [6,7] or pheromone-like traces
[22] to aid in the robot’s coverage process. In contrast, we rely solely on the robot’s on-board recourses
during the coverage process. A paper by Icking et al. proposes an on-line coverage strategy, called URC,
that also relies on the robot’s on-board recourses [14].2 The authors conjecture that URC generates a

1 An algorithm iscompetitive if its solution to every problem instance is a constant times the optimal solution to the problem
with full information available [15].

2 A preliminary version of the paper first appeared in [13].
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Fig. 1. Grid approximation of a given work-area.

covering path whose length in tool-size units is bounded byn+ 1
2E+ 3H − 2, wheren is the number of

grid cells,E is the number of segments (i.e. edges of grid cells) on the grid boundary, andH is the number
of holes in the grid. The parameterE roughly corresponds to our parameterm. SinceH is usually much
smaller thann andE, URC is likely to generate paths which are slightly longer thann+ 1

2m. Although
the STC algorithms generate paths whose length is bounded byn+m, simulation studies indicate that
on average they too generate paths slightly longer thann + 1

2m. Moreover, URC generates paths that
resemble the spiral paths generated bySpiral-STC. It is not clear whether URC can be generalized to
generate scan patterns similar to the ones generated byScan-STC.

In this paper we make the following assumptions. First, we assume that the tool is a square of sizeD.
Second, the robot is allowed to move the tool only in directions orthogonal to the tool’s four sides,
without rotating the tool during this motion. Third, we focus on the path taken by the covering tool
rather than the path taken by the robot. However, the covering tool is commonly mounted under the
mobile robot’s platform, and in this case the robot and covering tool follow the same path. Fourth, we
approximate the continuous work-area by a discrete grid ofD-size cells as shown in Fig. 1. Note that
the Hamiltonian path problem on planar grids (i.e. the construction of a path that visits every node of
the grid graph precisely once) is NP-complete [16]. The optimal covering of planar grids, being a more
general problem, is NP-hard. Next, we assume that the environment is populated by stationary obstacles,
so that the work-area grid is fixed. Finally, we assume that the robot has no a priori knowledge of the
environment. Rather, the robot must use its sensors to detect obstacles while covering the work-area grid.

The paper is structured as follows. In Section 2 we present theSpiral-STC algorithm. This algorithm
employs uniform weights on the grid-graph edges and generates spiral-like covering patterns. In Section 3
we present theScan-STC algorithm. This algorithm assigns lower weights to edges aligned with a
particular direction and generates scan-like covering patterns. The two STC algorithms incrementally
follow a spanning tree whose nodes are 2D-size cells. The algorithms can be interpreted as constructing
on-line minimum spanning trees for coarse grid graphs whose nodes are 2D-size cells. However, as noted
in [17], the on-line generation of competitive covering paths requires more than minimum-spanning-tree
considerations. In our STC algorithms, we carefully weave the traversal of the spanning-tree edges with
the internal covering of individual 2D-cells.

In Section 4 we analyze the two STC algorithms. The main result is that both algorithms cover any
planar grid in O(n) time using a path whose length is at most(n+m)D. In this boundn is the number
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Fig. 2. (a) Counterclockwise scanning of four neighbors. (b) A move fromx to a new celly. (c) A return fromx to a parent
cellw.

of D-size cells andm � n is the number ofboundary cells, defined as cells that share at least one
point with the grid boundary. Another result is a bound on the number of path-segments orthogonal to
the scanning direction generated byScan-STC. In Section 5 we demonstrate that any on-line coverage
algorithm generates a covering path (either closed or non-closed) whose length is at least(2 − ε)lopt in
worst case, wherelopt is the length of the shortest covering path andε is an arbitrarily small positive
parameter. Interestingly, the paper by Icking et al. [14] contains a derivation of the same lower bound.3

Sincelopt � nD, the path generated by the STC algorithms satisfies(n+m)D � 2lopt. Consequently, the
(2 − ε)lopt bound istight, and the STC algorithms are worst-case optimal. In Section 6 we run the STC
algorithms on a simulated office-like environment. Finally, in the concluding section we mention several
topics for further research in this area.

2. The Spiral-STC algorithm

We first describe a preliminary version of the algorithm called2D-Spiral-STC. The preliminary
algorithm covers only 2D-size cells which are completely free of obstacles. These cells are covered
by an optimal path induced by a spanning tree whose nodes are the free 2D-size cells. The full algorithm
covers general grids by treating 2D-size cells which are partially occupied by obstacles as special nodes
of the spanning tree that incur repetitive coverage. Both versions ofSpiral-STC use the following two
sensors. The first is aposition-and-orientation sensor that allows the robot to locally recognize the cells
comprising the work-area. The second is arange sensor capable of identifying obstacles in the four
2D-cells neighboring the robot’s current 2D-cell (Fig. 2(a)). For notational simplicity 2D-size cells are
simply calledcells, whileD-size cells are calledsubcells.

2.1. The preliminary 2D-Spiral-STC algorithm

The 2D-Spiral-STC algorithm incrementally subdivides the work-area into cells of size 2D, and
discards cells which are partially occupied by obstacles. The free cells induce a graph structure whose
nodes are the center points of the cells, and whose edges are the line segments connecting centers of
adjacent cells (Fig. 1). The algorithm incrementally constructs a spanning tree for this graph, and uses

3 Our derivation was obtained independently and in parallel to the one reported in [14].
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the spanning tree to generate a coverage path as follows. During the spanning tree construction, the
robot subdivides every cell it encounters into four identical subcells of sizeD, each being identical to
the covering tool in size and shape. The covering tool follows a path of subcells that circumnavigates
the incrementally constructed spanning tree, until the entire collection of free cells is covered. In the
following description of the algorithm, a free cell isnew when its four subcells have not yet been covered,
otherwise the cell isold.

2D-Spiral-STC Algorithm:
Sensors: A position and orientation sensor. A 4-neighbors obstacle detection sensor.
Input: A starting cellS, but no a priori knowledge of the environment.
Recursive function: STC1(w, x), wherex is the current cell andw the parent cell in the spanning tree.
Initialization: Call STC1(Null, S), whereS is the starting cell.
STC1(w, x):
1. Mark the current cellx as anold cell.
2. Whilex has anew obstacle-free neighboring cell:

2.1 Scan for the first new neighbor ofx in counterclockwise order, starting with the parent
cellw. Call this neighbory.

2.2 Construct a spanning-tree edge fromx to y.
2.3 Move to a subcell ofy by following the right-side of the spanning tree edges as described

below.
2.4 ExecuteSTC1(x, y).

End of while loop.
3. If x �= S, move back fromx to a subcell ofw along the right-side of the spanning tree

edges as described below.
4. Return. (End ofSTC1(w, x).)

We now discuss several details of the algorithm. First, the robot runs a DFS algorithm during
the incremental spanning tree construction. The counterclockwise scanning of neighbors specified in
step 2.1 ensures that the covering tool circumnavigates the incrementally constructed spanning tree in
counterclockwise order (Fig. 2(a)). The robot may equivalently choose to scan the neighboring cells in
clockwise order, but then the covering tool would circumnavigate the spanning tree in clockwise order.
Also note that the starting cellS has no parent cell, and in step 2.1 any neighbor ofS can be designated
as its parent. Second, in step 2.3 the covering tool is located in a subcell ofx and has to move into a new
cell y. By construction there is already a spanning-tree edge fromx to y. The covering tool moves from
its current subcell inx to a subcell ofy by following the right-side of the spanning tree edges, measured
with respect to the tool’s direction of motion (Fig. 2(b)). It is shown in Lemma A.1 in Appendix A that
the covering tool can always move fromx to y through an empty subcell path that follows the right-side
of the spanning tree. When the covering tool returns to a parent cellw in step 3, it again moves through
subcells that lie on the right-side of the spanning-tree edge connectingx with w (Fig. 2(c)).

An execution example of the algorithm is illustrated in Fig. 3(a). It can be seen that the robot moves the
covering tool through subcells that lie on the right-side of the spanning-tree edges, measured with respect
to the tool’s direction of motion. The circumnavigation of the spanning tree generates a simple closed
path that brings the covering tool back to the starting cell. The figure possesses two unrealistic features,
which were added for clarity. The tool sizeD is shown unrealistically large with respect to the work-area
size, and the covering tool path is shown curved while it is rectilinear according to the algorithm.
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Fig. 3. An execution example of (a)2D-Spiral-STC and (b) the fullSpiral-STC.

Fig. 4. (a) A double-sided and (b) a single-sided edge. (c) Node doubling at a disconnected cell.

2.2. The full Spiral-STC algorithm

The full Spiral-STC algorithm augments the preliminary algorithm with coverage ofpartially occupied
2D-cells, defined as cells that contain at least one obstacle-freeD-size subcell. The full algorithm uses
the following augmented graph structure. The nodes of the augmented graph are the center points of
all free and partially occupied cells. The edges of this graph connect center points of adjacent cells
that contain free subcells with a common boundary. This construction gives rise to two types of edges.
The first type, calleddouble-sided edges, possess only free subcells on both sides (Fig. 4(a)). The other
type, calledsingle-sided edges, possess at least one occupied subcell on either side (Fig. 4(b)).Spiral-
STC incrementally constructs a spanning tree for the augmented grid graph, while guiding the covering
tool along a subcell path that circumnavigates the spanning tree. However, the circumnavigation of a
single-sided edge incurs repetitive coverage of certain subcells associated with this edge. Another new
structure in the augmented grid graph involvesnode doubling. A partially occupied cell with diagonally
opposite free subcells is locally disconnected. Since the covering tool can reach the free subcells from
neighboring cells, we represent such a cell with two nodes, each having edges to adjacent cells from
which a free subcell can be accessed (Fig. 4(c)).

The full Spiral-STC algorithm has the same structure as the preliminary algorithm. Hence we only
describe the recursive function, calledSTC2(w, x), which is modified in order to account for the two
types of edges that occur in the augmented grid graph.
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Fig. 5. (a) Path deformation along a single-sided edge. (b) Crossing of spanning-tree edges.

Full Spiral-STC Algorithm:
Initialization: Call STC2(Null, S), whereS is the starting cell.
STC2(w, x):
1. Mark the current cellx as anold cell.
2. Whilex has anew free or partially occupied neighboring cell:

2.1 Scan for the first new neighbor ofx in counterclockwise order, starting with the parent
cellw. Call this neighbory.

2.2 Construct a spanning-tree edge fromx to y.
2.3 Move to a subcell ofy along the spanning tree edges, using a path determined by the

type of edge fromx to y as described below.
2.4 ExecuteSTC2(x, y).

End of while loop.
3. If x �= S, move back fromx to a subcell ofw along a path determined by the type of edge

from x tow as described below.
4. Return. (End ofSTC2(w, x).)

Much like the preliminary algorithm, here too the robot runs DFS during the incremental spanning
tree construction. We now describe the subcell path taken by the covering tool along a single-sided edge
in steps 2.3 and 3 of the algorithm. Consider for concreteness the partially occupied cell depicted in
Fig. 5(a). This cell is a leaf node in the spanning tree, and the spanning-tree edge entering this cell is
single-sided. Letα be the subcell path that would have been taken by the covering tool if the cell were
completely free. Then the actual path taken by the covering tool, denotedβ, is obtained bydeforming
α away from the occupied subcell without changing the path’s sense of direction, until every point of β
lies at a distance of D/2 from the occupied subcell. Fig. 5(a) shows the original pathα as well as the
deformed pathβ. Note that we use a maximum metric4 in the path deformation, to ensure thatβ takes
the covering tool only through obstacle-free subcells. Note, too, that the deformed pathβ crosses the
spanning-tree edge. The deformed path may cross other edges emanating from a partially occupied cell,
as shown in Fig. 5(b).

An execution example of the full algorithm on the environment used to execute the preliminary
algorithm is illustrated in Fig. 3(b). Another execution example appears in Fig. 9. In the tight environment
of Fig. 9 the central cell is covered each time the covering tool enters a new corridor. It is shown below

4 The maximum metric is given byd(p,q)= max{|px − qx |, |py − qy |}.
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Fig. 6. The cells inspected by2D-Scan-STC when considering whether to skip the construction of a horizontal spanning-tree
edge.

that the total number of such repetitive coverages is bounded by the number of boundary subcells in the
work-area grid. Finally, simulations presented below reveal the spiral-like covering pattern typical to this
algorithm.

3. The Scan-STC algorithm

Practical covering scenarios often require generation of fixed-scanning covering patterns. We now
present a spanning-tree based algorithm,Scan-STC, that generates fixed-scanning covering patterns
by considering larger neighborhoods of the grid.Scan-STC requires the same sensors as the previous
algorithm. However, previously the range sensor was required to detect obstacles in thefour 2D-cells
neighboring the current cell. Now it must detect obstacles in the ring ofeight 2D-cells surrounding the
current cell. We first present a preliminary version of the algorithm called2D-Scan-STC, that covers
only 2D-size cells which are completely free of obstacles. Then we present the full algorithm that covers
general grids ofD-size cells.

3.1. The preliminary 2D-Scan-STC algorithm

The input to the algorithm is a desired scanning direction for the work-area, which we assume to be the
vertical direction. Using the robot’s orientation sensor, the algorithm aligns the incrementally constructed
work-area grid with the vertical scanning direction. The algorithm skips the construction of horizontal
spanning-tree edges by inspecting cells in the ring surrounding the current cell. These cells are denoted
as follows. Given a neighbor celly, the cellsy+ 45 andy+ 90 are the cells that form 45◦ and 90◦ angles
with the line fromx to y in counterclockwise order (Fig. 6). Recall that a free 2D-cell is new when its
four subcells have not yet been covered, otherwise the cell isold.

2D-Scan-STC Algorithm:
Sensors: A position and orientation sensor. An 8-cells obstacle detection sensor.
Input: A starting cellS, but no apriori knowledge of the environment.
Recursive function: STC3(w, x), wherex is the current cell andw the parent cell in the spanning tree.
Initialization: Call STC(Null, S), whereS is the starting cell.
STC3(w, x):
1. Mark the current cellx as anold cell.
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2. Whilex has anew obstacle-free neighboring cell which has not been inspected:
2.1 Scan in counterclockwise order for the first new neighbor ofx which has not been

inspected yet, starting with the parent cellw. Call this neighbory.
2.2 If y is ahorizontal neighbor ofx and the cellsy + 45 andy + 90 are free:

Skip the construction of a spanning-tree edge fromx to y. Goto Step 2.
2.3 Construct a spanning-tree edge fromx to y.
2.4 Move to a subcell ofy by following the right-side of the spanning tree edges.
2.5 ExecuteSTC3(x, y).

End of while loop.
3. If x �= S, move back fromx to a subcell ofw along the right-side of the spanning tree edges.
4. Return. (End ofSTC3(w, x).)

The 2D-Scan-STC algorithm has the same general structure as the2D-Spiral-STC algorithm. In
particular,2D-Scan-STC still expands new neighbors in counterclockwise order. Hence Lemma A.1 in
Appendix A applies here too, and the covering tool can always move to the next new neighbor through an
empty subcell path that follows the right-side of the spanning-tree edges. Consider now step 2.2, where
the algorithm skips the construction of spanning-tree edges to horizontal neighbors. Let us verify that
the covering tool still reaches all the free cells accessible from the starting cell. First, when the covering
tool enters a new vertical column of cells, the entire column is covered since the algorithm never skips
vertical grid-edges. Second, the covering tool skips the construction of a horizontal spanning-tree edge
to a neighbory only when it knows that y has a neighboring free cell in its own column, the celly + 45,
that can be accessed from the current column at a later stage of the covering process, from the cell
y + 90. Otherwise the algorithm constructs a horizontal spanning-tree edge that takes the covering tool
to a neighboring column. It follows that the spanning tree reaches all the free cells accessible from the
starting cell, and the covering tool covers these cells during the spanning tree circumnavigation.

An execution example of the algorithm is illustrated in Fig. 7(a). The figure shows the spanning tree
constructed on-line by the algorithm. It can be seen that the spanning-tree edges are vertically aligned,
except for a single horizontal edge between every pair of adjacent columns. The algorithm in general
strives to minimize the number of horizontal edges, and the number of horizontal edges generated by the
algorithm is quantified below. The figure also shows the subcell path taken by the covering tool. Note

Fig. 7. An execution example of (a)2D-Scan-STC and (b) the fullScan-STC.
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Fig. 8. The subcells inspected by the fullScan-STC when considering whether to skip the construction of a horizontal
spanning-tree edge.

that the covering tool follows an optimal covering path. This optimality is not maintained by the full
algorithm presented in the next section.

3.2. The full Scan-STC algorithm

The full Scan-STC algorithm employs the same augmented grid graph used by the fullSpiral-STC
algorithm. We briefly repeat here the structure of this graph. Recall that apartially occupied cell is a 2D-
cell that contains at least one obstacle-freeD-size subcell. In the augmented grid graph, adjacent free and
partially occupied cells are connected by an edge if they contain free subcells with a common boundary.
This construction gives rise to double-sided edges (Fig. 4(a)) and single-sided edges (Fig. 4(b)). Last, a
partially occupied cell with diagonally opposite free subcells is represented by two nodes, each having
edges to adjacent cells from which a free subcell can be accessed (Fig. 4(c)).

The full Scan-STC algorithm incrementally constructs a spanning tree for the free and partially
occupied cells. However, for practical reasons we wish to ensure that the algorithm inspects only
subcells which are directly visible from the covering-tool’s current location. Hence the full algorithm
inspects only the following subcells. Letp be the point where the cellsx, y, y + 45 andy + 90
meet. Then the full algorithm inspects the four subcells surroundingp. These subcells are denoted
xp, yp, (y+ 45)p, (y+ 90)p and are depicted in Fig. 8. The full algorithm has the same structure as the
preliminary algorithm. Hence we only describe the recursive function which is now calledSTC4(w, x).

Full Scan-STC Algorithm:
Initialization: Call STC4(Null, S), whereS is the starting cell.
STC4(w, x):
1. Mark the current cellx as anold cell.
2. Whilex has anew free or partially occupied neighboring cell which has not been inspected:

2.1 Scan in counterclockwise order for the first new neighbor ofx which has not been
inspected yet, starting with the parent cellw. Call this neighbory.

2.2 If y is ahorizontal neighbor ofx and the four subcellsxp, yp , (y + 45)p and(y + 90)p are
obstacle-free:Skip the construction of the spanning-tree edge fromx to y. Goto Step 2.

2.3 Construct a spanning-tree edge fromx to y.
2.4 Move to a subcell ofy along the spanning tree edges, using a path determined by the

type of edge fromx to y as described below.
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2.4 ExecuteSTC4(x, y).
End of while loop.
3. If x �= S, move back fromx to a subcell ofw along a path determined by the type of edge

from x tow as described below.
4. Return. (End ofSTC4(w, x).)

Let us discuss several details of the full algorithm. The subcell path taken by the covering tool in
steps 2.4 and 3 is the same deformed path taken by the tool in the fullSpiral-STC algorithm. As depicted
in Fig. 5, the deformed path is obtained by moving the original unobstructed path a distance ofD/2
away from the occupied subcells, without changing the path’s sense of direction. The resulting path
incurs repetitive coverage which is quantified below. Next consider step 2.2, where the algorithm skips
the construction of a horizontal spanning-tree edge. The rule specified in this step is the subcell-version
of the corresponding rule in the preliminary algorithm. Given a horizontal neighbory, the celly+45 is a
vertical neighbor ofy. The algorithm skips the construction of a spanning-tree edge fromx to y when it
knows thaty can be accessed from the subcell(y + 45)p at a later stage of the covering process from the
subcell(y+90)p. The four subcells involved in this test are visible from any subcell of the current cellx,
for the following reason. If the subcellxp is occupied by an obstacle, the test fails and there is no need to
inspect the other three subcells. Otherwisexp is free and the other three subcells are directly visible from
any subcell ofx. Finally, the full algorithm need only inspect the ring of subcells surrounding the current
cell, rather than the ring of 2D-cells required by the preliminary algorithm. However, the ring-of-subcells
neighborhood is still larger than the neighborhood inspected by the fullSpiral-STC algorithm.

An execution example of the full algorithm on the environment used to execute the preliminary
algorithm is illustrated in Fig. 7(b). As discussed below, here too the total number of repetitive coverages
is bounded by the number of boundary subcells in the work-area grid. Simulations of the fullScan-STC
algorithm are presented in Section 5.

4. Analysis of the STC algorithms

In this section we first consider several properties of the STC algorithms, then analyze the amount of
repetitive coverage generated by the algorithms, and finally characterize the scanning pattern generated
by Scan-STC.

Lemma 4.1 (completeness).The Spiral-STC and Scan-STCalgorithms cover every free subcell
accessible from the starting cell S.

Proof. Both algorithms construct a spanning tree that reaches every free and partially occupied 2D-size
cell in the accessible work-area grid. These cells are partitioned into subcells of sizeD. By construction,
every obstacle-free subcell touches the spanning tree either at a point (a leaf node), or along a segment
(part of an edge emanating from a node). Consider now the subcell path, denotedα, generated by
circumnavigating the spanning tree. (Note:α passes through empty as well as occupied subcells.) Since
every free subcell touches the spanning tree,α passes through every free subcell accessible fromS. Both
algorithms deform the pathα away from the occupied subcells, so that the deformed path passes only
through free subcells. The deformed path is a closed path that passes through every free subcell which
lies along the original pathα. Hence every accessible free subcell is covered.✷
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The next lemma gives the run-time and memory requirement of the STC algorithms.

Lemma 4.2. Let n be the total number of free subcells accessible from the starting cell S. Then Spiral-
STCand Scan-STCcover these subcells in O(n) time using O(n) memory.

Let us sketch the derivation of these bounds. In each step the covering tool enters either a new subcell
or a previously visited subcell. According to Theorem 1 below, the total number of repetitive visits is
bounded bym, wherem� n is the number of boundary subcells. Hence there are O(n) covering steps.
The O(n)memory requirement allows the algorithm to identify which cells of the grid have already been
visited by the covering tool. This memory requirement imposes a strict limitation on the size of the work-
areas that can be covered by a bounded-memory robot. In [9] we describe an STC algorithm that uses
cell markers to identify previously visited subcells. This algorithm requires only O(1) memory.

The following theorem establishes a bound on the length of the covering path generated by the STC
algorithms. Recall thatboundary subcells are obstacle-free subcells that share either a point or a segment
with the boundary of the work-area grid.

Theorem 1. Let n be the total number of free subcells in the accessible work-area grid. Let m � n be
the total number of boundary subcells. Then Spiral-STCand Scan-STCcover the work-area grid using
a path of total length l � (n+m)D, where D is the tool size.

Proof. We use the following terminology. Anentry edge of a cell is a spanning-tree edge along which
the covering tool enters a cell for the first time. All other spanning-tree edges that emanate from a cell
areexit edges. Note that every exit edge is an entry edge for the other cell joined by this edge. Next,
we definerepetitive coverage of a pointp as the situation wherep is being covered, then exposed, and
later covered again. We distinguish between two types of repetitive coverages. Aninter-cell repetitive
coverage is a repetitive coverage that occurs when the covering tool moves between subcells of different
cells. Anintra-cell repetitive coverage is a repetitive coverage that occurs when the covering tool moves
between subcells of the same cell (Fig. 9).

We use the following convention for counting repetitive coverages. A single-sided edge always
generates an inter-cell repetitive coverage in the cell from which it exits, but not in the cell into which

Fig. 9. An execution example of the fullSpiral-STC with a listing of the repetitive coverages in each cell. (The fullScan-STC
generates the same path in this environment.)
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Fig. 10. A cell with (a) four free subcells, (b) three free subcells and (c) two free subcells.

it enters. However, we add this inter-cell repetitive coverage to the count at the cell for which this edge
is an entry edge. The total count of repetitive coverages is not affected by this convention, since every
edge is an exit edge for one cell and an entry edge for some other cell. Intra-cell repetitive coverages are
counted by the cell itself. The counting convention is illustrated in Fig. 9, which includes a table that lists
the number of repetitive coverages in each cell.

We now show that the total number of repetitive coverages is bounded by the number of boundary
subcells. It suffices to show that the number of repetitive coverages in each cell is bounded by the number
of boundary subcells in this cell. We consider four cases, classified by the number of free subcells in the
cell. Each of the four cases is further classified into two sub-cases, depending whether the entry edge
into the cell is single-sided or double-sided. We do not need to consider the exit edges from a cell, since
a double-sided exit edge incurs no repetitive coverage, while the repetitive coverage associated with a
single-sided exit edge is counted by the cell into which the edge enters.

First consider a cell with four free subcells (Fig. 10(a)).5 A double-sided edge entering the cell incurs
no repetitive coverage. If the edge entering the cell is single-sided, there is one inter-cell repetitive
coverage and one intra-cell repetitive coverage, or a total oftwo repetitive coverages. The presence of a
single-sided entry edge implies that the adjacent cell has an occupied subcell. Since this subcell borders
our cell, our cell containstwo boundary subcells—one that shares a boundary segment and one that shares
a point with the occupied subcell.

Next consider a cell with three free subcells (Fig. 10(b)). Here, too, a double-sided edge entering the
cell incurs no inter-cell repetitive coverage. However, the presence of an occupied subcell in our cell
generates one intra-cell repetitive coverage. If the edge entering the cell is single-sided, there is one
inter-cell repetitive coverage and at most two intra-cell repetitive coverages, or a total ofthree repetitive

5 Note that Fig. 10 depicts only specific examples of the eight possible cases.
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coverages. The number of boundary subcells in such a cell isthree, since all three subcells touch the
occupied subcell.

Now consider a cell with two free subcells (Fig. 10(c)). If the edge entering the cell is double-sided,
this edge incurs no repetitive coverage. If the edge entering the cell is single-sided, there is one inter-cell
repetitive coverage and at most one intra-cell repetitive coverage, or a total oftwo repetitive coverages.
The number of boundary subcells is alsotwo, since the two free subcells touch the occupied subcells.
Last consider a cell with a single free subcell. The entry edge into this cell is necessarily single-sided.
Hence there is one inter-cell repetitive coverage. Since this type of cell incurs no intra-cell repetitive
coverage, there isone repetitive coverage, and this is also the number of boundary subcells.

To summarize, the total number of repetitive coverages is at mostm, and the length of the covering
path consequently satisfiesl � (n+m)D. ✷

Them+ n bound does not reflect an important property of the STC algorithms, that their repetitive
coverage is localized around partially occupied cells. The following corollary provides a tighter bound
that emphasizes this property. Consider the collection of occupied subcells contained in the partially
occupied cells. Letk be the total number of free subcells that share either a point or a segment with these
occupied subcells. Note thatk is a property of the grid imposed by the robot, and is independent of the
STC covering strategy. By definitionk �m, and the length of the covering path is bounded in terms ofk

as follows.

Corollary 4.3. Let n be the total number of free subcells in the accessible work-area grid. Let k �m be
the total number of free subcells that touch occupied subcells contained in partially occupied cells. Then
Spiral-STCand Scan-STCcover the work-area grid using a path of total length l � (n+ k)D, where D
is the tool size.

Proof. In the proof of Theorem 1, the number of repetitive coverages is counted per cell. According
to the counting convention used in the proof, a free cell incurs one repetitive coverage when its entry
edge is single-sided. In this case the neighbor cell has an occupied subcell touching two subcells of the
free cell. All other cases considered in the proof of the theorem count repetitive coverages in partially
occupied cells. In all of these cases the number of repetitive coverages never exceeds the number of free
subcells in the cell. The total number of free subcells contained in partially occupied cells, together with
free subcells in free cells that touch occupied subcells contained in partially occupied cells, is bounded
by the numberk appearing in the corollary. ✷

We conclude with two comments regarding the STC algorithms. First consider the relation of the
algorithms to DFS. The path length of the STC algorithms satisfiesl � (n+m)D � 2nD, sincem� n.
But DFS can also be executed on-line on the work-area grid, and the length of its covering path would
be 2nD. However,DFS always generates a covering path of length 2nD, no matter what is the particular
geometry of the work-area grid. In contrast, the STC algorithms can be interpreted as running DFS on
a coarser grid of 2D-cells, allowing them to adapt the internal coverage of cells according to the cells’
particular geometry. In practical environmentsm � n, and in such environments the STC algorithms
generate paths whose length is close tonD. Next consider the competitive ratio of the STC algorithms,
defined asl/ lopt, where lopt is the length of the optimal coverage path. The total area of the work-
area grid isA = nD2, and the area occupied by the boundary subcells is∂A = mD2. The optimal
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Fig. 11. (a)–(b) Split and join connectivity changes in a column-segment. (c) A column-segment can deform without
experiencing any connectivity change.

coverage path satisfieslopt �A/D, and the length of the coverage path generated by the STC algorithms
satisfiesl � (n + m)D = A/D + ∂A/D. It follows that the competitive ratio satisfies the inequality
l/ lopt � 1+ ∂A/A. In practice∂A�A, and the STC algorithms achieve a close-to-optimal coverage of
practical work-area grids.

The last result of this section concerns the covering pattern generated byScan-STC. The objective of
Scan-STC is to cover the work-area grid with a vertical-scanning pattern that minimizes the number of
horizontal path segments. We present an upper bound on the number of horizontal path segments using
the following terminology. Acolumn segment is a contiguous sequence of free cells arranged vertically
and bounded by the boundaries of the work-area grid. Consider now the possible connectivity changes
that can occur in a column-segment as we move horizontally, say from left to right. A column-segment
can split into two disjoint column-segments (Fig. 11(a)) or two column-segments can join into a single
connected column-segment (Fig. 11(b)). In both cases we say that the column-segment experiences
a connectivity change. For clarity, Fig. 11(c) shows a case where a column-segment experiences no
connectivity change. The following proposition provides an upper bound on the number of horizontal
path segments in terms of the number of horizontal spanning-tree edges constructed by the algorithm.
The bound is stated for the simpler2D-Scan-STC algorithm.

Proposition 4.4. The number of horizontal spanning-tree edges constructed by 2D-Scan-STC, denoted
h, is bounded by

h� h∗ + p+ 1, (1)

where h∗ is the off-line optimal number of horizontal spanning-tree edges,6 and p is the number of
connectivity changes in the column-segments of the grid.

Let us discuss some aspects of the proposition, leaving its proof to Appendix A. First, the total length
of the horizontal segments along the covering path is 2Dh, since the covering tool moves on both sides
of each spanning-tree edge. Second, the unity term in (1) corresponds to a wasteful horizontal spanning-
tree edge that can occur in the column-segment containing the starting cell (Fig. 16(e)). This term can be
eliminated if the covering tool always starts on the grid boundary. Last, it seems that any on-line covering

6 h∗ is equal to the number of column-segments in the grid minus one.
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algorithm must “pay” for the connectivity changes. For instance, let a column-segmentC experience a
join connectivity change. ThenC can be accessed from two column-segments on its left side. Since only
local sensory information is available to the robot, it may lead the covering tool intoC from both routes.
Not knowing that it has arrived to the same column-segment, the robot may independently cover several
portions ofC, generating a wasteful covering pattern.

5. A universal on-line coverage bound

In this section we derive a lower bound on the path-length of any on-line covering algorithm for planar
environments. First let us demonstrate the bound in a simple corridor whose width is identical to the tool
sizeD. Suppose the robot executing the algorithm has a range sensor with a detection range of 1− δ,
whereδ is a small positive parameter. We initially place the robot in an infinite corridor and wait until
it covers a length-L portion of the corridor, whereL� 1. At that instant we truncate the corridor at a
unit distance from both sides of the length-L portion, as shown in Fig. 12. Since the robot has no way
of knowing about this change in the environment, its on-line behavior would be identical if it starts at
the same point in the truncated corridor. The length of the on-line covering path isl � 2L + 3, since
the covering tool must visit both ends of the corridor before coverage is complete. The shortest off-
line covering path, achieved by sweeping the corridor from end to end, has lengthlopt = L + 2. Thus
l/ lopt � 2− ε, and this is the lower bound we wish to establish. However,the corridor environment does
not support the bound for covering tours where the robot must return to its starting point. Another caveat
with the corridor is that the shortest off-line covering path does not start at the same point as the on-line
algorithm.

Fig. 12. A corridor environment with an on-line covering path depicted.

Fig. 13. (a) A double-ring environment. (b) The local incision performed on the edgeJi . (c) The environment resulting from
k incisions.



Y. Gabriely, E. Rimon / Computational Geometry 24 (2003) 197–224 213

The more sophisticated environment presented in Fig. 13 is circular, and the lower bound is established
in this environment both for covering paths and tours. Moreover, the circular environment gives no
advantage to any particular initial point. Hence the off-line covering path might as well start at the same
point as the on-line algorithm.

Theorem 2. Every on-line covering algorithm of a bounded planar environment generates in worst case
a covering path or tour whose length is at least (2− ε)lopt, where lopt is the length of the shortest off-line
covering path, and ε is an arbitrarily small positive parameter.

Moreover, in planar grid environments the bound is ε-tight, since there exist on-line algorithms (such
as the STC algorithms and DFS) that generate covering paths whose length is at most 2lopt.

The on-line coverage bound is valid under the following general conditions. The planar environment
may be continuous or a discretized grid. The covering tool may have any convex shape with non-empty
interior, and it may move along arbitrary paths. Finally, the robot’s range sensor may have an arbitrary
finite detection range.

Proof. In the proof we identify the robot with the covering tool. Furthermore, we consider for simplicity
a point robot covering a graph. We loose no generality by this simplification, as a thickening of the graph
to rectangular corridors of widthD and lengths that are integer multiples ofD would imply the same
bound in grid as well as continuous planar environments. The robot is able to detect nodes of the graph
by “looking” along edges of the graph, and it has a detection range of 1− δ whereδ is a small positive
parameter. Given an on-line coverage algorithm, we execute the algorithm in thedouble-ring environment
depicted in Fig. 13(a). The ring consists of 2k edges arranged in parallel pairs, wherek� 1. Each edge
has lengthL such thatL� 1. Adjacent edges are connected by an×-shaped node that allows the robot
to freely move between the four edges meeting at the node. During the execution of the algorithm, we
performk local incisions that remove portions of the edges. However, the removed portions always lie
beyond the robot’s detection range.

The local incision procedure is as follows. Letx1, . . . , xk be the nodes of the ring, arranged in
counterclockwise order. LetIi andJi be the parallel edges connectingxi andxi+1, where indexing is
modulok. Let the starting point be at the nodex1. The robot initially covers portions of the four edges
incident tox1. The first incision occurs at the instant when the robot reaches within a distance ofone unit
from one of the nodes adjacent tox1. Suppose this event occurs first on the edgeI1 which leads tox2.
We remove from the parallel edge,J1, the portion that lies at a distance ofone unit beyond the covered
portion ofJ1 (Fig. 13(b)). There is no problem with this incision, sinceL� 1 and the covered portion of
J1 is more than one unit away fromx2. Note that the portion removed fromJ1 has not been detected by
the robot. The robot next continues with its covering path, and at a certain instant it would reach a new
node. We may assume that the robot visits the nodes in counterclockwise order, until it reaches the last
nodexk . (The robot may visit the nodes in any other order, but the covering path would only be longer.)
The same local incision is repeated in every edgeJi for i = 1, . . . , k−1, while the edgesIi are left intact.
The last edgesIk andJk have been already partially covered by the robot, since these edges are incident
to the starting nodex1. In these edges only, we wait until the robot approaches withinone unit distance
from the covered portion of eitherIk or Jk . Suppose this event occurs first inIk . Then we remove the
middle portion ofJk which liesone unit away from the covered portions ofJk . The environment resulting
from thek incisions is depicted in Fig. 13(c).
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The modified environment consists of a loop ofk edgesI1, . . . , Ik each having a lengthL. Every node
xi also has a truncated edge emanating from it (x1 has two truncated edges). For purpose of path-length
computation, letHi be the length of the portion ofJi that has been covered up to the instant of incision
in Ji . (The piece of each edgeJi has a total length ofHi + 1.) Also, let

H =
k∑

i=1

Hi.

A key property of the modified environment is thatthe on-line algorithm has covered a length-Hi portion
of the piece of Ji emanating from xi when it reaches within one-unit distance from xi+1 along the edge Ii .
In the best scenario the robot first completes the coverage of the edgesI1, . . . , Ik, then performs a
second loop while pausing at each node to cover the truncated edge (two truncated edges in the case
of x1) emanating from it. The total length of the motion along the edgesIi is 2kL. During the first
circumnavigation the robot covers a length-Hi portion of the piece ofJi emanating fromxi , then retreats
throughxi into the parallel edgeIi . Hence the total length of the motion along the pieces of the edges
Ji is 2H during the first round, and an additional 2(H + k) during the second round. The total length of
the on-line coverage path is thereforel � 2kL+ 4H + 2k. Note that the assumptionk� 1 allows us to
ignore the small difference in the total length of a covering path and a covering tour for this particular
environment.

Let us now compute the off-line optimal covering path. Starting fromx1, the optimal covering path
circumnavigates the modified environment once, stopping at each node to cover the edge-piece (two
edge-pieces in the case ofx1) emanating from it. The total length of the optimal covering path is
lopt = kL+ 2(H + k), since the robot must enter and retreat from every piece of the edgesJi . Comparing
l with lopt, we obtain thatl � (2− ε)lopt, whereε= 2k/(kL+ 2(H + k))� 1 sinceL� 1. ✷

6. Simulation results

We now present simulations of the four algorithms2D-Spiral-STC, full Spiral-STC, 2D-Scan-STC
and full Scan-STC. The algorithms are run on an environment that resembles several rooms populated
by pieces of furniture. The first example shows several execution stages of the2D-Spiral-STC algorithm
(Fig. 14). In Fig. 14(a) the covering tool follows the right-side of the spanning-tree edges along a subcell
path that spirals outward from the starting cellS. The spiral shape is a result of the algorithm’s selection
of new neighbors in counterclockwise order, starting with the parent cell. This selection rule forces
the covering tool to turn right whenever possible, and in empty regions this policy yields spiral paths.
When the covering tool reaches the outer boundary, it follows this boundary into the lower-left room.
In Fig. 14(b) the covering tool spirals inward to the center of the lower-left room. The cell at the center
of this room is a leaf node of the spanning tree, and the covering tool backtracks outward along the
complementary spiral. In Fig. 14(c) the covering tool proceeds to the lower-right room, and in Fig. 14(d)
the room is covered with the same double-spiral pattern. Finally, the covering tool spirals inward to the
starting cellS, resulting in a complete coverage of the grid. The spanning tree constructed by2D-Spiral-
STC appears in Fig. 14(e). Note that the covering path is optimal, in the sense that there is no repetitive
coverage of any point in the area underlying the grid of free 2D-cells.

The next example shows several execution stages of the fullSpiral-STC algorithm (Fig. 15). In contrast
with the previous grid of 2D-cells, the discretization of the environment intoD-size subcells yields
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Fig. 14. Five covering stages of the2D-Spiral-STC algorithm.
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Fig. 15. Five covering stages of the fullSpiral-STC algorithm, with repetitive coverage depicted in dark gray.
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a completely general grid. Fig. 15(a) shows that here, too, the covering tool initially spirals outward.
However, now the covering tool crosses the spanning-tree edges at places where subcells on the right-
side of the spanning-tree edges are occupied by obstacles. In Fig. 15(b) the covering tool follows the outer
boundary into the lower-left room. The room is covered with a double-spiral pattern whose inner part lies
between the internal obstacles (see Fig. 15(e) for the corresponding spanning tree). The covering tool next
proceeds to cover the lower-right room as shown in Fig. 15(c)–(d). The narrow gaps between the internal
obstacles in both rooms incur repetitive coverage of subcells in these gaps. This repetitive coverage
is fundamental—any on-line coverage algorithm must in worst-case repetitively cover all subcells that
locally disconnect the work-area grid. Fig. 15(e) shows the completion of coverage, where the covering
tool spirals back to the starting cell. The figure shows in dark gray the subcells that were covered twice
(one subcell was covered three times in this example). In total 18% of the subcells in this environment
were repetitively covered. While we do not know the precise length of the globally optimal covering
path in this example,Spiral-STC generated a covering path whose length is at most 18% longer than the
globally optimal path.

The third example shows the2D-Scan-STC algorithm (Fig. 16). In Fig. 16(a) the covering tool follows
a vertical-scanning pattern that extends leftward from the starting cell. The spanning tree constructed
during this stage is overlayed, and its distinctive comb-like shape should be noted. The comb’s “spine”
lies a distanceD away from the lower wall, leaving an empty subcell-path that would allow the covering
tool to retreat into the right-side of the environment. Fig. 16(b) shows the stage where the covering tool
retreats from the lower-left room along the wall. It returns to the column of the starting cell and completes
the coverage of the initial room with a vertical-scanning pattern that extends rightward (Fig. 16(c)).
Intuitively speaking,2D-Scan-STC exhibits a desired behavior, whereby it covers entire rooms except
for an escape route which is left along the room’s walls. This feature is not shared by the previous
algorithms, and its practical significance is discussed in the concluding section. Next, Fig. 16(d) shows
the covering of the lower-right room, and Fig. 16(e) shows the completion of coverage. Note that the
spanning tree constructed by the algorithm almost minimizes the number of horizontal spanning-tree
edges. It contains a single wasteful horizontal edge at the top of the column containing the starting cell.
The corresponding covering path is not only optimal in its length, but is also almost optimal in terms of
the number of horizontal path-segments.

The last example shows the fullScan-STC algorithm (Fig. 17). Here, too, the discretization of the
environment into a grid ofD-size subcells incurs repetitive coverage. In this example 17% of the subcells
were repetitively covered, making the covering path at most 17% longer than the globally optimal path.
The average amount of repetitive coverage generated by the fullScan-STC andSpiral-STC algorithms
can be characterized as follows. Recall that repetitive coverage occurs at places where the subcells on the
right-side of the spanning-tree edges are occupied by obstacles. In particular, all the repetitive coverages
occur in subcells that share a point or an edge with the grid boundaries. On average, half of these boundary
subcells lie on the left-side of the spanning-tree edges, and the covering tool must pass through these
subcells twice during the spanning tree circumnavigation. On average slightly more than 50% of the
boundary subcells are repetitively covered, due to additional repetitive coverage incurred each time the
covering tool crosses the spanning-tree edges. We have not attempted to rigorously measure the average
amount of repetitive coverage in simulations. In the examples described here,Spiral-STC repetitively
covered 56% of the boundary subcells (Fig. 15(e)), whileScan-STC repetitively covered 52% of the
boundary subcells (Fig. 17(e)).
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Fig. 16. Five covering stages of the2D-Scan-STC algorithm, with the spanning tree overlayed in each stage.
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Fig. 17. Five covering stages of the fullScan-STC algorithm, with repetitive coverage depicted in dark gray.
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7. Conclusion

We presented and analyzed two on-line mobile robot covering algorithms. Both algorithms incre-
mentally discretize the work-area into a grid ofD-size cells, then follow a path that circumnavigates a
spanning tree constructed for a coarser grid of 2D-size cells. The two algorithms differ in the incremental
rule they employ to construct the spanning tree.Spiral-STC treats the grid edges as having equal weights
and generates spiral-like covering patterns.Scan-STC assigns lower weights to grid edges aligned with a
desired scanning direction and generates scan-like covering patterns. Both algorithms treat partially oc-
cupied 2D-cells as special nodes of the spanning tree that incur repetitive coverage. The algorithms cover
any planar grid ofD-size cells in O(n) time using a covering path whose length is at most(n+m)D,
wheren is the number ofD-size cells andm � n is the number ofD-size cells along the grid bound-
ary. The algorithms satisfy an even tighter path-length bound of(n+ k)D, wherek �m is the number
of D-size cells that lie along the grid boundary in the vicinity of partially occupied 2D-cells. We also
quantified the quality of the scanning pattern generated by2D-Scan-STC. The number of path-segments
orthogonal to the desired scanning direction is bounded byh∗ + p + 1, whereh∗ is the off-line mini-
mum number of path-segments orthogonal to the scanning direction, andp is the number of connectivity
changes in the columns of the grid aligned with the scanning direction.

Both algorithms require O(n) memory, which imposes a limit on the size of the work-areas that
can be covered by a limited-memory robot. The STC algorithms can be adapted for the use of cell
markers, and in that case they would require only O(1) memory [9]. Finally, we showed that any on-line
coverage algorithm generates a covering path whose length is at least(2 − ε)lopt in worst case. Since
(n + m)D � 2lopt, the bound is tight and the STC algorithms are worst-case optimal. The trivial DFS
is also worst-case optimal. However, DFS always generates a path whose length is 2nD. In contrast,
the length of the path generated by the STC algorithms is at most(n+m)D, wherem� n in practical
environments.

Let us mention several open issues concerning on-line mobile robot coverage. The first issue is
coverage within guaranteed return-time bounds. Given a cell in the interior of the grid, it is desirable
to complete the coverage of the cell as well as its surrounding cells within a guaranteed time bound.
The practical motivation for this requirement is the accumulative error incurred by the robot’s position
sensors. If the robot does not complete the coverage of any particular area in a reasonably short time,
it will have to compensate for its position uncertainty by employing wasteful overlap in its covering
pattern.Spiral-STC is problematic in this respect, since it leaves in each room a spiral pattern that
has to be covered at a later stage. In contrast,Scan-STC covers contiguous areas leaving only cells
along the grid boundary. UnfortunatelyScan-STC does not guarantee any return-time bound, and to our
knowledge no other on-line covering algorithm guarantees such a bound. A second issue is cooperative
coverage by several mobile robots. Existing results on cooperative coverage employ cell markers to
communicate the state-of-coverage between the group members [22]. It is more desirable to achieve
cooperative coverage using local communication between the robots. A fundamental question in this
context is to identify the minimal amount of communication that would still allow a reasonable speedup
of the cooperative coverage. A third issue is on-line coverage of curved terrains by a mobile robot. In
this case a representation of the terrain’s surface by a uniform grid may not be well justified, since
the surface’s area-form varies along the surface while the covering-tool’s shape is constant. This issue
becomes even more acute when a robot arm has to cover a three-dimensional structure [3].
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Appendix A. Details concerning the STC algorithms

The following lemma asserts that the STC algorithms cover the subcells of every cell in counterclock-
wise order.

Lemma A.1. The 2D-Spiral-STCand 2D-Scan-STCalgorithms cover the subcells of each cell in
counterclockwise (but not necessarily contiguous) order. Hence there is always an empty subcell path
leading from the current subcell to the next new neighbor in counterclockwise order.

Proof. Consider the2D-Spiral-STC algorithm. If a cellx has no new neighbors,x is a leaf-node of the
spanning tree and the covering tool circumnavigates this node as depicted in Fig. 18(a). Ifx has new
neighbors, the algorithm selects the first neighbor in counterclockwise order, starting with the parent
cell w. Let y denote this neighbor. Since the covering tool follows the right-side of the spanning-tree
edges, when it exits intoy through a particular subcell ofx, it must return fromy into the next subcell
of x in counterclockwise order. As Fig. 18(b)–(d) depicts, for each combination of new neighbors the
subcells ofx are consequently covered in counterclockwise order.✷

Next we establish an upper bound on the number of horizontal spanning-tree edges constructed by
2D-Scan-STC. Proposition 4.4 is repeated here with a simplifying assumption that the starting cell lies
on the grid boundary.

Proposition 4.4. Let the starting cell lie on the grid boundary. Then the number of horizontal spanning-
tree edges constructed by 2D-Scan-STC, h, is bounded by

h� h∗ + p,

Fig. 18. The subcell paths associated with (a) a cell with no new neighbors, (b)–(c) a cell with one or two new neighbors, (d) a
cell with three new neighbors.
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where h∗ is the off-line optimal number of horizontal spanning-tree edges, and p is the number of
connectivity changes in the column-segments of the grid.

The proof of the proposition relies on two lemmas. The first lemma characterizes the amount of
excessive horizontal spanning-tree edges,h− h∗.

Lemma A.2. The number of excessive horizontal spanning-tree edges constructed by 2D-Scan-STCis
equal to the number of vertical grid-edges not included in the spanning tree.

Proof. In general, a spanning tree for a grid withN cells must haveN −1 edges. The spanning tree with
the minimum number of horizontal edges necessarily contains all the vertical edges in the grid. Since the
total number of spanning-tree edges is fixed, every excessive horizontal spanning-tree edge corresponds
to some vertical grid-edge which is not included in the spanning tree.✷

The second lemma characterizes the location of the horizontal spanning-tree edges.

Lemma A.3. Each horizontal spanning-tree edge constructed by 2D-Scan-STCis incident to a cell that
lies along the grid boundary.

Proof. The algorithm constructs a horizontal spanning-tree edge from the current cellx to a horizontal
neighbory when one of the cellsy+ 45 andy+ 90 is occupied. Thus eitherx or y has a neighbor which
is occupied by an obstacle.✷

We are now ready to prove the proposition.

Proof of Proposition 4.4. The proof is structured as follows. First we consider a column-segment that
has no connectivity change. We show that all the vertical grid-edges of such a column-segment are
included in the spanning tree constructed by the algorithm. Next we consider a column-segment that
experiences a single connectivity change. We show that in this case at most one vertical grid-edge of the
column-segment is not included in the spanning tree. Last, we generalize the result to column-segments
that experience several simultaneous connectivity changes.

Let C0 be a column-segment that experiences no connectivity change. LetC1 andC2 denote its left
and right neighboring column-segments. (There is at most one column-segment on each side ofC0.)
Lemma A.3 implies that the algorithm can possibly construct two horizontal spanning-tree edges between
C0 andC1, and two horizontal edges betweenC0 andC2. These edges are indicated with bold lines in
Fig. 19(a). The construction rule specified in the algorithm further implies that the covering tool can enter
C0 only through the top cell ofC1, or through the bottom cell ofC2. Similarly, the covering tool can exit
C0 only from the bottom cell ofC0, or from the cell adjacent to the top cell ofC2. Suppose the covering
tool entersC0 through the top cell ofC1. Then the right-turn policy of the algorithm would take the
covering tool downward inC0 as depicted in Fig. 19(a). It can be shown by induction thatthe covering
tool must have visited all the cells of C1 that border C0 before entering C0. Hence the covering tool
cannot exit fromC0 back intoC1 at the bottom cell ofC0. Rather, it backtracks upward inC0 until it exits
into C2. At that instant all the cells ofC0 that borderC2 have been visited by the covering tool. Hence
the covering tool must return toC0 along the same horizontal spanning-tree edge that led it intoC2. The
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Fig. 19. (a) The covering pattern of a column-segment with no connectivity change. (b) The covering pattern of a
column-segment with one connectivity change.

covering tool next visits the cells that remain in the top portion ofC0, then returns toC1. During this
excursion all the vertical grid-edges inC0 are included in the spanning tree.

Next consider the case whereC0 experiences a single connectivity change, as depicted in Fig. 19(b). In
this case one of the neighboring column-segments, sayC1, consists of two disjoint components. LetC1,1

andC1,2 denote these two components. Lemma A.3 implies that at most two horizontal spanning-tree
edges can exist betweenC0 and each of the column-segmentsC1,1, C1,2 andC2. Moreover, for each pair
of horizontal spanning-tree edges associated with a neighboring column-segment, the covering tool can
enterC0 along one of these edges and exitC0 along the other edge. Suppose the covering tool entersC0

through the top cell ofC1,1. Here again, it can be shown by induction that the covering tool must have
visited all the cells ofC1,1 before enteringC0. The covering tool therefore proceeds downward inC0,
until it exits intoC1,2 as indicated in Fig. 19(b). There are now two sub-cases to consider. LetC denote
the cell of column-segments to the left ofC1,2. In the first sub-caseC can be accessed only throughC1,2.
In that case the covering tool completes the coverage ofC then returns toC0 along the same horizontal
spanning-tree edge that led it intoC1,2. The remaining lower portion ofC0 is next covered, resulting in a
spanning tree that includes all the vertical grid-edges ofC0. In the second sub-caseC can be also accessed
from its left side (Fig. 19(b)). In this case the covering tool can move through a sequence of cells that
loops around an obstacle and brings it back into an uncovered portion ofC0. SinceC0 experiences a
single connectivity change, the covering tool must return toC0 through a cell ofC2. Moreover, this event
can occur at most once, since there exits only one feasible entry edge fromC2 into C0. Upon entering
an uncovered portion ofC0, the covering tool covers this portion until it encounters the covered portion
of C0. The gap between the two covered portions ofC0 consists of a single vertical grid-edge, and the
spanning tree is therefore missing one vertical grid-edge ofC0.

Finally consider the case whereC0 experiences several connectivity changes. (The probability of
such simultaneous events approaches zero as the tool sizeD approaches zero.) Every connectivity
change adds one more component to the neighboring column-segments. Two horizontal spanning-tree
edges can possibly exist betweenC0 and each neighboring component. Moreover, the covering tool can
enterC0 along one of these edges and exitC0 along the other edge. Once the covering tool entersC0,
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each subsequent exit fromC0 can lead to a path that takes the covering tool around an obstacle into
some uncovered portion ofC0. The number of such exit-and-entry events is bounded by the number of
connectivity changes inC0. Moreover, by construction the covering tool must cover each portion ofC0

until it encounters a covered portion ofC0. Hence the different covered portions ofC0 are separated from
each other by single vertical grid-edges. The number of vertical grid-edges inC0 which are missing from
the spanning tree is therefore bounded by the number of connectivity changes inC0. ✷
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