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ABSTRACT The area expansion and the shear moduli of the free spectrin skeleton, freshly extracted from the membrane of
a human red blood cell (RBC), are measured by using optical tweezers micromanipulation. An RBC is trapped by three silica
beads bound to its membrane. After extraction, the skeleton is deformed by applying calibrated forces to the beads. The area
expansion modulus KC and shear modulus �C of the two-dimensional spectrin network are inferred from the deformations
measured as functions of the applied stress. In low hypotonic buffer (25 mOsm/kg), one finds KC � 4.8 � 2.7 �N/m, �C �
2.4 � 0.7 �N/m, and KC/�C � 1.9 � 1.0. In isotonic buffer, one measures higher values for KC, �C, and KC/�C, partly because
the skeleton collapses in a high-ionic-strength environment. Some data concerning the time evolution of the mechanical
properties of the skeleton after extraction and the influence of ATP are also reported. In the Discussion, it is shown that the
measured values are consistent with estimates deduced from experiments carried out on the intact membrane and agree with
theoretical and numerical predictions concerning two-dimensional networks of entropic springs.

INTRODUCTION

The red blood cell (RBC) is known for its ability to with-
stand great deformations when it passes through small cap-
illaries. Because the inner cell is only composed of a viscous
fluid (solution of hemoglobin), the resistance to stress is
mainly attributed to the elastic properties of its membrane.
The RBC membrane is made of a lipid bilayer reinforced on
its inner face by a flexible two-dimensional protein network.
This skeleton is made of spectrin dimers associated to form
mainly tetramers, �200 nm long (Bennett and Gilligan,
1993). They are linked together by complex junctions (pri-
marily composed of actin filaments and protein 4.1) and
attached to the lipid bilayer via transmembrane proteins
(glycophorin C and band 3). In a simplified description,
they form a triangular network in which each actin filament
is connected to six spectrin tetramers. The actual spectrin
network has many defects and is far from being perfectly
triangular. The spectrin dimers can also self-associate into
hexamers and higher-order oligomers (Liu et al., 1987;
Ursitti et al., 1991). Moreover, the number of spectrin
filaments per F-actin varies from three to eight (Ursitti and
Wade, 1993), with an average value of six. The skeleton
elasticity is determined both by the intrinsic behavior of
spectrin filaments and by the topology of the network.
In the classical elastic model, the membrane response to

a given stress is assumed to be linear for small deformations
and is characterized by three elastic moduli: the area expan-
sion modulus K, the shear modulus �, and the bending
stiffness B. The bending stiffness ranges from a few kBT to

a few tens of kBT (Evans, 1983; Peterson et al., 1992), and
is too small to have a noticeable influence on the membrane
response to an in-plane stress. The area expansion modulus
of the RBC membrane is determined by the total amount of
lipids in the bilayer, and the membrane dilation under
stretching is usually small. By comparison, the deformation
under a shear stress is quite important and is mainly con-
trolled by the elastic response of the spectrin network
(Evans, 1973).
The elastic moduli K and � of the membrane have been

measured by various techniques, among which the micropi-
pette is the most commonly used (Evans, 1973; Hochmuth
and Waugh, 1987; Engelhardt and Sackmann, 1988; Le-
lièvre et al., 1995). This method leads to � � 4-10 �N/m
and K � 300-500 mN/m. More recently, by pulling on the
membrane with optical tweezers, we measured � � 2.5 �
0.4 �N/m (Hénon et al., 1999). With this last technique, the
strains are smaller than with micropipettes, which may
explain the difference. However, other works based on the
analysis of the local amplitude of membrane flickering can
be interpreted only if � has even a much smaller value
(Peterson et al., 1992).
The present work focuses on the elastic properties of the

membrane skeleton, characterized by its own area expan-
sion modulus KC and shear modulus �C. Many theoretical
studies, and a few experimental ones, have been devoted to
this question in the past. The goal is to separate, in the
elastic behavior of the entire RBC membrane, the respective
roles of the lipid bilayer and of the spectrin network. De-
pending on whether the skeleton is free or bound to the lipid
bilayer, theoretical approaches are slightly different. For a
triangular network constrained to in-plane deformations,
analytical and numerical works have predicted that the ratio
KC/�C should be equal to 2 in the small stress regime
(Kantor and Nelson, 1987; Boal et al., 1993; Hansen et al.,
1996). This result holds whether the spectrin strands are
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modeled as Hookean springs or are submitted to square-well
interactions. Moreover, simulations have shown that the
elastic moduli decrease when adding topological defects,
either by increasing the number of high-order oligomers or
by decreasing the coordinance number per complex junction
(Hansen et al., 1997). However, an unbound network fluc-
tuates out of its average plane, which reduces the average
distance between vertices and modifies the elastic coeffi-
cients as compared to a plane network. By performing
Monte Carlo simulations on a network freely fluctuating in
a half-space, Boal (1994) has shown that the ratio of the
in-plane elastic moduli may drop to 1.7. Furthermore, it has
been shown that the Poisson ratio of a two-dimensional
network may become negative at large stress (Aronovitz
and Lubensky, 1988; Boal et al., 1993), but this regime falls
out of most of the usual experimental conditions (including
the ones reported in this paper).
In earlier experiments, the RBC membrane was deformed

by aspiration into a micropipette. Although the skeleton
remains bound to the membrane in this case, it can freely
slide along the lipid bilayer and therefore sustains both
shear and expansion strains. Mohandas and Evans (1994)
have proposed that the overall shear modulus � of the
membrane is related through a serial coupling to the area
expansion KC and shear modulus �C of the skeleton, as � �
(�CKC)/(�C � KC). According to this formula, one expects
� and �C to have the same order of magnitude. Indepen-
dently, Stokke et al. (1986) predicted that the projection
length aspirated inside the pipette strongly depends on the
ratio �/KC. Moreover, by analyzing fluorescence images of
the spectrin distribution inside the pipette, Discher et al.
(1994) inferred a first measurement of the ratio KC/�C, close
to 2.
Qualitative behavior of a free, freshly extracted RBC

membrane skeleton has also been reported in the literature
(Svoboda et al., 1992). In that study, a membrane skeleton
trapped with optical tweezers was extracted under a micro-
scope and deformed in a flow field. From the extent of
thermal undulations and from the skeleton deformability,
the skeleton bending rigidity appeared to be markedly lower
than that of the intact RBC membrane. Moreover, a great
dependence of the skeleton size on the ionic strength was
highlighted.
In this work we present new experiments and data con-

cerning the elastic behavior of the isolated membrane skel-
eton. We measure both KC and �C by means of optical
tweezers. Our experimental setup does not allow us to
measure the skeleton bending stiffness BC. Small silica
beads bound to the skeleton are used as handles to seize and
manipulate it after dissolving the lipid bilayer with a deter-
gent (Yu et al., 1973). By applying calibrated stresses to the
skeleton through the beads and simultaneously measuring
its deformation, we can determine KC and �C. In a low
osmolarity buffer, we find �KC� � 4.8 � 2.7 �N/m, ��C� �
2.4� 0.7 �N/m, and �KC/�C� � 1.9� 1.0. These values are

in good agreement with the expected ones. The skeleton
shear modulus �C has the same order of magnitude as the
membrane shear modulus � measured by optical tweezers
(Hénon et al., 1999). The ratio �KC/�C� is close to values
obtained by theoretical and numerical studies (Boal, 1994;
Hansen et al., 1996). We also measure KC and �C in an
isotonic buffer to evaluate the influence of the ionic
strength. Finally, we characterize the time evolution of
the skeleton stiffness in either low osmolarity or isotonic
buffers.

MATERIALS AND METHODS

Optical tweezers

Our optical tweezers setup has been described elsewhere (Hénon et al.,
1999). Schematically, tweezers are made by focusing a high-power infra-
red laser beam (Nd:YAG, � � 1.064 �m, Pmax � 600 mW) through the
immersion objective (�100, NA � 1.25) of a standard optical microscope.
At the converging point, the electric field is large enough to trap small
dielectric objects, in the present work spherical silica beads, 2.1 �m in
diameter. The trap is located in the same plane as the observation plane of
the microscope. Two galvanometric mirrors having perpendicular axes are
used to control the trap position or to create multiple traps by rapidly
commuting the focusing point between different positions at frequency fc
(fc � 200 Hz). They are monitored by a numerical program coupled to the
NIH Image analysis software. This program can handle the positions of
multiple traps (up to four).
The restoring force F exerted on a trapped bead depends on the

departure 	x � x 
 x0 of the bead position x from the trap center x0.
Following Simmons et al. (1996), F(	x) is calibrated by applying a known
viscous drag force to the bead. Practically, the calibration chamber is made
of a microscope slide and coverslip separated by a plastic film spacer and
is mounted on a piezoelectric stage (model P-780; PolytecPI, Waldbronn,
Germany). The chamber is filled with a suspension of beads in pure water
and moved back and forth at constant velocity v in the horizontal plane,
while one bead is trapped by the laser beam held at a fixed position x0.
Because the steady-state regime is reached in a few microseconds and the
bead inertia is negligible, the trapping force F(	x) exactly equilibrates the
viscous drag force F� � 6��Rv, where R� 1.05 �m is the bead radius and
� � 0.9 10
3 Pa�s is the water viscosity at the experimental temperature
T � 25°C. A correction is made to the viscous drag force to take into
account the finite distance from the bead to the top or bottom of the
chamber (Svoboda and Block, 1994). The bead displacement in the flow
field 	x is measured from the microscope image. We find that F(	x) is
proportional to 	x at least for 	x � 1 �m, meaning that the trap is
harmonic in this range. In a good approximation, F is found proportional
to the incident laser power P, so that one can write:

F� �nAP	x (1)

We measured the coefficient A for a single trap: A � 0.26 pN mW
1

�m
1. The numerical constant �n depends on the number n of traps. By
definition, �1 is equal to 1, and we found �2 � 0.40, �3 � 0.25, �4 � 0.18.
We noticed no dependence of A and �n on the commuting frequency fc in
the range 150 Hz � fc � 300 Hz. Their dependence with the distance h
between the trap and the top coverslip is weak in our experimental situation
(10 �m � h � 60 �m).

Flow chamber

A schematic drawing of the stainless steel flow chamber is shown in Fig.
1. The flow is limited by a coverslip and a cylindrical lens. The chamber
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inner volume is � 0.7 ml. The lens has negligible effect on the path of
optical rays, its role is to make a narrow channel (50 �m � e � 80 �m)
to trap the RBCs as close as possible to the top coverslip. The chamber is
placed on the microscope stage and is illuminated from below for bright-
field observation. The laser beam is focused into the flow field through the
top objective and coverslip. Several holes are drilled in the chamber walls
to inject the RBCs’ suspension, the buffers, and the detergent solution
through small polyethylene catheters (300 �m in diameter).
Solutions are injected at controlled rates using syringe pumps. A ther-

mocouple probe measures the temperature in the chamber. The cylindrical
lens is coated with octadecyltrichlorosilan (Sigma, Paris, France) after a
meticulous cleaning (Decon 90 at 60°C for 20 min, H2O2 with H2SO4 for
10 min, and O3 for 1 h). Moreover, 2 ml of a solution of 50 mg/ml bovine
serum albumin (BSA; Sigma A 4503) diluted in phosphate buffered saline
(PBS; Sigma P 4417), are injected at the beginning of the manipulation.
This treatment prevents beads, erythrocytes, and (partially) freshly ex-
tracted skeletons from sticking to the lens.

Extraction of the skeleton

Fresh blood is obtained by fingertip needle prick. Red blood cells are
suspended in PBS, then washed three times by centrifugation. Silica
microbeads (�1 bead per RBC) are added to the suspension. After incu-
bating for 1 h at 4°C, the beads stick spontaneously and irreversibly to the
RBC membrane (from zero to five beads bind to each RBC). After adding
a small amount of BSA (1 mg/ml), the suspension is slowly injected into
the flow chamber. We select an RBC with three beads attached to its
periphery and trap the beads with three optical tweezers (see Fig. 2).
Although no special treatment is made to obtain ghosts, most of the cells
carrying several beads appear partially lysed when entering into the flow
chamber: the shear stresses applied to the membrane by the beads during
the injection are probably large enough to tear it. Consequently, the
skeletons are extracted from ghosts most of the time.
Two different kinds of manipulation are held: the first one in a hypo-

tonic buffer (5 mM NaCl, 5 mM K2HPO4, pH 7.4, 25 mOsm/kg) and the
second one in an isotonic buffer (PBS: 8.1 mM Na2HPO4, 1.5 mM KHPO4,
2.7 mM KCl, and 137 mM NaCl, pH 7.4, 300 mOsm/kg). For the low
osmolarity experiments, once the RBC is seized by the three beads, the
hypotonic buffer is slowly injected for 5 min to lower the osmolarity of the
medium. Then the detergent solution (Triton X-100 in hypotonic buffer �
1–3‰ in volume) is injected until bilayer dissolution. Afterward, the
detergent is rinsed out with a second injection of hypotonic buffer for 10
min. The injected volume roughly equals the chamber volume, so that the
osmolarity is stabilized at 25 mOsm/kg. Isotonic buffer experiments begin
by the injection of the detergent (Triton X-100 in PBS� 1–3‰ in volume).
After the membrane dissolution, PBS is injected for 5 min to rinse out the
detergent.

We have performed independent tests to check that the membrane
dissolution is totally achieved. Following the method described by Discher
et al. (1994), we have labeled the membrane bilayer with a fluorescent
lipophilic probe (DIOC18, from Molecular Probes, Eugene, OR), and we
have checked that the fluorescence signal vanishes completely in a few
seconds after the beginning of the detergent injection.
We start to manipulate the membrane skeleton 5 or 10 min after its

extraction. All the manipulations take place at 25°C, measured in the flow
chamber. We cannot measure the actual temperature of the skeleton, but we
assume that the local heating due to the tweezers is negligible (Liu et al.,
1995; Hénon et al., 1999) because the absorption of the skeleton proteins
at � � 1.064 �m is very low.
Once the bilayer is dissolved, the RBC is no longer visible in bright

field, but we observe in most cases that the beads cannot be moved
independently; this indicates that the beads remain linked together
through the skeleton and that their adherence sites on the RBC are most
of the time transmembrane proteins linked to the skeleton, i.e., glyco-
phorin or band 3. Several experiments are performed after labeling the
F-actin with a fluorescent probe (phalloidin-TRITC) to check that the
skeleton remains intact after extraction and to visualize it during its
deformation (see corresponding section and Fig. 5). Although it is
reported that the labeling procedure does not change the elastic prop-
erties of the skeleton (Discher et al., 1994), all the measurements are
realized without the fluorescent labeling.

Deformations of the skeleton

The skeleton is deformed by varying the distances between the traps.
Three different kinds of deformation are carried out. By increasing the
distances between the traps simultaneously in two orthogonal direc-
tions, we generate a deformation close to pure area expansion. By
increasing the distance in only one direction, we exert both area
expansion and shear. The third kind of deformation is obtained by
increasing the distance in one direction and decreasing it in the other
direction. Generally, this leads to a deformation close to pure shear. We
increase the distance between the traps by steps of �0.1 �m. Within a
few minutes, we submit the skeleton to several cycles corresponding to
the three different kinds of deformation, each cycle being made of five
to eight successive steps of increasing stress, followed by a symmetric
decrease. Because the skeleton is invisible, its deformation is interpo-
lated from the bead positions (see the following section and Theory). To
study a possible time evolution (up to 45 min after extraction), several
sets of measurements alternate with 10–15-min waiting periods.

Visualization, force measurements,
and data analysis

Visualization and image recording are made with a video camera
(model SIT 68, Dage-MTI Inc., Michigan City, IN) connected to a
Macintosh computer. For each configuration of the traps, an image is
recorded. The position of the center of each bead is located with the
NIH Image analysis software, with an accuracy of 50 nm. To determine
the traps’ positions, free isolated beads are trapped afterward at equi-
librium in each of the three tweezers for several trap configurations
corresponding to the actual cycles of the skeleton deformation; in these
conditions, the positions of the bead centers and of the traps are
identical. The calibration formula 1 gives the force exerted on each
bead during the skeleton manipulation. For all measurements, the laser
power is set to 150 mW; the force applied to each bead varies from 1
to 8 pN. The uncertainty comes both from the determination of the bead
and trap relative positions and from the accuracy on force calibration.
We evaluate the final uncertainty on the force measurements to �15%.
Similarly, the uncertainty on the beads positions determines the error
bars on the skeleton deformation (10% on average). To calculate the

FIGURE 1 Scheme of the stainless steel flow chamber, placed on the
stage of the microscope. The RBCs are trapped in the narrow channel (e �
60 �m) limited by the cylindrical lens and the coverslip. The immersion
objective is used both for the observation and the optical tweezers focusing.
Several holes allow local injection of buffers, detergent solution, and RBC
suspension through small polyethylene catheters (not shown).
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strain, the shear and area expansion stress, and finally to get the moduli
�C and KC, the data analysis and graphic Kaleidagraph software (Syn-
ergy Software, Reading, PA) is used. The corresponding algebra is
developed in the Theory section.

Membrane skeleton labeled with
phalloidin-TRITC

Control images of the actual deformation of the skeleton are done by
labeling F-actin with phalloidin-TRITC (Sigma, P1951). The method used
is described in Discher et al. (1994). It uses a cold, hypotonic lysis, so that
fluorescent probes can enter the cell and bind internally. Briefly, 2.5 �l
phalloidin-TRITC are dissolved in 20 �l cold lysis buffer (10 mM sodium
phosphate, pH 7.4). Cold, packed red cells (5 �l) are added and after 10
min, the suspension is adjusted to 100 mM KCl, 1 mM MgCl2, and
incubated at 37°C for 30 min. Then, the RBCs are washed by centrifuga-
tion and the silica beads are added.

THEORY

In this section we determine quantitative relations, involv-
ing the elastic moduli KC and �C, between the forces
exerted by each of the three trapped beads and the stresses
and strains applied to the membrane skeleton.
We consider the membrane skeleton as a continuous,

homogeneous, and isotropic elastic medium. Although out-
of-plane fluctuations may be allowed, the skeleton is as-
sumed to be flat, on average, as soon as it is put under a
slight tension. Then its in-plane elastic properties are char-
acterized by a two-dimensional area expansion modulus KC
and shear modulus �C. These approximations are reason-
able because both the membrane thickness (a few nanome-
ters) and the mesh size (�200 nm) are small compared to
the scale of experimental deformations (a few micrometers).
We also neglect the bending elasticity. Finally, we only
consider small deformations, so that linear elastic theory
applies.
A scheme of the deformed and undeformed skeleton is

represented in Fig. 2. It is assumed that the three trapping
forces FA, FB, and FC are exerted at the centers A, B, and
C of the beads. We restrict the study of the skeleton defor-
mation in the region limited by the triangle ABC. Calculat-
ing the exact strain and stress everywhere would require
extra numerical analysis. In a simplified analytical ap-
proach, we assume that the stress (and the strain) is homo-
geneous over the region ABC, so that it keeps its triangular
shape, becoming A�B�C� under tension. We are aware of the
fact that the actual stress may not be homogeneous every-
where, especially in the regions where the skeleton sticks to
the beads. This is a source of uncertainty in the determina-
tion of the elastic moduli. Images of deformed fluorescent
RBCs were precisely taken to evaluate this effect, from
which we conclude that the assumption of a homogeneous
stress is reasonable.

In the linear theory of elasticity, Hooke’s law describes
the relation between the two-dimensional 2 � 2 stress
tensor [�] and strain tensor [u]. In the principal system of
coordinates, in which these tensors are diagonal, this rela-
tion is written as:

�XX � KCuXX 	 uYY� 	 �CuXX 
 uYY� � �e 	 �s (2a)

�YY � KCuXX 	 uYY� 
 �CuXX 
 uYY� � �e 
 �s (2b)

�XY � 2�CuXY � 0

Here �e and �s are, respectively, defined as the pure area
expansion stress and the pure shear stress components. To
analyze the experiments, the procedure is the following: one
has to relate on the one hand the forces FA, FB, and FC to
the stress components �e and �s, and on the other hand the
deformation of the triangle ABC into A�B�C� to the strain
components uXX and uYY. Then KC and �C are determined
by Eqs. 2a and 2b.
The first step consists of splitting the triplet (FA, FB, FC)

into two triplets of forces (Fe) � (FeA, FeB, FeC) and (Fs) �
(FsA, FsB, FsC), applied to the vertices A, B, and C, and
respectively generating a pure area expansion stress and a
pure shear stress. This splitting can be made through a
geometrical construction detailed in the Appendix. To sum-
marize it, one projects FA � FAB � FAC along the two
directions normal to AB and AC (see Fig. 3) and makes
equivalent projections in B and C. The triplets (Fe) and (Fs)

FIGURE 2 Principle of the experimental procedure (not to scale). An
RBC is seized by trapping each of the three silica beads bound to its
periphery in optical tweezers. A detergent solution is injected to dissolve
the lipid bilayer. The beads remain stuck to the skeleton. The skeleton is
deformed by varying the distances between the traps. Its deformation,
interpolated from the beads positions, is a superposition of shear and area
expansion. The forces exerted on the beads are calculated with calibration
formula 1.
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are then given by:

FeA � 

FBC 	 FCB

2

FsA �
FA 
 FBA 
 FCA

2 � FA 
 FeA (3a)

FeB � 

FAC 	 FCA

2

FsB �
FB 
 FCB 
 FAB

2 � FB 
 FeB (3b)

FeC � 

FAB 	 FBA

2

FsC �
FC 
 FAC 
 FBC

2 � FC 
 FeC (3c)

The relations among �e, �s, (Fe), and (Fs) are:

�e � 2
FeA
BC� 2

FeB
AC� 2

FeC
AB

(see Eq. A8)

�s � 2
FsA
BC� 2

FsB
AC� 2

FsC
AB

(see Eqs. A10–A12)

The strain may be calculated from the measured defor-
mation of the triangle ABC into A�B�C�. The pure area
expansion contribution uXX � uYY is equal to the relative
surface increase 	S/S of the triangle. The area expansion
modulus is given by �e � KC	S/S.
The shear deformation is defined as uxx 
 uyy � �ux/

�x 
 �uy/�y, where u represents the local displacement. It
can easily be calculated in the principal system of coordi-
nates (eX, eY) defined in the Appendix, in which �uX/�Y �
�uY/�X � 0. For instance, in this system of coordinates, the
side AB� Xex � Yex becomes A�B� � X�ex � Y�ex and the
shear deformation is given by:

uXX 
 uYY �
X� 
 X
X 


Y� 
 Y
Y (4)

The shear modulus is obtained by �s � �C(uXX 
 uYY).
To conclude this section, it is important to point out that

the membrane skeleton is a closed surface and that its
deformation depends on the relative positions of the beads
at its periphery. If the plane defined by the three beads is a
plane of symmetry for the RBC, the forces are symmetri-
cally exerted on both sheets of the skeleton (Fig. 4 A). On
the contrary, if it is not a plane of symmetry, only one sheet
(the top or the bottom one) is deformed (Fig. 4 B). The

FIGURE 3 Construction used to separate the triplet of forces (F) � (FA,
FB, FC) into two triplets of forces (Fe) � (FeA, FeB, FeC) and (Fs) � (FsA,
FsB, FsC), respectively, generating a pure area expansion and a pure shear
stress. FA � FAB � FAC is projected along the two directions normal to AB
and AC. Equivalent projections are drawn in B and C. The triplets (Fe) and
(Fs) are explained in the text.

FIGURE 4 The number of sheets of the skeleton that are deformed
depends on the position of the beads. (A) If the beads are in a plane of
symmetry for the skeleton, the upper and lower sheets of the skeleton are
deformed. (B) If the beads are not in a plane of symmetry, only one sheet
is deformed.
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above theoretical presentation is restricted to a single sheet,
but the possibility of pulling simultaneously on both sheets
will be taken into account in the Results section.

RESULTS

Visualization of the skeleton

Control images of the skeleton after its extraction are done
by labeling F-actin with phalloidin-TRITC, allowing visu-
alization of the skeleton during its deformation. Experi-
ments are carried out in hypotonic and isotonic buffer. Fig.
5 shows two images taken during the first set of deforma-
tions in isotonic buffer. Fig. 5 A is taken with low stress
applied to the skeleton, Fig. 5 B shows the same skeleton at
higher stress. They confirm that the skeleton remains stuck
to the beads after the dissolution of the lipid bilayer. More-
over, the deformed skeleton globally keeps a triangular
shape on both images: no local excessive stretching is
visible in Fig. 5 B, especially in the regions where the beads
are attached. This indicates that, in a first approximation, the
stress is homogeneous over the deformed area and validates
the model proposed in the Theory section. Images of de-

formed skeletons in hypotonic buffer lead to the same
conclusion.

Measurements in low osmolarity buffer

We present here measurements held in a low osmolarity
buffer (25 mOsm/kg) without adenosine triphosphate (ATP)
and at room temperature, i.e., �25°C. In this section we
report the results of the first set of skeleton manipulations,
which starts 10 min after its extraction and takes place
within a couple of minutes. A low osmolarity buffer is used
to prevent the shrinkage of the skeleton in the presence of
screening charges, as reported by Svoboda et al. (1992).
Before extraction, the RBC membrane is maintained un-

der a slight tension by pulling on the beads with the optical

FIGURE 5 Two images of a skeleton visualized by labeling F-actin with
phalloidin-TRITC, taken during the first set of deformations in an isotonic
buffer. In (A) a low stress is applied to the skeleton, and (B) shows the same
skeleton at higher stress. The skeleton roughly keeps a triangular shape,
meaning that the approximation of homogeneous strain is reasonable.

FIGURE 6 Stress versus strain plotted for a typical deformation of a
freshly extracted skeleton in low osmolarity buffer (25 mOsm/kg). (A) Pure
area expansion component �e versus area dilation 	S/S; (B) pure shear
component �s versus shear strain uXX 
 uYY. Notice the linear behavior in
both cases, in agreement with linear elasticity model. The respective slopes
give the area expansion modulus KC and the shear modulus �C.
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tweezers. When the front of the detergent solution arrives on
the trapped RBC, the membrane begins to deform. Then,
within a second, the beads move back to the center of the
traps while the contour of the RBC disappears. This means
that, in hypotonic buffer, the skeleton slightly expands as
the lipid bilayer is dissolved (see Discussion). Fig. 6 A and
B show typical results obtained for a deformation consisting
of increasing the distance between the traps along one
direction while the distance along the perpendicular one
remains constant. This deformation generates both area
expansion and shear strains. Graph 6 A is a plot of the area
expansion stress �e versus the relative surface increase
	S/S. Graph 6 B shows the shear stress �s versus the shear
strain uXX 
 uYY. We observe a linear relation in both
cases, which means that the skeleton elastic behavior is
correctly described by Hooke’s law. On graph 6 A, the area
increases by up to 15%. The slope gives the area expansion
modulus, here KC � 6.1 �N/m. On graph 6 B, the maximum
deformation is 30%, and the slope gives the shear modulus
�C � 2.7 �N/m.
Table 1 reports the values of the shear and area expansion

moduli, obtained for 19 different skeletons in the 25
mOsm/kg buffer. Each value is an average over several
measurements corresponding to different deformations
(usually six) of the same skeleton. The values of the elastic
coefficients, averaged over the 19 skeletons, are �KC� �
9.0 � 3.6 �N/m, ��C� � 5.2 � 2.1 �N/m, and �KC/�C� �
2.3 � 1.1. Notice the important dispersion: 3.5 �N/m �
KC � 14.6 �N/m, 1.8 �N/m � �C � 9.6 �N/m, and 1.0 �
KC/�C � 4.8. It can be explained by the fact that we do not

control the number of sheets of the skeleton that are actually
deformed. In a simple description, the forces are exerted
either on a single sheet of the skeleton or on both sheets,
depending on the bead positions (see Fig. 4). The actual
situations may be more complex and, for instance, the
deformation of the same skeleton may concern either the
two sheets or only a single one, depending on the direction
of the exerted forces. Of course, when two sheets are
deformed, one expects to measure apparent elastic moduli
twice as much as for a single sheet. To take this into
account, we have plotted in Fig. 7, A and B, the values
obtained for each single deformation (77 measurements for
KC and 76 for �C). As expected, the stack histograms N(KC)
and N(�C) present two maxima. For instance, in Fig. 7 A,
the first maximum is at KC � 4–6 �N/m and the second one
at KC � 9–11 �N/m. The ratio between these values is
close to 2, which supports our assumption about the defor-
mation of either one or two sheets. To be more quantitative,
we fit the histogram by a sum of two Gaussian curves:

NKC� � A1 exp�

KC 
 �KC��2

2	KC12 �
	 A2 exp�


KC 
 2�KC��2

2	KC22 � (5)

where A1 and A2 are two constants, 	KC1 and 	KC2 the
standard deviations. The maximum of the second Gaussian
function is set to twice the first one. The same analysis is
performed for the shear modulus �C, for which the stack

TABLE 1 Area expansion modulus and shear elastic modulus measured for 19 skeletons in low osmolarity buffer (25 mOsm/kg)
without ATP

Skeleton No.
Area Expansion Modulus

KC (�N/m)
Shear Modulus �C

(�N/m) KC/�C

1 7.1 � 3.6(6) 3.7 � 2.4(6) 2.0 � 0.6(6)
2 4.4 (1) 6.3 � 1.3(2) —
3 12.3 � 5.4(3) — —
4 10.2 � 3.8(5) 8.8 � 3.9(4) 1.5 � 0.8(4)
5 8.4 � 2.7(6) 4.5 � 0.8(4) 1.9 � 1.1(4)
6 4.1 � 1.3(6) — —
7 9.3 � 2.6(6) 4.8 � 1.5(6) 2.0 � 0.2(6)
8 11.9 � 6.1(4) 8.1 � 3.3(4) —
9 6.8 � 1.5(8) 4.5 � 2.7(8) 2.0 � 1.3(8)
10 3.5 � 1.1(7) 3.9 � 1.4(7) 1.1 � 0.8(7)
11 9.7 � 3.7(3) 4.0 � 1.5(2) 2.0 � 0.1(2)
12 14.6 � 4.8(4) 7.3 � 4.6(6) 3.4 � 2.0(3)
13 14.0 � 2.2(3) 4.5 � 1.4(5) 3.0 � 1.2(3)
14 6.5 � 0.5(4) 3.5 � 1.8(4) 2.3 � 1.1(4)
15 13.9 � 1.4(7) 9.6 � 3.2(3) 1.5 � 0.6(3)
16 — 5.5 � 3.7(3) —
17 12.2 � 1.7(5) 3.6 � 1.2(4) 3.7 � 0.8(4)
18 4.3 � 3.3(4) 4.1 � 0.9(4) 1.0 � 0.7(4)
19 8.7 � 3.6(6) 1.8 � 0.6(4) 4.8 � 0.7(4)

Average 9.0 � 3.6 5.2 � 2.1 2.3 � 1.1

The values are averaged over several deformations exerted on the same skeleton (number indicated in parentheses).
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histogram also shows two maxima at �C � 1.5–3 �N/m and
�C � 4.5–5.5 �N/m (Fig. 7 B). From the fits we deduce the
average values of elastic moduli for a single sheet �KC� �
4.8 � 2.7 �N/m and ��C� � 2.4 � 0.7 �N/m (Table 2). As
expected, the skeleton shear modulus and the area expan-
sion modulus have the same order of magnitude as the intact
membrane shear modulus �.
Fig. 8 represents a stack histogram of the ratio KC/�C, KC

and �C being measured from the same deformation. From
the 19 studied skeletons, 65 deformations give both �C and
KC. As expected, there is only one maximum. Fitting the
stack histogram with a single Gaussian curve gives the
average value �KC/�C� � 1.9 � 1.0. This value is in
agreement with the predictions of theoretical and numerical
studies performed on networks either confined in two di-
mensions (Kantor and Nelson, 1987: KC/�C � 2; Boal et al.,

1993: KC/�C � 2; Hansen et al., 1997: KC/�C � 2) or
fluctuating in three dimensions (Boal, 1994: KC/�C � 1.7).

Measurements in isotonic buffer

We present here measurements held in an isotonic buffer
without ATP at room temperature, i.e., �25°C. The skele-
ton manipulation starts 5 min after its extraction. We apply
the same kind of deformations as in the low hypotonic
experiments.
Just after the lipid bilayer dissolution, the beads sponta-

neously move away from the trap centers, due to a partial
shrinking of the skeleton (see Discussion). After rinsing out
by a buffer injection the tension of the skeleton is partially
released by decreasing the distance between the traps, and
deformations can be held. During the manipulations, the
optical tweezers keep the skeleton under slight tension to
prevent further shrinkage as much as possible.
For each deformation we plot the expansion stress �e

versus the relative surface increase 	S/S and the shear stress
�s versus the shear strain uXX 
 uYY. We obtain the same
kind of graphs as the ones shown in Fig. 6, A and B. The
surface increases by up to 15% and linear variations are
observed in both cases. The slopes give the elastic moduli.
The experiments in isotonic buffer were held on 7 skel-

etons, 44 different deformations for KC and 35 for �C. The
average values over all the skeletons are �KC� � 22.6 � 4.5
�N/m, ��C� � 7.9 � 2.7 �N/m, and �KC/�C� � 2.9 � 0.6.
We have plotted in Fig. 9, A and B the stack histograms of
KC and �C obtained for each deformation. Contrary to the
measurements in low osmolarity buffer, there is no clear
evidence for two maxima on the stack histograms. It is

FIGURE 7 Stack histograms of the elastic moduli KC (A) and �C (B)
obtained for each deformation (77 measurements for KC and 76 for �C on
19 different skeletons) right after extraction in low osmolarity buffer. The
histograms present two maxima: the first one corresponds to the deforma-
tion of a single sheet of the skeleton and the second one of both sheets. The
values of the two maxima are in a 2:1 ratio. The best fit with a double
Gaussian is also represented.

FIGURE 8 Stack histogram of the ratio KC/�C, KC, and �C being mea-
sured from the same deformation of a skeleton, right after extraction in low
osmolarity buffer. The best Gaussian fit is shown. The center value is
�KC/�C� � 1.9 � 1.0. This value is close to the predictions of theoretical
and numerical studies for a two-dimensional triangular network of identical
springs.
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likely that the two sheets of the skeleton stick together
because the high ionic strength of the medium screens the
repulsive interaction between spectrin filaments. Fitting the
KC and �C stack histograms by a single Gaussian function

gives �KC� � 21.3 � 10.5 �N/m and ��C� � 6.7 � 3.0
�N/m. If we could assume that the two sheets were per-
fectly stuck to each other, with a density of adherence points
comparable to the density of vertex in the spectrin network,
then we could infer the elastic moduli for a single sheet:
�KC� � 10.7 � 5.3 �N/m and ��C� � 3.4 � 1.5 �N/m.
However, in practice, it is not possible to estimate the
number of adherence points and we do not know how the
stresses divide between the two sheets. Moreover, there
might be a partial fusion between the two sheets, so that the
spectrin network loses its initial topology. Nevertheless, we
consider the above elastic moduli as orders of magnitude for
a single sheet and we keep them for further comparison with
the one measured in hypotonic buffer.
Fig. 10 shows the histogram of the ratio KC/�C in isotonic

buffer. As for the low hypotonic measurements, each value
is determined on the same skeleton and for the same defor-
mation. Of the 44 deformations held on the 7 skeletons, 24
give both KC and �C. The average is �KC/�C� � 3.0 � 1.3.
This value is higher than the one expected from theoretical
and numerical works (Kantor and Nelson, 1987; Boal et al.,
1993; Boal, 1994; Hansen et al., 1996). This might result

FIGURE 9 Stack histograms of the elastic moduli KC (A) and �C (B)
obtained for each deformation (44 measurements for KC and 35 for �C on
seven different skeletons) right after extraction in isotonic buffer. Contrary
to the measurements in low osmolarity buffer, there is no clear evidence for
two maxima. In this case the two sheets of the skeleton may be stuck
together, because the high ionic strength of the medium screens the
repulsive interaction between the spectrin filaments.

FIGURE 10 Stack histogram of the ratio KC/�C, KC, and �C being
measured from the same deformation of a skeleton, right after extraction in
isotonic buffer. The average value is �KC/�C� � 3.0 � 1.3.

TABLE 2 Comparison of the values of the area expansion and shear elastic modulus ascribed to a single sheet of the skeleton,
measured in various conditions: low osmolarity buffer or isotonic buffer, right after extraction or 15 min after the first set
of deformations

Area Expansion Modulus
KC (�N/m)

Shear Modulus �C
(�N/m) KC/�C

25 mOsm/kg buffer, no ATP, 25 mOsm/kg
Right after extraction 4.8� 2.7 (88) 2.4 � 0.7 (76) 1.9 � 1.0 (65)
15 min after extraction 5.1� 1.2 (56) 2.0 � 0.5 (38) 1.7 � 1.0 (33)

Isotonic buffer, no ATP, 300 mOsm/kg
Right after extraction 10.7� 5.3 (44) 3.4 � 1.5 (35) 3.0 � 1.3 (24)
15 min after extraction 15.4� 3.4 (35) 4.7 � 1.3 (20) 3.7 � 1.8 (18)

The total number of deformations is indicated in parentheses.
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from the fact that the two sheets are stuck to each other and
no longer form a plane triangular network.

Time dependence

After the first set of deformations, the skeleton is held for 10
or 15 min with the optical tweezers switched on. Then,
another set of deformations is performed. The results, either
in hypotonic or in isotonic buffer, are similar to the ones
obtained right after the extraction: a linear dependence is
observed between the stresses and strains, both for area
expansion and shear. In the low osmolarity buffer, the stack
histograms also present two maxima (not shown). We fit
them by a sum of two Gaussian functions, and we deduce
the elastic moduli for a single sheet in low osmolarity buffer
�KC� � 5.1 � 1.2 �N/m and ��C� � 2.0 � 0.5 �N/m on,
respectively, 56 and 38 deformations. The ratio �KC/�C� on
33 deformations is 1.7 � 1.0. Thus, 15 min after the
skeleton extraction in hypotonic buffer, we do not observe
any significant change of its elastic coefficients. The values
obtained in isotonic buffer are �KC� � 15.4 � 3.4 �N/m,
��C� � 4.7 � 1.3 �N/m, and �KC/�C� � 3.7 � 1.8 on,
respectively, 35, 20, and 18 deformations. We notice that,
oppositely to hypotonic buffer, the skeleton properties rap-
idly change in isotonic buffer: after 15 min, the area expan-
sion increases by up to 44% and the shear modulus by up to
38%. The spectrin filaments may progressively stick to each
other as the buffer ions screen the repulsive interactions, and
may finally form a three-dimensional structure, stiffer than
a two-dimensional network.
The behavior at longer time is somehow different. Most

of the time, we were able to manipulate a skeleton for 30 or
45 min after its extraction. The skeletons extracted in 25
mOsm/kg buffer generally become progressively softer with
increasing time. Some measurements (data not shown) re-
alized 30 min after extraction give an area expansion mod-
ulus as low as 1.5 �N/m—the shear modulus could not been
measured. After 45 min, the skeletons are often damaged
and can no longer be deformed. In some cases, they break
up and separate from the beads. The long-time behavior of
skeletons extracted in isotonic buffer is different. Generally,
as long as the skeleton is held under tension with the
tweezers, the stiffness stabilizes after 15 min and no further
apparent change is measured.

ATP dependence

Previous work have shown that the mechanical behavior of
the RBC membrane is modified in the presence of adeno-
sine triphosphate (ATP) (Manno et al., 1995). For instance,
ATP enhances the fluctuations of the intact membrane
(Levin and Korenstein, 1991) and also of the membrane
skeleton (Tuvia et al. 1998), with which it interacts through
various binding sites. In this work we looked for a possible

change of the skeleton elasticity in the presence of ATP.
Measurements are performed in low osmolarity buffer (25
mOsm/kg) with 1 mMATP. We notice that, after extraction,
the skeletons are generally under tension, while no tension
is observed on skeletons extracted in low osmolarity buffer
without ATP. We must release this tension by reducing the
distance between the traps before pulling on the skeletons.
The area expansion modulus measured right after extraction
and averaged over eight different deformations of four
skeletons is �KC� � 11.0 � 4.5 �N/m. Although there are
too few results to infer a reliable value for the elastic moduli
of a single sheet, it seems that adding ATP increases the
initial tension without significantly changing the elastic
moduli.

DISCUSSION

Despite the relative dispersion of the values from one skel-
eton to another and the variations observed when changing
the experimental conditions, all the above results show a
relative consistency: both the area expansion and shear
moduli have the expected order of magnitude and their ratio
is quite comparable to the theoretical predictions. This
strengthens the reliability of the technique used to deform
the skeletons and the validity of the theoretical approach
built to analyze the data.
Nevertheless, the dispersion of the measurements from

one skeleton to another and even, for a same skeleton, from
one kind of deformation to the other (Table 1) has to be
explained. It may have several origins:

1. The RBC has a finite lifetime of �120 days. Many
modifications take place in its membrane during this
time, among them an increase in the membrane elastic
coefficients (Linderkamp and Meiselman, 1982). A re-
cent work (Corsi et al., 1999) has highlighted modifica-
tions of �-spectrin during the cell lifetime. The disper-
sion of the measurements from one skeleton to another
can partially be explained by different ages of the skel-
etons. Variations in the skeleton structure, including
variations of the defect density, are a further source of
natural dispersion;

2. It has been pointed out that, depending on the bead
position at the periphery of the membrane, the deforma-
tion may concern either a single sheet or both sheets of
the skeleton (Fig. 4). But it may also happen that the two
sheets of the skeleton stick together (double counting), or
that one of them tears up (single counting), indepen-
dently of the bead positions. It is even likely that, for the
same skeleton, the deformation may be exerted against
either one or two sheets, depending on the nature and
orientation of the applied forces (pure expansion, pure
shear, or a combination of both). This led us to show on
a same histogram the values of KC and �C obtained for
each deformation (Figs. 7 and 9). For the experiments
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performed in low osmolarity buffer, the histograms
present two maxima, which supports the above interpre-
tation;

3. Variations in the extent of the binding region between
the bead and the skeleton is also a possible cause for the
dispersion. In this region, the strains and stresses are
probably not homogeneous. This effect, which cannot be
handled in our analytical theory, may affect the mea-
sured values of the elastic coefficients.

One question arising from this study is the difference
between a free network and a network embedded into a lipid
membrane. We have noticed that, at least in isotonic buffer,
the skeleton shrinks after extraction. This is likely due to the
larger number of degrees of freedom associated with fluc-
tuations in the third dimension, and thus supports the idea
that the skeleton behaves like a three-dimensional fluctuat-
ing object. On the contrary, the extracted skeleton slightly
expands in hypotonic buffer. In this case, two effects may
compensate the shrinking related to fluctuations: the in-
crease of the spectrin persistence length and the possible
existence of a pre-stressed state imposed by the lipid bilayer
(Svoboda et al., 1992; Discher et al., 1998).
It is interesting to compare the measured values of KC and

�C to various predictions found in the literature. Monte
Carlo simulations performed on such a free network led to
estimates for the network elastic coefficients, namely �C �
10 � 2 �N/m and KC � 17 � 2 �N/m (Boal, 1994). These
values are larger than our experimental ones in isotonic
buffer, but at this stage the agreement is reasonable. Other
models relate the macroscopic elastic constants to the stiff-
ness k of a single spectrin filament (Kantor and Nelson,
1987; Boal et al., 1993):

KC � 2�C �
�3
2 k (6)

Although this formula applies to a purely two-dimen-
sional triangular network without defect, an estimate of k
can be inferred from our data. In our experiments, the forces
exerted on the skeleton (1-8 pN) are definitely too small to
allow unfolding of spectrin subunits, for which the required
forces per strand are of the order of 25-35 pN (Rief et al.,
1999), or 60 pN (Lenne et al., 2000), depending on the
nature of the repeats and on the pulling speed. Thus, we
assume that the elastic behavior of spectrin tetramers is
purely entropic. Therefore, it is possible to relate k to the
persistence length  of a single spectrin oligomer, and to its
maximum extension L, through the worm-like chain model
(Marko and Siggia, 1995). In the low stretching limit, one
has:

k�
3kBT
2L (7)

Taking L � 200 nm and �KC� � 5 �N/m, as found in
hypotonic buffer, we can estimate the persistence length of

a spectrin filament:  � 5 nm. This is a quite reasonable
value, comparable to the estimate given by Svoboda et al.
(1992) from measurements on a free skeleton:  � 6 nm.
Although the worm-like chain model applies to a free poly-
mer not included in a network, it should give the right order
of magnitude for k. Recent simulations (Discher et al.,
1998), extending the single chain model to networks, sup-
port this assumption.
As mentioned in the Results section, the skeleton par-

tially collapses in isotonic buffer and its structure is prob-
ably modified, which makes it difficult to compare the
results between isotonic and low osmolarity buffers. Based
on values given in Table 2, the area expansion and shear
moduli ascribed to a single sheet become greater when the
ionic strength of the medium is increased. Svoboda et al.
(1992) have also reported that the skeleton gets stiffer as the
ionic strength increases. According to Eq. 7, this is consis-
tent with a decrease of the persistence length . It is also
likely that the screening of the spectrin-spectrin repulsive
interaction causes new in-plane links between the filaments,
which lowers the average end-to-end distance L and in-
creases the stiffness.
Concerning the time evolution after extraction, the obser-

vation in low osmolarity buffer is a slow decrease of the
elastic moduli, noticeable about 30 min after extraction.
This does not necessarily mean that the network becomes
intrinsically softer. It is likely that one observes a denatur-
ation of the skeleton, either localized at the complex junc-
tions between the spectrin tetramers, or in the tetramers
themselves, or even at the binding sites of the skeleton to the
silica beads. On the contrary, in isotonic buffer, the stiffness
rapidly increases, probably as the spectrin filaments pro-
gressively stick together.
At this preliminary stage it is difficult to give a properly

supported interpretation of the measurements obtained with
ATP. It seems that ATP increases the tension of the skeleton
without significant change of its elastic coefficients. A
possible explanation is that, as for the intact membrane,
ATP enhances the out-of-plane skeleton fluctuations with-
out modifying its in-plane elastic properties. Further mea-
surements will be necessary to confirm or invalidate this
hypothesis.

CONCLUSION

For the first time, both the area expansion and the shear
moduli of freshly extracted RBC skeletons have been mea-
sured in controlled experimental conditions: in low hypo-
tonic buffer or isotonic buffer, right after extraction or after
waiting for a possible time evolution, with and without
ATP. All the measurements are consistent and in good
agreement with models describing the mechanical behavior
of such a polymer network. The most prominent results
concern the elastic moduli of the skeleton in low osmolarity
buffer, which is an appropriate condition to study the be-
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havior of the isolated two-dimensional network. The area
expansion and shear moduli are, respectively, �KC� � 4.8 �
2.7 �N/m and ��C� � 2.4 � 0.7 �N/m. In such conditions,
the ratio �KC/�C� is found equal to 1.9 � 1.0, in good
agreement with theoretical and numerical predictions for a
triangular network of identical springs. After 30–45 min,
denaturation of the structure leads to a mechanical soften-
ing. In isotonic buffer, the area expansion modulus is
greater, because the two sheets of the skeleton stick together
and because the stiffness of each spectrin filament is larger.
A major improvement of the technique would be to take into
account the actual deformation of the skeleton to extract the
elastic moduli and check to which extent the assumptions
introduced for the data analysis are fulfilled. However, this
is not expected to significantly change the values of the area
expansion and shear moduli.

APPENDIX

This part details the algebra and the constructions used to relate the forces
(FA, FB, FC) exerted at the vertices A, B, C of a triangular membrane to the
components of the 2 � 2 stress tensor [�] introduced in the main text. The
membrane is assumed to be a purely two-dimensional, plane, continuous,
homogeneous and isotropic elastic medium. The model is restricted to
small deformations, so the equations of linear elasticity apply. Moreover,
the stress and strain tensors are assumed to be homogeneous over the
membrane.
The mechanical equilibrium of the membrane is written as:

FA 	 FB 	 FC � 0 (A1)

and

MFA� 	MFB� 	MFC� � 0 (A2)

where M is the force momentum calculated at a given point of the plane.
Equation A2 is equivalent to the condition that the three straight lines
supporting the forces intersect at a single point (Fig. 3). In the following,
we determine the configuration of the forces FA, FB, and FC and the
associated stresses, in the cases of a pure area expansion deformation, of a
pure shear deformation and finally in the most general case (shear �
expansion).

Pure area expansion stress

For a limited surface, the relation between the force dG exerted on an
element dl of its boundary and the stress tensor [�] is:

dG� ���ndl (A3)

Here the unit vector n defines the external normal to the element of length
dl. In the case of pure area expansion, [�] is diagonal and may be written
as [�]� �e [I], where [I] is the identity matrix. The resultant force exerted
on a segment of length L is G � �e L n. In the case of a triangle ABC, the
forces GA, GB, and GC generating a pure expansion are respectively
oriented along the normals to the segments BC, CA, and AB (Fig. 11 A).
Their sum GA � GB � GC is zero and their amplitudes are related to the
stress �e by:

�e �
GA
BC�

GB
AC�

GC
AB (A4)

For an elementary triangle ABC of surface dS, it is equivalent to replace
the force GA exerted in the middle of BC by a pair of two forces equal to
GA/2, exerted in B and in C. This construction also holds for a triangle
ABC of finite surface, as soon as the strain and the stress are assumed
homogeneous over the triangle. Similar constructions are valid in B and C
for GB and GC. Then GA, GB, and GC can be replaced by three forces FeA,
FeB, and FeC exerted at the vertices A, B, and C, generating the same stress
�e and given by (see Fig. 11 B):

FeA �
GB 	 GC

2 � 

GA

2 (A5)

FeB �
GC 	 GA

2 � 

GB

2 (A6)

FeC �
GA 	 GB

2 � 

GC

2 (A7)

FIGURE 11 (A) Configuration of three forces GA, GB, and GC gener-
ating a pure expansion stress on the triangle ABC. They are oriented along
the normals to the segments BC, CA, and AB, and their sum GA � GB �
GC is zero. (B) The three forces FeA, FeB, and FeC applied at the vertices
A, B, and C exert a pure expansion stress equivalent to the one generated
by GA, GB, and GC. They are supported by the triangle heights and their
amplitude is given by equations A5–A7.
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Their amplitudes are related to �e by:

�e � 2
FeA
BC� 2

FeB
AC� 2

FeC
AB (A8)

In conclusion, the forces FeA, FeB, and FeC generating a pure area
expansion are supported by the triangle heights, intersecting at point H, and
their sum is zero.

Pure shear stress

For a pure shear stress there is a system of coordinates (eX, eY) (called the
principal system of coordinates in the following) in which [�] is diagonal and

may be written as [�]� �s [J], with [J]� ⎣10 0
 1⎦. The resultant forcesKA,
KB, and KC exerted on the respective sides BC, CA, and AB are given by
integrating Eq. A3 and are represented in Fig. 12 A. The direction of KA is
such that the angles (nA, eX) and (eX,KA) are equal (here nA represents the unit
vector normal to BC and directed out of the triangle). The same construction
applies for KB and KC. As in the pure area expansion case, their respective
amplitudes are related to the shear stress �s by:

�s �
KA
BC�

KB
AC�

KC
AB (A9)

Following the same procedure as above, an equivalent configuration is
obtained by replacing KA by a pair of two forces equal to KA/2, exerted in
B and C, and similar constructions for KB and KC. The equivalent forces
exerted in A, B, and C are, respectively:

FsA �
KB 	 KC

2 � 

KA

2 ; �s � 2
FsA
BC (A10)

FsB �
KC 	 KA

2 � 

KB

2 ; �s � 2
FsB
AC (A11)

FsC �
KA 	 KB

2 � 

KC

2 ; �s � 2
FsC
AB (A12)

Due to the orientation of FsA, FsB, and FsC, the angles (FsA, FsB) and
(CA, CB) are equal. Similar relations are obtained by permutation. As a
consequence, the three forces intersect at a single point located on the circle
drawn around the triangle ABC.
Another useful transformation consists in splitting this triplet of forces

into a set of three torques. In A for instance, one projects FsA onto the
normals nB and nC to the sides AC and AB. The same construction in B and
C leads to (see Fig. 12 B):

FsA � FsAC 	 FsAB (A13)

FsB � FsBA 	 FsBC (A14)

FsC � FsCB 	 FsCA (A15)

Using the mechanical equilibrium condition FsA � FsB � FsC � 0, the
equality between the angles (nA, eX) and (eX, FsA), and the relations
obtained by permutation, it is possible to show that FsAC � 
FsCA, FsAB
� 
FsBA, and FsBC � 
FsCB (the geometrical demonstration presents no
difficulty). Consequently, the configuration of forces generating a pure
shear stress may be seen as a triplet of torques (FsAB, 
FsAB), (FsAC,

FsAC) and (FsBC,
FsBC), respectively, exerted on the sides AB, AC, and
BC, as shown in Fig. 12 B.

General case: simultaneous expansion
and shear stress

In the most general case, one can use the tools developed in the above
sections to calculate the stresses associated to the three forces (FA, FB, FC).
As shown in the main text and in Fig. 3, the first step is to project FA �
FAB � FAC along the normals nC and nB to AB and AC, and make the
equivalent constructions in B and C. The pair of forces (FAB, FBA) is then
split into a pair of identical forces (
FeC,
FeC) exerted in A and in B, and
a torque (FsAB, FsBA � 
FsAB), defined by:

FAB � 
FeC 	 FsAB FBA � 
FeC 	 FsBA

� 
FeC 
 FsAB (A16)

Similar definitions are obtained by permutation:

FAC � 
FeB 	 FsAC FCA � 
FeB 	 FsCA

� 
FeB 
 FsAC (A17)

FBC � 
FeA 	 FsBC FCB � 
FeA 	 FsCB

� 
FeA 
 FsBC (A18)

FIGURE 12 (A) Configuration of three forces KA, KB, and KC gener-
ating a pure shear stress on the triangle ABC. Their sum KA � KB � KC
is zero. They are oriented in such a way that the angles (nA, eX) and (eX,
KA) are equal (and equivalent relations by permutation). (B) The three
forces FsA, FsB, and FsC applied at the vertices A, B, and C exert a pure
shear stress equivalent to the one generated by KA, KB, and KC. They
intersect at a single point located on the circle passing through the points
A, B, and C, and their amplitude is given by equations A10–A12. They are
the result of the superposition of three torques (FsAB, FsBA � 
FsAB),
(FsAC, FsCA � 
FsAC), and (FsBC, FsCB � 
FsBC).
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The three forces FeA, FeB, and FeC are oriented toward the normals nA,
nB, and nC. Moreover, like FA, FB, and FC, their sum is zero. Then,
according to the first section, they generate a pure area expansion stress of
amplitude �e given by Eq. A8.
In the same way, the three torques (FsAB, FsBA), (FsAC, FsCA) and (FsBC,

FsCB) generate a pure shear stress. The equivalent forces exerted in A, B,
and C are FsA, FsB, and FsC given by Eqs. A13–A15 and the amplitude �s
is determined from formulas A10–A12:

�s � 2
�FsA�
BC �

�FA 
 FBA
FCA�
BC (A19)

and equivalent relations by permuting A, B, and C. As in the second
section, the axes of the principal system of coordinates (eX, eY) are
determined by writing the equality of the two angles (nA, eX) and (eX,

FsA).
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