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The Four Color Theorem is equivalent to a combinatorial problem about the 
three-dimensional vector cross product algebra. 0 1990 Academic Press, Inc. 

I. INTRODUCTION 

This paper introduces a new reformulation of the Four Color Theorem. 
This reformulation shows that the Four Color Theorem is equivalent to a 
combinatorial problem about the vector cross product algebra in three- 
dimensional space (Section 2). 

Our technique involves a construction due to G. Spencer-Brown (the 
formation: Section 3) and a device of Roger Penrose [4] of labelling 
vertices with imaginary numbers. These ideas combine to give a simple 
proof of the equivalence of this reformulation with the original four color 
problem. 

The paper is organized as follows. In Section 2 we state the cross-product 
reformulation of the four color problem, and illustrate it through examples. 
Section 3 proves the results that demonstrate the equivalence of the four 
color problem and this algebra problem. 

I take this opportunity to thank G. Spencer-Brown, James Flagg, Lee 
Smolin, and Annetta Pedretti for helpful conversations. 

II. AN ALGEBRA PROBLEM 

Let i, j, k denote a standard unit orthogonal basis for Euclidean three- 
dimensional space (as a vector space over the real numbers). (See Fig. 1. 

* Research partially supported by NSF Grant #DMS-8701772. 
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FIGURE 1 

The vector cross product algebra is 
distributivity and scalar linearity): 

defined via the identities (plus 

oo=o 
()j=oj=ok=o=j()=jo=kO 
jj=Jj=kk=() 
ij=k, ji= -k 

jk=i, kj= -i 

ki=j, ik = -j. 

It is customary to write cross products via the notation v x w. Here we 
simply write VW. 

The cross product algebra is non-associative, as the following example 
shows: 

(ii)j=Oj=O, i( ij) = ik = -j. 

This non-associativity leads to the problem: locate specific values for which 
associated products are equal. For example, the equation 

X(YZ) = by) z 

is satisfied by x = i, y = k, z = i: 

j(kj)=ij=k= -(-k)= -jj=(jk)j. 

DEFINITION 2.1. Given any collection of variables X1, X2, X3, ..,, Xn, let 
L and R denote two specific associations of the product 

L and R will be referred to as the left and right associations for the 
problem. A solution to the equation L = R in the cross product algebra is 
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said to be sharp if both sides are non-zero, and the values for the variables 
are chosen from the elements i, j, and k. 

THEOREM A. Let n be a natural number, and let L and R be any two 
associations of the product X1 .X,X,. . . X,,. Then the Four Color Theorem is 
equivalent to the existence of sharp solutions (See Definition 2.1) to the 
equation L = R for any n and all choices of L and R. 

Remark. The Four Color Theorem states that every bridgeless plane 
map can be face colored with four colors so that no two faces sharing an 
edge receive the same color (a proper coloring). See [3], [6]. The Four 
Color Theorem was first conjectured in 1852. It was proved by Appel, 
Haken, and Koch in 1976. See [ 11, [2] for an account of their work. 

One of the fascinations of the map coloring problem resides in the 
remarkable number of reformulations to which the problem is susceptible. 
See [6, p. 1291 for a closely related reformulation due to Mycielski, and for 
other reformulations involving products. See also the monthly article [S]. 

In order to prove Theorem A we will discuss constructions related to 
coloring the edges of a map. I shall begin, in this section, by explaining 
enough background to give an algorithm for finding sharp solutions. 
Proofs are deferred to Section 3. 

A sharp solution to L = R will be found through coloring a map 

M(L, R) = T(L)# T(R*), 

where T(L) and T(R*) are two planar trees tied together (tieing denoted 
by # ) at their branches and roots as described below. 

First the tree construction: T(L) is the tree associated to the parenthesis 
structure of the formal product L, obtained as shown in Fig. 2. 

The branches of T(L) terminate in the variables of L. T(L) has a single 
root, and the product structure in L is encoded in T(L) so that each 

X Y z w T  

: 

FIG. 2. The tree corresponding to an associated product. 
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individual multiplication in L has the diagrammatic form as shown in 
scheme 1. 
Thus if one labels the edges of T(L) with the partial products, then the root 
receives the full product of the variables. 

By R*, I mean the mirror image of the expression R, obtained by writing 
from right to left. Thus 

Figure 3 illustrates how to create the planar map T(L) # T(R*) by tieing 
the two trees together. Note that lines terminating in the same variable are 
connected with one another. 

Now disregard signs, and consider a commutative and associative 
algebraic system with elements E, 1, J, K where 

EE=E 

EI=I, EJ= J, EK=K 

II=JJ=KK=E 

IJ=K 

(otherwise known as the Klein four group). 

L = (XY)(ZT) R = X ((Yi!)T) 

FIG. 3. M(L, R) = T(L)# T(R*). 
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Color the faces of the map M = M(L, R) with the colors E, Z, J, K so 
that adjacent faces are colored differently (a proper coloring). Then color 
the edges of M by associating to each edge the product in the Klein four 
group of the colors on its two adjoining faces. The result is a coloring of 
the edges of M so that three distinct colors are incident to each vertex. 
View Fig. 4. (This equivalence between four-coloring the faces and three- 
coloring the edges is well known.) 

Associate to each capital Z, J, K labelling an edge in A4 the corre- 
sponding lower case i, j, k representative in the cross product algebra. In 
particular, assign to each variable X the element i, j, or k that labels its 
edge in M(L, R). This assignment of values gives a sharp solution to L = R. 

It is obvious from our formalism that the above method yields a non- 
zero solution either to the equation L = +R, or to the equation L = - R. 
That it actually gives the correct sign (that is, a solution to L = + R) is 
explained in Section 3. 

Note that this graphical method can be used to enumerate all possible 
sharp solutions of the algebra problem, since these are in one-to-one 
correspondence with the edge-colorings of the map M(L, R). In the exam- 
ple shown in Fig. 4 we see that there are six solutions. These correspond 
to permutations of i, j, k in the above solution. 

Remark. Other than the subtle matter of the sign, what is needed to 
complete the proof of Theorem A is a theorem of Hassler Whitney 
[9, p. 379. Theorem II and remarks that follow, also the comments on 

(ki)(ji) 

II 

CiN-k) 

II 

-i 

k((W 

II 

k(ki) 

II 
kj =-i 

(ki)(ji) = k((ij)i) 

FIG. 4. Map coloring yields sharp solution. 
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p. 389 of the same paper]. from which it follows that it is sufficient to prove 
the Four Color Theorem for a class of maps each of which has the form 
M(L, R) (of two tied trees). The “two tied trees” form is in fact the dual 
of the polygonal form of Whitney. 

Remark. In terms of ordinary vector algebra we have the difference 
formula: 

(ab) c - a(bc) = (a. b) c - a(b . c), 

where xy denotes the vector cross product of x and y, and x .y denotes the 
standard dot product of vectors. This identity can be used repeatedly 
to give the associativity defect L - R for any pair of associations of an 
n-fold product. This gives an alternate (albeit more complicated) route to 
studying the equation L - R = 0. 

III. FORMATIONS AND IMAGINARY VALUES 

I begin with a version of edge-three colorings for trivalent planar graphs. 

DEFINITION 3.1. A formation F is a configuration of simple closed 
curves in the plane with the following properties: 

(1) F is a union of two disjoint collections of curves. That is, 
F= R u B where R and B are each disjoint unions of simple closed curves 
in the plane. 

cross : 

L-.....; 

bounce 

FIGURE 5 
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(2) R is called the set of red curves and B is called the set of blue 
curves. Curves of a given color do not intersect one another. Interactions 
between red and blue curves are allowed as shown in Fig. 5. Curves of 
different colors can share a segment. In this sharing, one curve may cross 
(cross) another, or the two curves simply touch without crossing (bounce). 

Figure 5 illustrates a formation and the allowed interactions of curves. In 
this figure, and in illustrations to follow, red curves will be denoted by solid 
arcs (-), and blue curves by dotted arcs (---). 

Figure 5 illustrates a formation in which there are three red curves and 
two blue curves. This figure also illustrates our interaction conventions and 
the relationship of a formation to a plane map. In the figure, there is given 
a formation I; and its associated map A4. A4 is obtained by replacing all 
arcs in the formation by solid color arcs. This entails superimposing nearby 
parallel arcs in the formation (They are drawn slightly separated for 
graphic clarity.). 

I shall refer to the map A4 underlying the formation I;. A formation F for 
a map A4 gives a three coloring of the edges of M with three distinct colors 
at each vertex. (red = -, blue = --- purple = =). 

Conversely, any three coloring of the edges with three colors at each 
vertex gives a formation. To see this, factorize purple as purple = red x blue 
on each purple edge, and trace the corresponding red and blue circuits. The 
circuits so constructed give a formation. 

Since four coloring the faces of a trivalent plane map is equivalent to 
three coloring the edges, the above remarks show that the Four Color 
Theorem is equivalent to the existence of formations for planar trivalent 
maps. The terminology “formation” is due to G. Spencer-Brown [7]. 

Notation. In discussing formations it is convenient to use the colors red 
(4, blue (b), and purple (p). In working in the relationship with the cross- 
product algebra it is useful to use the colors I, J, K. Henceforth I will 
correspond to r, J to b, and K to p. 

I now introduce a device of Roger Penrose [4], labelling each vertex of 
an edge coloring with either + J-1 or -&-I. A vertex is labelled with 
+ J-1 if the clockwise cyclic order at the vertex has the form ZJK (up to 
cyclic permutation), and it is labelled -fl if the order has the form 
IKJ. (See scheme 2.) 

In the following, a plane graph denotes a graph together with a given 
embedding of the graph in the plane. 

THEOREM 3.2. If C is an edge coloring of a trivalent plane graph G, then 
the product, P(C), of the imaginary values associated to the vertices of G is 
equal to 1: P(C)= 1. 
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SCHEME 2. 

‘Y Y 
K 

+f7- -J-1 

K J 

Given an edge coloring C of the graph G, let P(C) denote the product of all the 

imaginary values at the vertices of G (according to the assignment above). 

Remark. This theorem is stated without proof in [4]. The result is false 
if we lift the restriction of planarity. Thus in Fig. 6 there is shown a graph 
embedded with edge crossings in the plane, and a coloring C so that 
P(C) = -1. Note that Theorem 3.2 is equivalent to the statement that the 
number of vertices of type +fi is congruent modulo 4 to the number 
of vertices of type -fl in an edge coloring of a cubic plane map. In this 
form, it has been known for some time. See [S] for this and related results. 
Our proof, using imaginary values and formations, is particularly simple. 
And it shows how the result fits in with the non-planar context. 

Proof of Theorem 3.2. Let F be the formation associated to the edge 
coloring C. Note that in a formation, different color curves interact via a 
bounce or a crossing (see Fig. 7). Each interaction uses two vertices. Call 
the product of the imaginary values for these vertices the contribution of 

* P = (n)(- fl)=+l 

aP= (fT-)(m=-l 
(with edge-crossing) 

FIGURE 6 
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iJ 
: 
:J (fT)(-CT)=+1 
I I I I 

I : -_--_-______ 1 K : , 

+f7- -cl- 

FIGURE 7 

the interaction. Then (as shown in Fig. 7) each bounce contributes + 1, 
while each crossing contributes - 1. 

The formation consists in a collection of simple closed curves in the 
plane. By the Jordan curve theorem there are an even number of crossings 
among these curves. Hence P(C) has the value of - 1 raised to an even 
power. This completes the proof. 

We are now in a position to prove that an equation L = R can be solved, 
including the sign, by the procedure of Section 2. 

THEOREM 3.3. Let L and R denote two associations of a product of a 
finite number of distinct variables. Then there exists a sharp solution (in the 
sense of Section 2) of the equation L = R, assuming the Four Color Theorem. 

Proof Let A4 denote the map 

M= T(L)# T(R*) 

in the notation of Section 2. Suppose that T(L) has n vertices so that T(R) 
(hence T(R*)) also has n vertices. Assume that M has been edge-three 
colored, and that this coloring is expressed in terms of i, j, and k. Label the 
vertices of A4 with +J-1’- or -J-1 according to the convention 
discussed in this section. By Theorem 3.2, the product of all these 
imaginary values is equal to 1. Thus we may write 

z?v= 1, 

where Z is the product corresponding to the tree T(L) and W is the product 
corresponding to the tree T(R). Here I use the crucial (and obvious) fact 
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that the imaginary values assigned to the mirror image tree are each the 
conjugates of the imaginary values assigned to the tree. Thus we conclude 
that Z= W. 

Let e denote the sign ( + 1 or - 1) obtained by multiplying the assignment 
of i, j, and k corresponding to the edge coloring of M for L. Let e’ be the 
corresponding sign for R. Then 

Z= ((&i)n) e 

W= ((J-1)“) e’. 

Hence e = e’ since 2 = W. This completes the proof. 
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