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Abstract

In this paper, we are concerned with the oscillation of third order nonlinear delay differential equations
of the form(

r2(t)
(
r1(t)y′)′)′ + p(t)y′ + q(t)f

(
y
(
g(t)

)) = 0.

By using a generalized Riccati transformation and integral averaging technique, we establish some new
sufficient conditions which insure that any solution of this equation oscillates or converges to zero. In
particular, several examples are given to illustrate the importance of our results.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider nonlinear third order functional differential equations of the form(
r2(t)

(
r1(t)y

′)′)′ + p(t)y′ + q(t)f
(
y
(
g(t)

)) = 0, (1.1)

where q ∈ C(I,R), r2,p ∈ C1(I,R), r1 ∈ C2(I,R), I = [a,∞) ⊂ R, a � 0 is a constant such
that r1 > 0, r2 > 0, p(t) � 0, q(t) > 0, g ∈ C1(I,R) satisfies 0 < g(t) � t , g′(t) � 0 and
g(t) → ∞ as t → ∞ and f ∈ C(R,R) satisfies f (u)/u � K > 0 for u �= 0.
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We restrict our attention to those solutions of Eq. (1.1) which exist on I and satisfy the con-
dition

sup
{∣∣y(t)

∣∣: T � t < ∞}
> 0 for any T ∈ I.

Such a solution is called oscillatory if it has arbitrarily large zeros, otherwise it is called nonoscil-
latory. Equation (1.1) is said to be oscillatory if it has an oscillatory solution.

In recent years, the oscillation theory and asymptotic behaviour of differential equations and
their applications have been and still are receiving intensive attention. In fact, in the last few
years several monographs and hundreds of research papers have been written, see for example
the monographs [1,10,11,17,35].

Determining oscillation criteria for particular second order differential equations has received
a great deal of attention in the last few years. Compared to second order differential equations, the
study of oscillation and asymptotic behaviour of third order differential equations has received
considerably less attention in the literature. In the ordinary case for some recent results on third
order equations the reader can refer to Bartusek [3], Cecchi and Marini [4,5], Parhi and Das
[19–21,23,24], Skerlik [32–34], Tiryaki and Yaman [38].

One of the more important and useful methods of studying oscillation of nonlinear equations
is the integral averaging technique, which employs weighted averages of coefficients [12,28]. As
far as we know Eq. (1.1) has never been the subject of systematic investigations in this direc-
tion except for Saker’s paper [31]. Recently, by using the well-known Kiguradze’s lemma and
the Riccati transformation Saker [31] obtained some new oscillation results of the special case
of (1.1) with p(t) ≡ 0 and g(t) = t − σ , σ � 0 is a constant.

It is interesting to note that there are third order delay differential equations which have
only oscillatory solutions or have both oscillatory and nonoscillatory solutions. For example,
y′′′ + 2y′ + y(t − π

2 ) = 0 admit an oscillatory solution y1(t) = sin t and a nonoscillatory solu-
tion y2(t) = eλt , where λ < 0 is a root of the characteristic equation of this equation. On the
other hand, all solutions of y′′′ + y(t − τ) = 0, τ > 0, are oscillatory if and only if τe > 3 [16].
But the corresponding ordinary differential equation y′′′ + y = 0 admits a nonoscillatory solu-

tion y1(t) = e−t and oscillatory solutions y2(t) = et/2 cos
√

3
2 t and y3(t) = et/2 sin

√
3

2 t . In the
literature there are some papers and books, for example Agarwal et al. [1], Dzurina [8,9], Erbe
et al. [10], Grace and Lalli [6], Gyori and Ladas [11], Kartsatos and Manougian [13], Kusano
and Onose [14,15], Ladde et al. [17], Parhi and Das [22,26], Parhi and Padhi [25,27], Saker [31],
Tiryaki and Yaman [37] which deal with the oscillatory and asymptotic behaviour of solutions of
functional differential equations. In this paper, by using a generalized Riccati transformation and
an integral averaging technique, we establish some new sufficient conditions which insure that
every solution of (1.1) oscillates or converges to zero. In fact, by choosing appropriate functions,
we shall present several easily verifiable oscillation criteria. The results of this paper improve,
extend and complement a number of existing results. Our work is different from theirs in the
sense that either the conditions assumed by them are not satisfied by the equations we consider
or the type of equations they consider are different from ours. The results we obtain here are
different from those concerning ordinary differential equations of third order due to the presence
of the delay.

The paper is organized as follows: In Section 2, we shall present some lemmas which are
useful in the proof of our main results. In Section 3, we establish sufficient conditions and also
condition of Philos-type for oscillation of Eq. (1.1). In Section 4, some examples are considered
to illustrate our main results.
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2. Some preliminary lemmas

In this section we state and prove some lemmas which we will use in the proof of our main
results.

For the sake of brevity, we define

L0y(t) = y(t), Liy(t) = ri
(
t)(Li−1y(t)

)′
, i = 1,2,

L3y(t) = (
L2y(t)

)′ for t ∈ I.

So Eq. (1.1) can be written as

L3y(t) + p(t)y′ + q(t)f
(
y
(
g(t)

)) = 0.

Remark 1. If y is a solution of (1.1), then z = −y is a solution of the equation

L3z(t) + p(t)z′ + q(t)f ∗(z(g(t)
)) = 0,

where f ∗(z) = −f (−z) and zf ∗(z) > 0 for z �= 0. Thus, concerning nonoscillatory solutions
of (1.1) we can restrict our attention only to the positive ones.

Definition 1. Let y be a solution of (1.1). We say that the solution y has property V2 on [T ,∞),
T � a, if and only if

L0y(t)Lky(t) > 0, k = 0,1,2; L0y(t)L3y(t) � 0

for every t ∈ [T ,∞).

Define the functions

R1(t, T ) =
t∫

T

ds

r1(s)
, R2(t, T ) =

t∫
T

ds

r2(s)
, R12(t, T ) =

t∫
T

R2(s, T )

r1(s)
ds,

a � T � t < ∞.
We assume that

R1(t, a) → ∞ as t → ∞, (2.1)

and

R2(t, a) → ∞ as t → ∞. (2.2)

Lemma 1. Suppose that(
r2(t)z

′)′ + p(t)

r1(t)
z = 0 (2.3)

is nonoscillatory. If y is a nonoscillatory solution of (1.1) on [T ,∞), T � a, then there exists a
t0 ∈ [T ,∞) such that y(t)L1y(t) > 0 or y(t)L1y(t) < 0 for t � t0.

Proof. Suppose that y is a nonoscillatory solution of (1.1) on [T ,∞). Without loss of generality,
we may take y(t) > 0 and y(g(t)) > 0, t � t0 � T . Clearly, x(t) = −L1y(t) is a solution of the
second order nonhomogeneous delay differential equation(

r2(t)x
′)′ + p(t)

x = q(t)f
(
y
(
g(t)

))
, t � t0. (2.4)
r1(t)
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We claim that, all solutions of (2.4) are nonoscillatory. Let z be a solution of (2.3), where r2
and p/r1 ∈ C([t0,∞),R) such that r2(t) > 0 and p(t)/r1(t) � 0. Let z(t) > 0 for t � t0. The
case when z(t) is ultimately negative can similarly be deal with. If possible, let x be a oscillatory
solution of (2.4) with consecutive zeros at b and c (t0 < b < c) such that x′(b) � 0 and x′(c) � 0.
Now integrating(

r2(t)x
′(t)z(t) − r2(t)x(t)z′(t)

)′ = z(t)q(t)f
(
y
(
g(t)

))
from b and c, we get a contradiction. This contradiction completes the proof. �
Lemma 2. Let assumption (2.2) hold and y be a nonoscillatory solution of (1.1) such that
y(t)L1y(t) � 0 for every t � T � a. Then y has property V2 for all large t .

The proof of this lemma proceeds along the lines of that of [32, Lemma 1] given for the
ordinary case and hence is omitted.

Lemma 3. Let y be a solution of (1.1). If y has property V2 for every large t , then there exists
t1 � T such that

L1y
(
g(t)

)
� R2

(
g(t), t1

)
L2y(t), t � t1. (2.5)

Proof. Let y be a solution of (1.1) which has property V2 for every large t . Without loss of gen-
erality, we may assume that y(t) > 0 and y(g(t)) > 0, t � T . Hence L0y(g(t)) > 0, L1y(t) > 0,
L2y(t) > 0 and L3y(t) � 0 for t � t1 � T . On the other hand, using the fact that L2y(t) is
nonincreasing, we see that

L1y
(
g(t)

)
�

g(t)∫
t1

(
L1y(s)

)′
ds =

g(t)∫
t1

1

r2(s)
L2y(s) ds � L2y

(
g(t)

)
R2

(
g(t), t1

)
. (2.6)

Since L3y(t) � 0, we get L2y(g(t)) � L2y(t). This and (2.6) imply that for sufficiently large t

L1y
(
g(t)

)
� L2y(t)R2

(
g(t), t1

)
.

Thus the proof is complete. �
3. Main results

In this section we establish some sufficient conditions which guarantee that every solution y

of (1.1) oscillates or converges to zero. Throughout this section we will impose the following
conditions:

lim supt→∞
∫ t

T
1

r1(s)

( ∫ t

s
1

r2(u)

( ∫ ∞
u

(
Kq(τ) − p′(τ )

)
dτ

)
du

)
ds = ∞ and

lim supt→∞
∫ t

T
1

r1(s)

( ∫ t

s
p(u)
r2(u)

du
)
ds < ∞

}
(3.1)

or

lim sup
t→∞

t∫
T

(
Kq(s) − p′(s)

)
ds = ∞, (3.2)

where Kq(t) − p′(t) � 0 for t ∈ I and not identically zero in any subinterval of I .
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Theorem 1. Assume that (2.1), (2.2), (3.1) (or (3.2)) hold, and Eq. (2.3) is nonoscillatory. If there
exists a differentiable positive function ρ such that

lim sup
t→∞

t∫
T

[
Kρ(s)q(s) − r1(g(s))(ρ′(s)r1(s) − ρ(s)p(s)R2(g(s), T ))2

4ρ(s)R2(g(s), T )g′(s)r2
1 (s)

]
ds = ∞

for every T , (3.3)

then any solution y of Eq. (1.1) is oscillatory or satisfies y(t) → 0 as t → ∞.

Proof. Let y be a nonoscillatory solution of (1.1) on [T ,∞), T � a. Without loss of generality,
we may assume that y(t) > 0 and y(g(t)) > 0 for t � t0 � T . From Lemma 1 it follows that
L1y(t) > 0 or L1y(t) < 0 for t � t1 � t0. If L1y(t) > 0 for t � t1, then y has property V2 for
large t from Lemma 2. We define

ω(t) = ρ(t)
L2y(t)

y(g(t))
(3.4)

for t � t1.
Then, ω(t) > 0. By (1.1) and Lemma 3, we have

ω′(t) � −Kρ(t)q(t)

−
[
ω2(t)

(
R2(g(t), t1)g

′(t)
r1(g(t))ρ(t)

)
− ω(t)

(
ρ′(t)
ρ(t)

− p(t)
R2(g(t), t1)

r1(t)

)]
(3.5)

and hence

ω′(t) < −Kρ(t)q(t) + r1(g(t))(r1(t)ρ
′(t) − ρ(t)p(t)R2(g(t), t1))

2

4ρ(t)R2(g(t), t1)g′(t)r2
1 (t)

. (3.6)

Integrating (3.6), we have, for t � t1,

t∫
t1

[
Kρ(s)q(s) − r1(g(s))(r1(s)ρ

′(s) − ρ(s)p(s)R2(g(s), t1))
2

4ρ(s)R2(g(s), t1)g′(s)r2
1 (s)

]
ds

� ω(t1) − ω(t) � ω(t1)

for large t , which contradicts (3.3) for T = t1.
Let y(t) > 0, L1y(t) < 0, t � t1. Assume that (3.1) holds. We consider the function L2y. The

case L2y(t) � 0 cannot hold for all large t , say t � t2 � t1, since by integration of inequality
y′(t) � L1y(t2)/r1(t), t � t2, we obtain from (2.1) y(t) < 0 for all large t , a contradiction.

Let y(t) > 0, L1y(t) < 0, L2y(t) � 0 for all large t , say t � t3 and so y′(t) < 0 for t � t3. If
limt→∞ y(t) = λ > 0, then integrating (1.1) from s to t , we obtain

L2y(s) + p(s)y(s) = L2y(t) + p(t)y(t) +
t∫

s

y(u)

[
f (y(g(u)))

y(u)
q(u) − p′(u)

]
du

� λ

∞∫
s

[
Kq(u) − p′(u)

]
du

and hence
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y(t) � y(t3) + y(t3)

t∫
t3

1

r1(s)

( t∫
s

p(u)

r2(u)
du

)
ds

− λ

t∫
t3

1

r1(s)

( t∫
s

1

r2(u)

( ∞∫
u

(
Kq(τ) − p′(τ )

)
dτ

)
du

)
ds,

so we obtain from (3.1), y(t) < 0 for all large t , a contradiction. Hence limt→∞ y(t) = 0.
Finally, let y(t) > 0, L1y(t) < 0, t � t4 � t1, and suppose L2y changes sign for arbitrarily

large t . Suppose that limt→∞ y(t) = λ > 0 and L2y has a tn sequence of zeros such that tn → ∞
as n → ∞. By integrating (1.1) from s to tn, we obtain

L2y(s) + p(s)y(s) = L2y(tn) + p(tn)y(tn) +
tn∫

s

y(u)

[
f (y(g(u)))

y(u)
q(u) − p′(u)

]
du

� λ

∞∫
s

[
Kq(u) − p′(u)

]
du

and hence

y(tn) � y(t4) + y(t4)

tn∫
t4

1

r1(s)

( tn∫
s

p(u)

r2(u)
du

)
ds

− λ

tn∫
t4

1

r1(s)

( tn∫
s

1

r2(u)

( ∞∫
u

(
Kq(τ) − p′(τ )

)
dτ

)
du

)
ds.

Consequently, y(tn) < 0 for tn, a contradiction. Hence limt→∞ y(t) = 0.
On the other hand, assume that (3.2) holds. If L1y(t) < 0 for t � t1, then y′(t) < 0 for t � t1.

If limt→∞ y(t) = λ > 0, then by integrating (1.1) from t1 to t (t1 < t), we obtain

L2y(t) � H1 −
t∫

t1

y(s)

[
f (y(g(s)))

y(s)
q(s) − p′(s)

]
ds � H1 − λ

t∫
t1

[
Kq(s) − p′(s)

]
ds,

where H1 is a constant.
From (3.2) and the above inequality, there exists μ < 0 such that L2y(t) < μ for large t and

so

y(t) � y(t1) + H2R1(t, t1) + μR12(t, t1),

where H2 = L1y(t1) < 0. Furthermore R12(t, t1) → ∞ as t → ∞ from (2.1) and (2.2). Conse-
quently, y(t) < 0 for large t , a contradiction. Hence limt→∞ y(t) = 0.

This completes the proof of theorem. �
From Theorem 1, we have the following result for the equation:

L3y(t) + p(t)y′ + q(t)yγ
(
g(t)

) = 0, (3.7)
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where γ > 0 is a quotient of odd integers. We will impose the following conditions for (3.7):

lim supt→∞
∫ t

T
1

r1(s)

( ∫ t

s
1

r2(u)

( ∫ ∞
u

(
K1q(τ) − p′(τ )

)
dτ

)
du

)
ds = ∞ and

lim supt→∞
∫ t

T
1

r1(s)

( ∫ t

s
p(u)
r2(u)

du
)
ds < ∞

}
(3.8)

or

lim sup
t→∞

t∫
T

(
K1q(s) − p′(s)

)
ds = ∞, (3.9)

where K1q(t) − p′(t) � 0 for every K1 > 0, t ∈ I and not identically zero in any subinterval
of I .

Corollary 1. Assume that γ � 1, (2.1), (2.2), (3.8) (or (3.9)) hold and Eq. (2.3) is nonoscillatory.
If there exists a differentiable positive function ρ such that

lim sup
t→∞

t∫
T

[
K1ρ(s)q(s) − r1(g(s))(ρ′(s)r1(s) − ρ(s)p(s)R2(g(s), T ))2

4ρ(s)R2(g(s), T )g′(s)r2
1 (s)

]
ds = ∞ (3.10)

for every T , K1 > 0, then any solution y of Eq. (3.7) is oscillatory or satisfies y(t) → 0 as
t → ∞.

Corollary 2. Assume that 0 < γ < 1, (2.1), (2.2), (3.8) (or (3.9)) and Eq. (2.3) is nonoscilla-
tory. If there exists a differentiable positive function ρ such that (3.10) holds, then any bounded
solution y of Eq. (3.7) is oscillatory or satisfies y(t) → 0 as t → ∞.

Remark 2. When p′(t) � 0, we can take

lim supt→∞
∫ t

T
1

r1(s)

( ∫ t

s
1

r2(u)

( ∫ ∞
u

q(τ ) dτ
)
du

)
ds = ∞ and

lim supt→∞
∫ t

T
1

r1(s)

( ∫ t

s
p(u)
r2(u)

du
)
ds < ∞

}

or

lim sup
t→∞

t∫
T

q(s) ds = ∞

to replace (3.8) or (3.9), respectively, in Corollary 1 and Corollary 2.

Next, we present some new oscillation results for Eq. (1.1), by using an integral averages
condition of Philos-type. Following Philos [28], we introduce a class of functions �. Let

D0 = {
(t, s): t > s � T

}
and D = {

(t, s): t � s � T
}
.

The function H ∈ C(D,R) is said to belong to the class � if

(i) H(t, t) = 0 for t � T ; H(t, s) > 0 for (t, s) ∈ D0;
(ii) H has a continuous and nonpositive partial derivative on D0 with respect to the second

variable such that

−∂H(t, s)

∂s
= h(t, s)

√
H(t, s) for all (t, s) ∈ D0.
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Theorem 2. Assume that (2.1), (2.2), (3.1) (or (3.2)) hold, and Eq. (2.3) is nonoscillatory. If there
exist functions H ∈ � and ρ ∈ C1([T ,∞)) such that ρ(t) > 0 and

lim sup
t→∞

1

H(t, T )

t∫
T

[
Kρ(s)H(t, s)q(s) − r1(g(s))ρ(s)Q2(t, s)

4R2(g(s), T )g′(s)

]
ds = ∞, (3.11)

where

Q(t, s) = h(t, s) − √
H(t, s)

(
ρ′(s)
ρ(s)

− p(s)
R2(g(s), T )

r1(s)

)
for every T , (3.12)

then any solution y of Eq. (1.1) is oscillatory or satisfies y(t) → 0 as t → ∞.

Proof. Let y be a nonoscillatory solution of (1.1) on [T ,∞), T � a. Without loss of generality,
we may assume that y(t) > 0 and y(g(t)) > 0 for t � t0 � T . From Lemma 1 it follows that
L1y(t) > 0 or L1y(t) < 0 for t � t1 � t0. If L1y(t) > 0 for t � t1, then y has property V2 for
large t from Lemma 2.

Again, defining ω(t) as in (3.4), we obtain (3.5). Let us set

γ (t) = ρ′(t)
ρ(t)

− p(t)
R2(g(t), t1)

r1(t)
and W(t) = R2(g(t), t1)g

′(t)
ρ(t)r1(g(t))

.

Then from (3.5), we get

t∫
t1

KH(t, s)ρ(s)q(s) ds

�
t∫

t1

H(t, s)
[−ω′(s) + γ (s)ω(s) − W(s)ω2(s)

]
ds

= −H(t, s)ω(s)|tt1 +
t∫

t1

{
∂H(t, s)

∂s
ω(s) + H(t, s)

[
γ (s)ω(s) − W(s)ω2(s)

]}
ds

= H(t, t1)ω(t1) −
t∫

t1

{
ω2(s)W(s)H(t, s) + ω(s)

(
h(t, s)

√
H(t, s) − H(t, s)γ (s)

)}
ds

(3.13)

and hence

� H(t, t1)ω(t1) + 1

4

t∫
t1

Q2(t, s)

W(s)
ds. (3.14)

It follows that

1

H(t, t1)

t∫
t1

(
Kρ(s)H(t, s)q(s) − Q2(t, s)

4W(s)

)
ds � ω(t1). (3.15)

This contradicts (3.11).
The rest of the proof is the same as in Theorem 1, and hence is omitted. �
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The following two results provide alternative oscillation criteria when (3.11) is difficult to
verify. The notation of Theorem 2 and its proof will be used.

Theorem 3. Let all the assumptions, except (3.11), of Theorem 2 hold. Further, for every T , let

0 < inf
s�T

[
lim inf
t→∞

H(t, s)

H(t, T )

]
� ∞, (3.16)

and

lim sup
t→∞

1

H(t, T )

t∫
T

Q2(t, s)

W(s)
ds < ∞. (3.17)

Let also Ψ ∈ C([T ,∞),R) be such that for t � T ,

lim sup
t→∞

t∫
T

Ψ 2+(s)W(s) ds = ∞, (3.18)

where Ψ+(s) = max{Ψ (t),0} and

lim sup
t→∞

1

H(t, T )

t∫
T

[
Kρ(s)H(t, s)q(s) − Q2(t, s)

4W(s)

]
ds � sup

t�T

Ψ (t). (3.19)

Then, any solution y of Eq. (1.1) is either oscillatory or satisfies y(t) → 0 as t → ∞.

Proof. As in the proof of Theorem 2, we have (3.13). It follows that

t∫
t1

KH(t, s)ρ(s)q(s) ds

� H(t, t1)ω(t1) −
t∫

t1

[√
H(t, s)W(s)ω(s) + 1

2

Q(t, s)√
W(s)

]2

ds +
t∫

t1

Q2(t, s)

4W(s)
ds

and hence

lim sup
t→∞

1

H(t, t1)

t∫
t1

[
KH(t, s)ρ(s)q(s) − Q2(t, s)

4W(s)

]
ds

� ω(t1) − lim inf
t→∞

1

H(t, t1)

t∫
t1

[√
H(t, s)W(s)ω(s) + Q(t, s)

2
√

W(s)

]2

ds.

By (3.19), it follows that

ω(t1) � Ψ (t1) + lim inf
t→∞

1

H(t, t1)

t∫
t1

[√
H(t, s)W(s)ω(s) + Q(t, s)

2
√

W(s)

]2

ds

and hence
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0 � lim inf
t→∞

1

H(t, t1)

t∫
t1

[√
H(t, s)W(s)ω(s) + Q(t, s)

2
√

W(s)

]2

ds

� ω(t1) − Ψ (t1) < ∞. (3.20)

Define the functions α and β by

α(t) = 1

H(t, t1)

t∫
t1

H(t, s)W(s)ω2(s) ds,

β(t) = 1

H(t, t1)

t∫
t1

√
H(t, s)Q(t, s)ω(s) ds.

Then, it follows from (3.20) that

lim inf
t→∞

[
α(t) + β(t)

]
< ∞.

Now we claim that
∞∫

t1

W(s)ω2(s) ds < ∞. (3.21)

Suppose to the contrary that

∞∫
t1

W(s)ω2(s) ds = ∞. (3.22)

By (3.16), there is a positive constant ζ such that

inf
s�T

[
lim inf
t→∞

H(t, s)

H(t, T )

]
> ζ. (3.23)

Let μ be any arbitrary positive number, then by (3.22) there exists t2 � t1 such that

∞∫
t1

W(s)ω2(s) ds � μ

ζ
, t � t2,

and therefore, for t � t2,

α(t) = 1

H(t, t1)

t∫
t1

H(t, s)
d

ds

[ s∫
t1

W(u)ω2(u) du

]
ds

= 1

H(t, t1)

t∫
t1

−∂H(t, s)

∂s

[ s∫
t1

W(u)ω2(u) du

]
ds

� 1

H(t, t1)

t∫
−∂H(t, s)

∂s

[ s∫
W(u)ω2(u) du

]
ds
t2 t1
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� μ

ζ

1

H(t, t1)

t∫
t2

−∂H(t, s)

∂s
ds = μ

ζ

H(t, t2)

H(t, t1)
.

By (3.23), there exists t3 � t2 such that

H(t, t2)

H(t, t1)
� ζ, t � t3.

This implies that α(t) � μ for all t � t3. As μ is arbitrary, we have limt→∞ α(t) = ∞.
The remainder of the proof of this case is similar to that of the proofs of similar theorems

given in [2,6,7,29,30,36,39] and hence is omitted.
If the case where y(t) > 0 and L1y(t) < 0 holds the proof is similar to that of the proof of

Theorem 1 and hence is omitted. Thus, the proof is complete. �
Theorem 4. Let all the assumptions of Theorem 3 hold, except condition (3.17), which is re-
placed by

lim sup
t→∞

1

H(t, T )

t∫
T

H(t, s)ρ(s)q(s) ds < ∞ for every T .

Then, any solution y of Eq. (1.1) is either oscillatory or satisfies y(t) → 0 as t → ∞.

The proof of Theorem 4 is similar to that of Theorem 3 and hence is omitted.

Remark 3. When p(t) ≡ 0 and g(t) = t − σ , σ � 0 a constant, Theorems 1–4 with condition
(3.1) reduce to Theorems 1–4 of Saker [31] respectively.

Remark 4. For the choice H(t, s) = (t −s)n and h(t, s) = n(t −s)
n
2 −1, the Philos-type condition

reduces to the Kamenev-type condition. Other choice of H include

H(t, s) =
(

ln
t

s

)n

, h(t, s) = n

s

(
ln

t

s

) n
2 −1

,

H(t, s) = (
(t − d)3 − (s − d)3)n

, d is a constant,

h(t, s) = 3n(s − d)2((t − d)3 − (s − d)3) n
2 −1

,

H(t, s) = (√
t − √

s
)n

, h(t, s) = n

2
√

s

(√
t − √

s
) n

2 −1
,

and

H(t, s) = (
et−s − es−t

)n
, h(t, s) = n

(
et−s + es−t

)(
et−s − es−t

) n
2 −1

or more generally,

H(t, s) =
( t∫

s

du

θ(u)

)n

, h(t, s) = n

θ(s)

( t∫
s

du

θ(u)

) n
2 −1

,

where n > 1, and θ ∈ C([T ,∞),R
+) satisfies limt→∞

∫ t

s
du

θ(u)
= ∞.
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4. Examples

In this section, we give several examples to illustrate our main results.

Example 1. Consider the third order delay differential equation

y′′′ + 1

4t2
y′ +

(
1 − 1

4t2

)
y

(
t − 3π

2

)
= 0, t > t − 3π

2
>

1

2
. (4.1)

Here r1(t) = 1, r2(t) = 1, p(t) = 1
4t2 , q(t) = 1 − 1

4t2 and f (u) = u with K = 1. It is clear

that (2.1), (2.2), and (3.2) (or (3.9)) are satisfied. The Euler equation z′′ + 1
4t2 z = 0 is nonoscilla-

tory. It remains to satisfy condition (3.3).
Now, by choosing ρ(t) = 1 we have

lim sup
t→∞

t∫
T

[
Kρ(s)q(s) − r1(g(s))(ρ′(s)r1(s) − ρ(s)p(s)R2(g(s), T ))2

4ρ(s)R2(g(s), T )g′(s)r2
1 (s)

]
ds

= lim sup
t→∞

t∫
1/2

[
1 − 1

4s2
−

(− 1
4s2

(
s − 3π

2 − 1
2

))2

4
(
s − 3π

2 − 1
2

) ]
ds

= lim sup
t→∞

t∫
1/2

[
1 − 1

4s2
−

(
s − 3π

2 − 1
2

)
64s4

]
ds = ∞.

Consequently condition (3.3) is satisfied. Hence by Theorem 1 (or Corollary 1), any solution
y of (4.1) is oscillatory or satisfies y(t) → 0 as t → ∞. An example of such a solution is
y(t) = − cos t . Note that (3.1) (and (3.8)) do not hold.

Example 2. Consider the third order delay differential equation

y′′′ + 1

t3
y′ +

(
1

t
+ 1

t4

)
y(t − ln t) = 0, t > t − ln t > 1. (4.2)

By choosing ρ(t) = 1, we have

lim sup
t→∞

t∫
T

[
Kρ(s)q(s) − r1(g(s))(ρ′(s)r1(s) − ρ(s)p(s)R2(g(s), T ))2

4ρ(s)R2(g(s), T )g′(s)r2
1 (s)

]
ds

= lim sup
t→∞

t∫
1

[
1

s
+ 1

s4
−

(− 1
s3 (s − ln s − 1)

)2

4(s − ln s − 1)
(
1 − 1

s

)]
ds

= lim sup
t→∞

t∫
1

[
1

s
+ 1

s4
− (s − ln s − 1)

64s5(s − 1)

]
ds

� lim sup
t→∞

t∫ [
1

s
+ 1

s4
− 1

64s5

]
ds = ∞.
1
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Condition (3.3) is satisfied. It is easy to check that the other conditions of Theorem 1 (or Corol-
lary 1) are also satisfied. Thus, any solution y of (4.2) is oscillatory or satisfies y(t) → 0 as
t → ∞. One such solution of Eq. (4.2) is y(t) = e−t . Note that (3.1) (and (3.8)) and (3.2)
(and (3.9)) hold.

Example 3. Consider the third order delay differential equation

y′′′ + e−2t+2y′ + 1

e
y(t − 1)

(
1 + y2(t − 1)

) = 0, t > t − 1 > 1, (4.3)

where f (u) = u(1 + u2) with K = 1. Equation z′′ + e−2t+2z = 0 is nonoscillatory (see [18] and

[35, p. 45]). Taking H(t, s) = [ (t−2)3

6 − (s−2)3

6 ]2, ρ(t) = 1 for t � s � 1, we have

lim sup
t→∞

1

H(t, T )

t∫
T

[
Kρ(s)H(t, s)q(s) − r1(g(s))ρ(s)Q2(t, s)

4R2(g(s), T )g′(s)

]
ds

= lim sup
t→∞

1[
(t−2)3

6 + 1
6

]2

t∫
1

{[
(t − 2)3

6
− (s − 2)3

6

]2(1

e

)

−
[
(s − 2)2 + (

(t−2)3

6 − (s−2)3

6

)
e−2s+2(s − 2)

]2

4(s − 2)

}
ds = ∞.

Condition (3.11) is satisfied. Clearly, the other conditions of Theorem 2 are also satisfied. Hence
any solution y of Eq. (4.3) is either oscillatory or satisfies y(t) → 0 as t → ∞. Observe that
y(t) = e−t is a solution of Eq. (4.3). Note that (3.1) and (3.2) hold.

Example 4. Consider the third order delay differential equation

(ty′)′′ + 1

4t
y′ +

(
1 − 1

t2

)
y(t − 1)

(
β + ey(t−1)

) = 0, t > t − 1 > 1, (4.4)

where β > 0 and f (u) = u(β + eu) with K = β . Taking H(t, s) = [ (t−2)3

6 − (s−2)3

6 ]2, ρ(t) = 1
for t � s � 1, we have

lim sup
t→∞

1

H(t, T )

t∫
T

[
Kρ(s)H(t, s)q(s) − r1(g(s))ρ(s)Q2(t, s)

4R2(g(s), T )g′(s)

]
ds

= lim sup
t→∞

1[
(t−2)3

6 + 1
6

]2

t∫
1

{
β

[
(t − 2)3

6
− (s − 2)3

6

]2(
1 − 1

s2

)

−
[
(s − 2)2 + (

(t−2)3

6 − (s−2)3

6

)
(s−2)

4s2

]2

4(s − 2)

}
ds = ∞.

It can be easily show that all the conditions of Theorem 2 are satisfied. Thus, any solution y of
Eq. (4.4) is either oscillatory or satisfies y(t) → 0 as t → ∞. Note that (3.2) holds, but (3.1) does
not.
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Example 5. Consider the third order delay differential equation

(
e−t

(
e−t y′)′)′ + e−2t

4
y′ + 25

4e3
y3(t − 1) = 0, t > t − 1 > 1. (4.5)

By choosing ρ(t) = 1, we have

lim sup
t→∞

t∫
T

[
K1ρ(s)q(s) − r1(g(s))(ρ′(s)r1(s) − ρ(s)p(s)R2(g(s), T ))2

4ρ(s)R2(g(s), T )g′(s)r2
1 (s)

]
ds

= lim sup
t→∞

t∫
1

[
K1

25

4e3
− e−(s−1)

(− e−2s

4 (es−1 − e)
)2

4(es−1 − e)e−2s

]
ds

= lim sup
t→∞

t∫
1

[
K1

25

4e3
− e−3s+1(es−1 − e)

64

]
ds = ∞.

Condition (3.10) is satisfied. It is easy to check that the other conditions of Corollary 1 are also
satisfied. Thus, any solution y of (4.5) is oscillatory or satisfies y(t) → 0 as t → ∞. One such
solution of Eq. (4.5) is y(t) = e−t . Note that (3.9) holds, but (3.8) does not.

We note that none of the above mentioned papers on the oscillation of third order differential
equations can be applied to the delay equations (4.3)–(4.5).
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