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The method of partial Fourier transform is used to find explicit formulas for two
remarkable fundamental solutions for a generalized Tricomi operator. These funda-
mental solutions reflect clearly the mixed type of the Tricomi operator. In proving
these results, we establish explicit formulas for Fourier transforms of some functions
involving Bessel functions. � 2001 Academic Press

1. INTRODUCTION

Consider the generalized Tricomi operator

P= y2+
�2

�y2 , (1.1)

where 2=�n
j=1

�2

�x2
j

is the Laplace operator. Our aim is to find, via partial
Fourier transform with respect to x=(x1 , ..., xn), fundamental solutions
relative to an arbitrary point (a, 0) on the hyperplane y=0 in Rn+1, that
is, distributions that are solutions to

Pu=$(x&a, y),
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where $(x&a, y) is the Dirac measure concentrated at (a, 0). Since P
is invariant under translations parallel to that hyperplane, it suffices to
consider the case when the Dirac measure is concentrated at the origin.

If n=1, then (1.1) is the classical Tricomi operator,

T= y
�2

�x2+
�2

�y2 . (1.2)

It is known that, for this operator, the equation 9x2+4y3=0 defines the
two characteristic curves that originate at the origin. They divide the plane
in two disjoint regions, namely,

D+=[(x, y) # R2 : 9x2+4y3>0],

the region ``outside'' the characteristics and

D&=[(x, y) # R2 : 9x2+4y3<0],

the region ``inside'' the characteristics. Note that D& is entirely contained
in the hyperbolic region y<0.

In the paper [2] it was shown the existence of the following two
fundamental solutions relative to the origin:

F+(x, y)={
1 (1�6)

3 } 22�3?1�21 (2�3)
(9x2+4y3)&1�4 in D+

(1.3)

0 elsewhere

and

F&(x, y)={
31 (4�3)

22�3?1�21 (5�6)
|9x2+4y3|&1�6 in D&

(1.4)
0 elsewhere.

The support of F& , the closure of D& , is, except for the origin, entirely
contained in the hyperbolic region ( y<0), while the support of F+ , the
closure of D+ , consists of the whole elliptic region ( y>0), the parabolic
region (x-axis), and extends to the hyperbolic region up to and included
the characteristic curves. The method used in [2] to prove these results
was based upon the property that solutions to the equation T=0 are
invariant under the dilation dt(x, y)=(t3x, t2y) in R2.

In [1] we proved formulas (1.3) and (1.4) by using partial Fourier trans-
form with respect to the x variable. In this paper we extend the results of
[1] to the generalized Tricomi operator (1.1). Since the dimension of the
space variable x is now n>1, technical difficulties in evaluating Fourier
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transforms involving Bessel functions do occur. We circumvent them by
calculating integrals of the type

I=(a, b)=|
�

0
e&=tt&*J+(at) J&(bt) dt

(Section 3). As a result, we obtain for the operator (1.1) the following
fundamental solutions:

F+(x, y)={&
3n&2

22�3?n�2

1 \n
2

&
1
3+

1 (2�3)
(9 |x|2+4y3)1�3&n�2 in Dn

+

0 elsewhere,

whose support is the closure of the region Dn
+=[(x, y) # Rn+1 : 9 |x| 2+

4y3>0] and

F&(x, y)={
3n1 \4

3+
22�3?n�21 \4

3
&

n
2+

|9 |x|2+4y3|1�3&n�2 in Dn
&

0 elsewhere

supported by the closure of the region Dn
&=[(x, y) # Rn+1 : 9 |x|2+4y3<0].

These fundamental solutions clearly generalize formulas (1.3) and (1.4).
In addition, we also show that no matter the parity of the dimension n,
F&(x, y) does not have support on the boundary of the region D& in the
hyperbolic region and hence, in contrast with what happens for strictly
hyperbolic operators��like the wave operator��the Huyghens principle
does not hold for the generalized Tricomi operator.

It is well known [9] that, for the wave operator, the regularity of the
fundamental solutions degenerates as the dimension n increases: a locally
constant function, when n=1; an absolutely continuous measure relative to
the Lebesgue measure, when n=2; a measure carried by the surface of the
forward light-cone, when n=3; and so on. However, for the generalized
Tricomi operator they always remain locally integrable.

The plan of this paper is as follows. In Section 2 we reduce, via partial
Fourier transform, the original problem to an equivalent one of finding
fundamental solutions for a second order ordinary differential equation and
show how these can be represented in terms of Airy functions or Bessel
functions. In Section 3 we obtain explicit formulas for Fourier transforms
of the functions |!|\& J&( |!| ), |!| & K&( |!| ), and |!| & N&( |!| ), !=(!1 , ..., !n),
n�1. These formulas are used to construct the fundamental solution

474 BARROS-NETO AND CARDOSO



supported by Dn
& (Section 4) and the fundamental solution supported by

Dn
+ (Section 5). In the Appendix the reader will find the definitions of

the Bessel functions J&(z), I&(z), K&(z), and N&(z), and a list of properties
that are needed throughout this work. We also recall the definition of
hypergeometric functions and some of their main properties.

The method of finding solutions, via partial Fourier transform, to the
equation

Pu= y 2u+
�2u
�y2= f (1.5)

with, say, f # C�
c (Rn+1) is a natural one although not particularly new. In

the monograph [5], R. J. P. Groothuizen exhibits a solution u in terms
of a Fourier integral operator whose symbol is obtained by the partial
Fourier transform analysis employed in this paper. He also obtains funda-
mental solutions given by Fourier integral operators. Our results are more
precise since we give explicit formulas for the fundamental solutions and
these are tempered distributions. Consequently, we can obtain more trans-
parent representations for the solution u to the Eq. (1.5) as a convolution
of f with any of the fundamental solutions here described.

2. PRELIMINARIES

Consider the more general problem of finding fundamental solutions for
the operator (1.1) relative to an arbitrary point (0, b) on the y-axis. That
is, one wishes to find distributional solutions to the equation

y 2F+
�2

�y2 F=$(x)�$( y&b). (2.1)

Partial Fourier transform with respect to x reduces this problem into
finding fundamental solutions to the ordinary differential equation

F� yy& y |!|2 F� =$( y&b), (2.2)

where F� denotes the partial Fourier transform of F, |!|2=�n
j=1 !2

j , and
$( y&b) is the Dirac measure concentrated at b.

One way of solving (2.2) (see [9]) consists in selecting two linearly
independent solutions U1(!, y) and U2(!, y) to the homogeneous equation

u~ yy& y |!|2 u~ =0 (2.3)
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so that their Wronskian at y=b (which in the case under consideration is
the same as the Wronskian at y=0) is equal to &1 and in defining

F� (!, y; b)={U2(!, b) U1(!, y)
U1(!, b) U2(!, y)

if y�b
if y�b.

(2.4)

It is a mater of verification that F� (!, y: b) is a solution to (2.2).
Equivalently [4], one can obtain a fundamental solution to the Eq. (2.2)

by finding two linearly independent solutions to the homogeneous
Eq. (2.3): u1(!, y; b), defined for y>b, and u2(!, y; b), defined for y<b, so
that

(i) the limit of u1 as y � b+ equals the limit of u2 as y � b& and

(ii) the limit of u1, y as y � b+ minus the limit of u2, y as y � b& is
equal to 1. The function F� (!, y; b) is now defined by

F� (!, y; b)={u1(!, y; b)
u2(!, y; b)

if y�b
if y�b.

(2.5)

In what follows we will use at our convenience either one of these two
expressions for F� (!, y; b).

Returning to the original problem (2.1), if we can choose U1(!, y) and
U2(!, y), in formula (2.4), or u1(!, y; b) and u2(!, y; b), in formula (2.5), so
that F� (!, y; b) is a tempered distribution with respect to !=(!1 , ..., !n),
then its inverse Fourier transform of F� (!, y; b) defines a fundamental solution
to the operator (1.1).

We now proceed to find linearly independent solutions to the homoge-
neous Eq. (2.3). The change of variables z=|!|2�3 y transforms (2.3) into
the classical Airy's equation u"&zu=0. Two linearly independent solutions
to that equation are Ai(z) and Bi(z) respectively called the Airy functions
of the first and second kinds. It is known [6] that these two functions can
be represented in terms of Bessel functions of order \1�3 as follows. If
|arg z|<(2?�3), then

Ai(z)=
z1�2

3 _I&1�3 \3
3

z2�3+&I1�3 \2
3

z3�2+&=
1
? \

z
3+

1�2

K1�3 \2
3

z3�2+ ,

(2.6)

Bi (z)=\z
3+

1�2

_I&1�3 \2
3

z3�2++I1�3 \2
3

z3�2+& .
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If |arg z|<(2?�3), then

Ai(&z)=
z1�2

3 _J&1�3 \2
3

z3�2++J1�3 \2
3

z3�2+& ,

(2.7)

Bi(&z)=\z
3+

1�2

_J&1�3 \2
3

z3�2+&J1�3 \2
3

z3�2+& .

In the Appendix I, where a brief review of Bessel functions is presented,
we show that the following relations hold:

Ai(0)=
3&2�3

1 (2�3)
, Ai $(0)=&

3&4�3

1 (4�3)
(2.8)

and

Bi(0)=
3&1�6

1 (2�3)
, Bi $(0)=

3&5�6

1 (4�3)
. (2.9)

As a consequence, the Wronskian of Ai(z) and Bi(z) evaluated at z=0 is

W(Ai(z), Bi(z))| z=0=1�?. (2.10)

Indeed, we have

W(Ai(z), Bi(z))| z=0= }
3&2�3

1 (2�3)

&
3&4�3

1 (4�3)

3&1�6

1 (2�3)
3&5�6

1 (4�3) }= 2 } 3&3�2

1 (2�3) 1 (4�3)
=

1
?

,

because

1 (2�3) 1 (4�3)=
2?
33�2 . (2.11)

We now choose the following two linearly independent solutions to the
Eq. (2.3):

U1(!, y)=- ? |!|&1�3 Ai( |!|2�3 y)

and

U2(!, y)=&- ? |!|&1�3 Bi( |!|2�3 y),
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and note that, by virtue of (2.10), the Wronskian of U1(!, y) and U2(!, y)
is equal to &1. Next, according to (2.4), the distribution

F� (!, y; b)={&? |!| &2�3 Bi( |!|2�3 b) Ai( |!| 2�3 y)
&? |!|&2�3 Ai( |!|2�3 b) Bi( |!|2�3 y)

if y�b
if y�b

(2.12)

is a fundamental solution to the ordinary differential Eq. (2.2). A funda-
mental solution F(x, y; b) to the generalized Tricomi operator (1.1) and
relative to the point (0, b) would then be the inverse Fourier transform of
F� (!, y; b) whenever that Fourier transform exists.

We do not know how to obtain an explicit formula (or formulas) for the
inverse Fourier transform of F� (!, y; b) when b{0, a problem that merits
to be investigated. We conjecture that when b<0, that is, the point (0, b)
is in the hyperbolic region, there exists two fundamental solutions that
converge, as b � 0, to the fundamental solutions F+(x, y) and F&(x, y)
defined, respectively, by the formulas (5.6) and (4.2). The two fundamental
solutions described in the monograph [5] do not seem to satisfy these
requirements.

However, when b=0, we will show in the following sections how to
obtain from formula (2.12), as well as formulas similar to it, explicit expressions
for fundamental solution to (1.1).

The case n=1. For sake of completeness and in order to motivate our
work in the forthcoming sections we briefly present the results of the paper
[1], for the Tricomi operator (1.2), that is the case when n=1. If b=0 and
we take into account the values of Ai(0) and Bi(0) as given by (2.8) and
(2.9), then formula (2.12) simplifies as follows:

F� (!, y)={
&

? |!|&2�3

31�61 (2�3)
Ai( |!|2�3 y)

&
? |!| &2�3

32�31 (2�3)
Bi( |!| 2�3 y)

if y�0

if y�0,
(2.13)

where, for simplicity, we wrote F� (!, y) for F� (!, y; 0). Now the inverse
Fourier transform of both expressions on the right-hand side of (2.13) can
be explicitly calculated. To see this, first consider the representations of
Ai(z) and Bi(z) in terms of Bessel functions as given by formulas (2.6)
and (2.7):

Ai( |!|2�3 y)=
1
? \

|!|2�3 y
3 +

1�2

K1�3 \2
3

|!| 3�2+
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and

Bi( |!|2�3 y)=\|!|2�3 (&y)
3 +

1�2

_J&1�3 \2
3

|!| (&y)3�2+&J1�3 \2
3

|!| (&y)3�2+& .

Next by introducing the change of variables s=(2�3) y3�2, whenever y�0,
and t=(2�3)(&y)3�2, whenever y�0, rewrite formula (2.13) as

F� (!, y)={
: } \ s

|!|+
1�3

K1�3(x |!| )

; } \ t
|!|+

1�3

[J&1�3(t |!| )&J1�3(t |!| )]

if y�0

if y�0,
(2.14)

where : and ; are constants given by

:=&
1

21�331�31 (2�3)
and ;=&

?
21�335�61 (2�3)

. (2.15)

Theorem 3.1 of [1] proves that F(x, y), the inverse Fourier transform of
F� (!, y), is then

F= 3
2F+& 1

2F& ,

a linear combination of the two fundamental solutions F+ and F& respec-
tively defined by formulas (1.3) and (1.4). To prove this theorem, one relies
on known formulas (see [4, 7]) for the inverse Fourier transforms of the
functions |!|&1�3 J1�3( |!| ), |!|&1�3 J&1�3( |!| ), and |!| &1�3 K1�3( |!| ), formulas
that need be generalized to the case n>1.

3. FOURIER TRANSFORMS INVOLVING BESSEL FUNCTIONS

As we have indicated in the previous section, we are going to need
explicit formulas for the inverse Fourier transforms of the following func-
tions: |!|\& J&( |!| ), |!| & K&( |!| ), and |!| & N&( |!| ), where !=(!1 , ..., !n),
n�1. Since, when n=1, explicit formulas for the Fourier transforms are
known and can be found, for example, in [4] and [7], we concentrate on
the case n>1.

1. The Inverse Fourier Transform of |!| & K&( |!| )

Assume that |Re &|<1�2 and define

F&1[|!| & K&( |!| )](x)=
1

(2?)n |
Rn

ei(x, !) |!| & K&( |!| ) d!. (3.1)
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The assumption on the real part of & secures convergence of the integral at
the origin. On the other hand, in view of the asymptotic behavior of K&( |!| )
for large values of |!|, the integral converges absolutely. By introducing
spherical coordinates, rewrite the integral on the right-hand of (3.1) as

|
�

0
rn+&&1K&(r) {|Sn&1

ei(rx, |) d|= dr.

Since

|
Sn&1

e i(rx, |) d|=
(2?)n�2

|rx| (n�2)&1 J(n�2)&1(r |x| ), (3.2)

it follows that

F&1[|!| & K&( |!| )](x)

=
|x|1&(n�2)

(2?)n�2 |
�

0
r(n�2)+&J(n�2)&1(r |x| ) K&(r) dr. (3.3)

We now quote the following result found in Watson's treatise [11]:

Lemma 3.1. If Re(++1)>|Re &| and Re b>|Im a| then

|
�

0
t++&+1J+(at) K&(bt) dt=

(2a)+ (2b)& 1 (++&+1)
(a2+b2)++&+1 . (3.4)

From this lemma, we obtain the following result

Theorem 3.1. If |Re &|<1�2 then

F&1[|!| & K&( |!| )](x)=
2&&11 \n

2
+&+

?n�2 (1+|x|2)&(n�2)&&. (3.5)

Proof. The integral in (3.3) is the same as the integral in (3.4), where
+=n�2&1, a=|x| , and b=1. Clearly the conditions of the lemma are
satisfied and Theorem 3.1 follows at once. K

We remark that, when n=1, (3.5) becomes

F&1[|!| & K&( |!| )](x)=
2&&11 ( 1

2+&)
?1�2 (1+|x|2)&(1�2)&&,

a formula found in [4] and [7].
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2. Inverse Fourier Transforms of |!| & J&( |!| ) and |!|&& J&( |!| )

As before, assume that |Re &|<1�2. Formally, the inverse Fourier trans-
form of |!| & J&( |!| ) is

F&1[|!| & J&( |!| )](x)=
1

(2?)n |
Rn

ei(x, !) |!| & J&( |!| ) d!.

In general, the integral diverges at � and so we introduce a converging
factor e&= |!| and take a limit as = � 0. Since |!| & J&( |!| ) is locally integrable,
it defines a tempered distribution and the limit exists in S$(Rn), the space
of tempered distributions on Rn . Thus the precise meaning of the inverse
Fourier transform is

F&1[|!| & J&( |!| )](x)=
1

(2?)n lim
= � 0 |Rn

ei(x, !)&= |!| |!| & J&( |!| ) d!. (3.6)

By introducing spherical coordinates, one can see that the integral on the
right-hand can be written as

|
�

0
e&=rrn+&&1J&(r) {|Sn&1

ei(rx, |) d|= dr.

Since

|
Sn&1

e i(rx, |) d|=
(2?)n�2

|rx| (n�2)&1 J(n�2)&1(r |x| ), (3.7)

it follows that

F&1[ |!|& J&( |!| )](x)

=
|x|1&(n�2)

(2?)n�2 lim
= � 0 |

�

0
e&=rr(n�2)+&J(n�2)&1(r |x| ) J&(r) dr. (3.8)

In a similar manner we also have

F&1[ |!|&& J&( |!| )](x)

=
|x|1&(n�2)

(2?)n�2 lim
= � 0 |

�

0
e&=rr(n�2)&&J(n�2)&1(r |x| ) J&(r) dr. (3.9)
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Both integrals appearing in formulas (3.8) and (3.9) are particular cases
of the following integral

I=(a, b)=|
�

0
e&=tt&*J+(at) J&(bt) dt, (3.10)

where a and b are positive real numbers, *, +, and &, complex numbers
such that Re(++&+1)>Re(*). This integral is a variant of the dis-
continuous integral of Weber and Schafheitlin studied by Watson in his
treatise on Bessel functions [11].

Lemma 3.2. As = � 0 I=(a, b) tends, in the sense of distributions, to either
one of the following limits:

b&1 \++&&*+1
2 +

2*a&&*+11 (&+1) 1 \*++&&+1
2 +

_F \++&&*+1
2

,
&&*&++1

2
; &+1;

b2

a2+ , (3.11)

if 0<b<a, or

a+1 \++&&*+1
2 +

2*b+&*+11 (++1) 1 \*+&&++1
2 +

_F \++&&*+1
2

,
+&*&&+1

2
; ++1;

a2

b2+ , (3.12)

if 0<a<b.

Proof. We adapt to our situation the proof of the Weber�Schafheitlin
theorem as found in Section 13.4 of Watson's treatise [11]. It consists of
expanding the integrand in (3.10) in power series of b, and passing to the
limit as = � 0.

1. Consider the case when 0<b<a. If we replace b by z, the integral
(3.10) is an analytic function of z when Re z>0 and |Im z|<=. Introduce
new constants :, ;, and # defined by

2:=++&&*+1, 2;=&&*&++1, #=&+1
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or, equivalently,

*=#&:&;, +=:&;, &=#&1,

and rewrite (3.10) as follows:

I=(a, z)=|
�

0
e&=tt:+;&#J:&;(at) J#&1(zt) dt

=|
�

0
e&=tJ:&;(at) { :

�

m=0

(&1)m (z�2)#+2m&1t:+;+2m&1

m ! 1 (#+m) = dt

= :
�

m=0

(&1)m (z�2)#+2m&1

m ! 1 (#+m) |
�

0
e&=tJ:&;(at) t:+;+2m&1 dt. (3.13)

The interchange between the integrating and summation signs is justified
because, when |z|<=, the series

:
�

m=0

(&1)m (z�2)#+2m&1

m ! 1 (#+m) |
�

0
e&=t |J:&;(at) t:+;+2m&1| dt

is absolutely convergent.

2. We now evaluate the last integral on the right-hand side of (3.13).
By expanding J:&;(at) in power series and integrating term by term we
obtain

|
�

0
e&=tJ:&;(at) t:+;+2m&1 dt

= :
�

k=0

(&1)k (a�2):&;+2k

k ! 1 (:&;+k+1) |
�

0
e&=tt2:+2(m+k)&1 dt

= :
�

k=0

(&1)k (a�2):&;+2k

k ! 1 (:&;+k+1)
1 (2:+2m+2k)

=2:+2m+2k .

By using the duplication formula 1 (2z)=22z&1?&1�21 (z) 1 (z+ 1
2) together

with the notation (z)k=z(z+1) } } } (z+k&1)=1 (z+k)�1 (z) we rewrite
the last expression as:

|
�

0
e&=tJ:&;(at) t:+;+2m&1 dt

=
(a�2):&;

(=2):+m

1 (2:+2m)
1 (:&;+1)

:
�

k=0

(:+m)k (:+m+ 1
2)k

k !(:&;+1)k \&
a2

c2+
k

=
(a�2):&;

(=2):+m

1 (2:+2m)
1 (:&;+1)

F \:+m, :+m+
1
2

; :&;+1; &
a2

c2+ .
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By using formula (A.16) in Appendix Section II:

F (a, b; c; z)=(1&z)&a F \a, c&b; c;
z

z&1+ ,

we obtain that

|
�

0
e&=tJ:&;(at) t:+;+2m&1 dt

=
(a�2):&;

(a2+=2):+m

1 (2:+2m)
1 (:&;+1)

F \:+m, :+m+
1
2

; :&;+1;
a2

a2+=2+ .

(3.14)

Substituting (3.14) into (3.13) we get

I=(a, z)= :
�

m=0

(&1)m (z�2)#+2m&1 (a�2):&; 1 (2:+2m)
m ! 1 (#+m)(a2+=2):+m 1 (:&;+1)

_F \:+m, :+m+
1
2

; :&;+1;
a2

a2+=2+ , (3.15)

whenever |z|<=.

3. Following [11], one can show that (3.15) is valid provided that z
satisfies the conditions

Re(z)>0, |Im(z)|<=, |z|<- a2+=2&=.

Let $>0 be small enough so that b<- a2+$2&$, and take 0<=�$ so
that we also have b<- a2+=2&=. In (3.15) we may now let z=b and,
when this is done, one can show, by the method of majorants, that the
resulting series converges uniformly with respect to =, 0<=�$, and there-
fore, as = � 0, the limit of the series is equal to its value at ==0. Thus

lim
= � 0

I=(a, b)= :
�

m=0

(&1)m (b�2)#+2m&1 (a�2):&; 1 (2:+2m)
m ! 1 (#+m) a2:+2m1 (:&;+1)

_F \:+m, :+m+
1
2

; :&;+1; 1+ . (3.16)

By formula (A.15) in the Appendix Section II, we have

F \:+m,
1
2

&;&m; :&;+1; 1+=
1 (:&;+1) 1 (1�2)

1 (1&;&m) 1 (:+m+ 1
2)

.
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On the other hand,

1 (1�2) 1 (2:+2m)=22:+2m&11 (:+m) 1 \:+m+
1
2+ ,

1 (1&;&m)=
(&1)m ? csc(?;)

1 (;+m)
,

1 (1&;) 1 (;)=? csc(?;);

therefore

1 (2:+2m) 1 (1�2)
1 (#+m) 1 (1&;&m) 1 (:+m+ 1

2)
=

22:+2m&11 (:+m) 1 (;+m)
(&1)m 1 (1&;) 1 (;) 1 (#+m)

.

Substituting these formulas into (3.16), we get

lim
= � 0

I=(a, b)= :
�

m=0

b#&11 (:+m) 1 (;+m)
2#&:&;a:+;m ! 1 (1&;) 1 (;) 1 (#+m) \

b2

a2+
m

=
b#&11 (:)

2#&:&;a:+;1 (#) 1 (1&;)
F \:, ;; #;

b2

a2+ (3.17)

Finally, returning to the constants +, &, and *, we obtain the expression (3.11)
in the first part of the lemma.

4. In the case 0<a<b, we proceed in an analogous manner to
obtain the expression (3.12) in the second part of the lemma. K

We now use Lemma 3.2 to evaluate the inverse Fourier transforms of
|!| & J&( |!| ) and |!| && J&( |!| ) respectively defined by formulas (3.8) and
(3.9).

Theorem 3.2. The inverse Fourier transform of |!|& J&( |!| ) is the
distribution defined by

F&1[|!| & J&( |!| )](x)

={sin \n?
2 +

2&1 \n
2

+&+
?(n�2)+1 (1&|x|2)&(n�2)&&, 0<|x|<1,

(3.18)

&sin(&?)
2&1 \n

2
+&+

?(n�2)+1 ( |x| 2&1)&(n�2)&&, 1<|x|.
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Proof. The integral on the right-hand side of (3.8) corresponds to the
integral in (3.10) where

+=
n
2

&1, &=&, *=&
n
2

&&, a=|x|, b=1.

If 1<|x|, then from formula (3.11) we obtain for the limit in (3.8):

lim
= � 0 |

�

0
e&=rr(n�2)+&J (n�2)&1(r |x| ) J&(r) dr

=
1 \n

2
+&+

2&(n�2)&& |x| (n�2)+2&+1 1 (&+1) 1 (&&)
F \n

2
+&, &+1; &+1;

1
|x|2+ .

From the known relation for hypergeometric series

F(a, b; c; z)=(1&z)c&a&b F(c&a, c&b; c; z) (3.19)

we have that

F \n
2

+&, &+1; &+1;
1

|x| 2+=\ |x|2&1
|x| 2 +

&(n�2)&&

.

On the other hand

1 (&+1) 1 (&&)=
&?

sin(?&)
.

Thus, for 1<|x|, the above limit is equal to

lim
= � 0 |

�

0
e&=rr(n�2)+&J(n�2)&1(r |x| ) J&(r) dr

=&sin(?&)
|x| (n�2)&1 1 \n

2
+&+

2&(n�2)&&?
( |x|2&1)&(n�2)&&, (3.20)
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If 0<|x|<1, then formula (3.12) yields

lim
= � 0 |

�

0
e&=rr(n�2)+&J(n�2)&1(r |x| ) J&(r) dr

=
|x| (n�2)&1 1 \n

2
+&+

2&(n�2)&&1 \n
2+ 1 \1&

n
2+

F \n
2

+&,
n
2

;
n
2

; |x|2+

=sin \n?
2 +

|x| (n�2)&1 1 \n
2

+&+
2&(n�2)&&?

(1&|x| 2)&(n�2)&&, (3.21)

after making the replacements

1 \n
2+ 1 \1&

n
2+=

?
sin(n?�2)

and

F \n
2

+&,
n
2

;
n
2

; |x|2+=(1&|x|2)&(n�2)&&.

The last expression results from (3.19). Substituting (3.20) and (3.21) into
(3.8) we obtain (3.18) and the theorem is proved. K

By reasoning in the same manner the following result, whose proof is left
to the reader, holds.

Theorem 3.3. The inverse Fourier transform of |!|&& J&( |!| ) is the
distribution defined by

F&1[|!|&& J&( |!| )](x)={
(1&|x|2)&&(n�2)

2&? (n�2)1 \&&
n
2

+1+
, 0<|x|<1,

(3.22)

0, 1<|x|.

Remark. From Theorem 3.3 we immediately derive a formula for the
inverse Fourier transform of |!| & J&&( |!| ), namely,

F&1[|!| & J&&( |!| )](x)={
(1&|x|2)&&&(n�2)

2&&?n�21 \1&&&
n
2+

, 0<|x|<1,
(3.23)

0, 1<|x|.
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Since

1 \1&&&
n
2+ 1 \&+

n
2+=

?

sin _\&+
n
2+ ?&

,

we may rewrite (3.23) as

F&1[|!| & J&&( |!| )](x)

={
2& sin _\&+

n
2+ ?& 1 \&+

n
2+

? (n�2)+1 (1&|x|2)&&&(n�2), 0<|x|<1,

0, 1<|x|.

(3.24)

3. The Inverse Fourier Transform of |!| & N&( |!| )

Theorems 3.2 and 3.3 imply the following result

Theorem 3.4. The inverse Fourier transform of |!|& N&( |!| ) is the
distribution defined by

F&1[|!| & N&( |!| )](x)

={&cos \n?
2 +

2&1 \n
2

+&+
?(n�2)+1 (1&|x|2)&(n�2)&&, 0<|x|<1,

(3.25)

&cos(&?)
2&1 \n

2
+&+

?(n�2)+1 ( |x|2&1)&(n�2)&&, 1<|x|.

Proof. Recall that

N&( |!| )=
J&( |!| ) cos(&?)&J&&( |!| )

sin(&?)
.
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Thus, from formulas (3.18) and (3.24) we get

F&1[|!| & N&( |!| )](x)

={
cos(&?)
sin &?

2&1 \n
2

+&+
?(n�2)+1 (1&|x| 2)&(n�2)&&, 0<|x|<1,

&cos(&?)
2&1 \n

2
+&+

?(n�2)+1 ( |x|2&1)&(n�2)&&, 1<|x|,

&{
sin _\&+

n
2+ ?&

sin(&?)

2&1 \n
2

+&+
?(n�2)+1 (1&|x|2)&(n�2)&&, 0<|x|<1,

0, 1<|x|.

Now

sin _\&+
?
2+& ?=sin(&?) cos \n?

2 ++cos(&?) sin \n?
2 +

and so formula (3.25) follows at once. K

4. A FUNDAMENTAL SOLUTION WITH SUPPORT IN Dn
&

We return to the problem (2.1) and, in order to obtain a formula for a
fundamental solution with support in the hyperbolic region, we have to
modify formula (2.13). Consider the function

F� &(!, y)={
32�31 (4�3)

21�3 \ t
|!|+

1�3

J1�3(t |!| ) for y�0
(4.1)

0, for y�0,

where t=(2�3)(&y)3�2. From formula (6.10) in the Appendix I, it follows
that the limit of F� &(!, y) as y � 0& is equal to zero and so condition (i)
in Section 2 holds. Also it follows from the same formula that

�y {\ t
|!|+

1�3

J1�3(t |!| )=}y=0

=&
21�3

32�31 (4�3)
,

hence, the y-derivative of F� &(!, y) at y=0& is equal to &1, and so condi-
tion (ii) is also satisfied. By calculating the inverse Fourier transform of
F� &(!, y) we have the following result:

489GENERALIZED TRICOMI OPERATOR



Theorem 4.1. The inverse Fourier transform of F� &(!, y) is the distribution

Ft(x, y)={
3n1 \4

3
)

22�3?n�21 \4
3

&
n
2+

|9 |x|2+4y3| (1�3)&(n�2) in Dn
& (4.2)

0 elsewhere,

where Dn
&=[(x, y) # Rn+1 : 9 |x| 2+4y3<0]. It is a fundamental solution

for the operator (1.1) whose support is the closure of the region Dn
& .

Proof. We must evaluate the inverse Fourier transform of (t�|!| )1�3 J1�3(t |!| ).
Recall that if G(x) is the inverse Fourier transform of f (!), then (1�an) G(x�a)
is the inverse Fourier transform of f (a!). By applying formula (3.22) for
&=1�3, we obtain

F&1[(t�|!| )1�3 J1�3(t |!| )](x)

={
t(2�3)&n

21�3?n�21 \4
3

&
n
2+

\1&
|x|2

t2 +
(1�3)&(n�2)

, 0<|x|<t,

0, t<|x|.

={
1

21�3?n�21 \4
3

&
n
2+

(t2&|x|2)(1�3)&(n�2), 0<|x|<t,

0, t<|x|.

={
3n&(2�3)

21�3?n�21 \4
3

&
n
2+

|9 |x|2+4y3| (1�3)&(n�2) in Dn
&

0, elsewhere.

Multiplication by the constant 32�31 (4�3)�21�3 in formula (4.1) yields (4.2)
which proves the theorem. K

Remarks. 1. If n=1, then F&(x, y) coincides with the distribution
defined by formula (1.4).
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2. For all values of n the support of F&(x, y) is the closure of the
region Dn

& . This follows from results in [4] about the generalized function
P*

+ where P(x) is the quadratic polynomial

P(x)=x2
1+ } } } +x2

p&x2
p+1& } } } &x2

p+q ,

p, q�1. See also the example in [8] about the distribution Pf. s*, where
s denotes the hyperbolic distance in RN, N>1.

5. A FUNDAMENTAL SOLUTION WITH SUPPORT IN Dn
+

Consider the function F� +(!, y) defined by

F� +(!, y)={
# } \ s

|!|+
1�3

K1�3(x |!| )

$ } \ t
|!|+

1�3

N&1�3(t |!| )

if y�0

if y�0,
(5.1)

where s=(2�3) y3�2, t=(2�3)(&y)3�2, and the constants # and $ are respec-
tively given by

#=&
22�3

34�31 (2�3)
and $=

2?
21�334�31 (2�3)

, (5.2)

and where N&1�3 is the Neumann function defined by (6.4). By using the
formulas in the Appendix I, it is a matter of verification that the conditions
(i) and (ii) in Section 2 are satisfied. Thus its inverse Fourier transform,
denoted by F >(x, y), defines a fundamental solution for the operator (1.1).
The following theorem gives an explicit expression for F >(x, y).

Theorem 5.1. The inverse Fourier transform of F� +(!, y) is the distribution
defined by

F >(x, y)={&
3n&2

22�3?n�2

1 \n
2

&
1
3+

1 (2�3)
(9 |x|2+4y3)(1�3)&(n�2) in Dn

+

&cos \n?
2 +

21�33n&2

?n�2

1 \n
2

&
1
3+

1 (2�3)
|9 |x|2+4y3| (1�3)&(n�2) in Dn

& .

(5.3)
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Proof. 1. We start by evaluating the inverse Fourier transform of
(s�|!| )1�3 K1�3(s |!| ), s=2y3�2�3, y�0. Since K&(z)=K&&(z), it follows from
formula (3.5) that

F&1[(s�|!| )1�3 K1�3(s |!| )]=
2&4�31 \n

2
&

1
3+

?n�2 (s2+|x|2) (1�3)&(n�2).

After multiplying by the constant # in (5.2) and reintroducing the variables
x and y, we can see that the right-hand side of the last expression is equal
to

&
3n&21 \n

2
&

1
3+

22�3?n�21 (2�3)
(9 |x|2+4y3) (1�3)&(n�2), y�0, (5.4)

that if F >(x, y) in Dn
+ & [ y�0].

2. Next we evaluate the inverse Fourier transform of (t�|!| )1�3 N&1�3(t |!| ),
t=2(&y)3�2�3, y�0. From formula (3.25) we obtain

F&1[(t |!| )&1�3 N1�3(t |!| )]

={&cos \n?
2 +

2&1�31 \n
2

&
1
3+

? (n�2)+1 (t2&|x| 2) (1�3)&(n�2), 0< |x|<t,

&\1
2+

2&1�31 \n
2

&
1
3+

?(n�2)+1 ( |x| 2&t2) (1�3)&(n�2), t<|x|.

After multiplying both sides by the constant $ in (5.2) and reverting to the
variables x and y, we can see that the right-hand side of the last expression
can be written as

{&
3n&21 \n

2
&

1
3+

22�3?n�21 (2�3)
(9 |x| 2+4y3) (1�3)&(n�2), in Dn

+ & [y�0]

&cos \n?
2 +

21�33n&21 \n
2

&
1
3+

?n�21 (2�3)
|9 |x|2+4y3| (1�3)&(n�2), in Dn

& ,

(5.5)

and so (5.5) coincides with F >(x, y) in Dn
+ & [ y�0] _ Dn

& . Therefore,
from (5.4) and (5.5) we obtain (5.3) and the theorem is proved. K
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Remarks. 1. In view of the results in [4] relative to the generalized
function P*

+ (see Remark 2 after the proof of Theorem 4.1) the supports of
the distributions

(9 |x|2+4y3) (1�3)&(n�2) and |9 |x|2+4y3| (1�3)&(n�2)

that appear in formula (5.3) are the closures of Dn
+ and Dn

& , respectively.
In other words, for no value of n can these supports be just the boundaries
of these regions.

2. If n is odd, then cos(n?�2)=0, and we rewrite formula (5.3), using
the notation F+(x, y) instead of F >(x, y), as follows:

F+(x, y)={&
3n&2

22�3?n�2

1 \n
2

&
1
3+

1 (2�3)
(9 |x|2+4y3)(1�3)&(n�2) in Dn

+

0 elsewhere.

(5.6)

This is a fundamental solution whose support is Dn
+ . In particular, if n=1

we obtain formula (1.3).

3. If n is even, then F >(x, y) is not necessarily identically zero in Dn
&

and its support may be the whole of Rn+1. Suppose that n=2k, k>0, and
let us compare the constant in formula (5.3), relative to the region Dn

& , to
the constant in the expression (4.2) of F&(x, y). Let

A=
(&1)k+1 21�332(k&1)

?k

1 (k& 1
3)

1 (2�3)

be the constant in (5.3) and let

B=
32k

22�3?k

1 (4�3)
1 ( 4

3&k)
=

(&1)k+1 32k&1

22�3?k

1 (k& 1
3)

1 (2�3)

be the constant in (4.2). Since 3A&2B=0 it follows that the distribution

F+(x, y)=3F >(x, y)&2F&(x, y) (5.7)

is now a fundamental solution for the operator (1.1) supported in Dn
+

and we have for this F+(x, y) the same expression as that of (5.6). In
conclusion, for all values on n we always get two fundamental solutions:
one whose support is the closure of Dn

+ and another whose support is the
closure of Dn

& .
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APPENDIX

I. Bessel Functions
The function J&(z) of a complex variable z defined by

J&(z)= :
�

r=0

(&1)r z&+2r

2&+2rr ! 1 (&+r+1)
, |z|<�, |arg z|<?, (A.1)

is called the Bessel function of the first kind of order &.
We also need the Bessel functions I&(z) and K&(z) defined by

I&(z)= :
�

r=0

z&+2r

2&+2rr ! 1 (&+r+1)
, |z|<�, |arg z|<?, (A.2)

and

K&(z)=
? csc(&?)

2
[I&&(z)&I&(z)], &{0, \1, \2, ... (A.3)

as well as the Neumann function

N&(z)=
J&(z) cos(&?)&J&&(z)

sin(&?)
. (A.4)

Note that throughout this work, we only deal with Bessel functions of
order \1�3. Recall that Ai(z) was defined in formula (2.6) by

Ai(z)=
z1�2

3 _I&1�3 \2
3

z3�2+&I1�3 \2
3

z3�2+&=
1
? \

z
3+

1�2

K1�3 \2
3

z3�2+ .

If we set s= 2
3z3�2, then we may rewrite Ai(z) as

Ai(z)=
1

32�321�3 s1�3[I&1�3(s)&I1�3(s)]. (A.5)

From the series expansion of I&(z) it follows that

s1�3I&1�3(s)=
1

2&1�31 (2�3)
+

s2

25�31 (5�3)
+ } } } (A.6)

and

s1�3I1�3(s)=
s2�3

21�31 (4�3)
+

s8�3

27�3+ } } } . (A.7)
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Consequently from (A.5), (A.6), and (A.7) we obtain

Ai(0)=
3&2�3

1 (2�3)
,

the first expression in formula (2.8). Similarly, by differentiating Ai(z) and
setting z=0, we get the second expression in (2.8)

Ai $(0)=&
3&4�3

1 (4�3)
.

In an analogous way, recall that Bi(z) in (2.6) was defined by

Bi(z)=\z
3+

1�2

_I&1�3 \2
3

z3�2++I1�3 \2
3

z3�2+& .

If we set s= 2
3z3�2, then the last expression becomes

Bi(z)=
1

21�331�6 s1�3[I&1�3(s)+I1�3(s)], (A.8)

and again from (A.6) and (A.7) we obtain

Bi(0)=
3&1�6

1 (2�3)
, Bi $(0)=

3&5�6

1 (4�3)
,

which are the two expressions in (2.9).
Finally, from these results we obtain the value of the Wronskian of Ai(z)

and Bi(z) at z=0:

W(Ai(z), Bi(z)) |z=0
=

2 } 3&3�2

1 (2�3) 1 (4�3)
=1�?,

because 1 (2�3) 1 (4�3)=2? } 3&3�2.
For future reference, we also need the following expansions derived from

the series that defines J&(z):

t1�3J&1�3(t)=
1

2&1�31 (2�3)
&

t2

25�31 (5�3)
+ } } } (A.9)

and

t1�3J1�3(t)=
t2�3

21�31 (4�3)
&

t8�3

27�31 (7�3)
+ } } } . (A.10)
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II. Hypergeometric Series and Functions

Let a, b, and c be arbitrary complex numbers and let z be a complex
variable. The power series

F (a, b; c; z)= :
�

n=0

(a, n)(b, n)
(c, n)

zn

n!
, (A.11)

where

(a, 0)=1,

(A.12)
(a, n)=

1 (a+n)
1 (a)

=a(a+1) } } } (a+n&1), n=1, 2, ...

and we assume that c{0, &1, &2, ..., is called a hypergeometric series. It
is known [12] that the series (A.11) is a solution, valid near z=0, of the
hypergeometric equation

z(1&z)
d 2u
dz2 +[c&(a+b+1) z]

du
dz

&abu=0, (A.13)

for which every point is an ordinary point, except 0, 1, and �, that are
regular singular points.

If either a or b is a negative integer, then the series (A.11) terminates; if
c is a negative integer, the series is meaningless because all terms after the
(1&c)th have a zero denominator. As it is known [3], it is possible to
redefine the series (A.11) so that it still is a solution of the hypergeometric
equation. We exclude this possibility from our considerations because, in
the cases that interest us, c is never a negative integer.

The hypergeometric series is absolutely convergent for |z|<1 and so
defines, in the open disk, an analytic function of z which is regular at z=0.
The point z=1 is however a branch point and if a cut is made from 1 to
+� along the x-axis, it can be shown [12] that series can be continued
analytically and defines an analytic function throughout the cut plane that
we still denote by F (x, b; c; z). If Re(c)>Re(b)>0, this analytic extension
can be represented by Euler's formula

F (a, b; c; z)=
1 (c)

1 (b) 1 (c&b) |
1

0
tb&1(1&b)c&b&1 (1&tz)&a dt, (A.14)

for |arg(1&z)|<?.
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In general, the hypergeometric series (A.11) diverges for |z|=1.
However, if Re(c&a&b)>0, we have absolute convergence for |z|=1.
Moreover,

F (a, b; c; 1)=
1 (c) 1 (c&a&b)
1 (c&a) 1 (c&b)

. (A.15)

Hypergeometric functions satisfy among themselves quite a number of
important relations of which we just list the following two that we used in
Section 3:

F (a, b; c; z)=(1&z)&a F \a, c&b; c;
z

z&1+ (A.16)

and

F (a, b; c; z)=(1&z)c&a&b F (c&a, c&b; c; z). (A.17)

For a complete list of such relations, the reader should consult Erde� ly [3].
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