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Abstract

Most of the large scale state transition (also called discrete-event) systems are formed as parallel compositions of many small
subsystems (modules). Control of modular and distributed discrete-event systems appears as an approach to handle computational
complexity of synthesizing supervisory controllers for large scale systems. For both modular and distributed discrete-event systems
sufficient and necessary conditions are derived for modular control synthesis to equal global control synthesis, while enforcing
a safety specification in an optimal way (the language of the controlled system is required to be the supremal one achievable
by an admissible controller and included in a safety specification language). The two cases of local (decomposable) and global
(indecomposable) specifications are considered. The modular control synthesis has a much lower computational complexity than
the corresponding global control synthesis for the respective sublanguages. The complexity is compared using explicit formulas.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of the paper is to present an overview of recent results together with new results on control of modular
(also called concurrent) and distributed discrete-event systems. Discrete-event systems (DES) are event-triggered
dynamical systems which are studied in computer science with applications in manufacturing, communication
networks, but also in software engineering (automated system design). In particular the various types of state transition
systems (automata, Petri Nets, process algebras) are typical instances of DES. The topic of modular DES arises
because of an increasing complexity of engineering systems, in particular of computer and communication networks.
There is a strong need for system theoretical treatment of modular DES motivated by these emerging application fields.
Control of discrete-event systems is a natural generalization of their verification that is now very well established for
both finite and infinite-state transition systems.
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In computer science the problems of supervisory control synthesis are studied as automated synthesis. In control
theory for DES the goal is not to verify the specification, but to impose it by means of a supervisor that runs in
parallel with the original system. The supervisor is chosen such that the composed system meets the specification.
In the Ramadge–Wonham framework it is an automaton which runs in parallel with the original system and the
parallel composition of the original system with the supervisor (called closed-loop or controlled system) meets
the specification given mostly by a language or a logical formula. In this way the specification is imposed on the
controlled system. Game theoretic framework for control of DES is used in [26], where infinite behaviors and µ-
calculus specifications are considered. In [14] branching time controllers that ensure bisimilarity of the controlled
nondeterministic system with the specification are considered.

Although most of the verification and control problems for finite-state transition systems are decidable, the high
complexity of most control and verification problems makes them practically difficult. Moreover, there are undecidable
control problems for decentralized DES [15,23]. In order to limit the high computational complexity of (global)
control synthesis efficient methods for component-based control synthesis are developed. Synthesis of modular and
distributed systems has also been treated by computer scientists, see for example [17].

The novelty of the paper is in the following results: the necessary conditions for commutativity between parallel
composition and supremal sublanguages (Theorems 4.7, 5.9 and Corollary 5.11), necessary conditions in the case of
global (indecomposable) specifications (Theorems 6.7, 7.4 and Corollary 7.5), and necessary and sufficient conditions
for commutativity between languages of the controlled systems with respect to the so-called antipermissive control
policy in the case of global specification (Theorems 5.16 and 7.8). Sufficient conditions are derived using the
coinductive proof principle. Our earlier results, where necessary and sufficient structural conditions for local to equal
global computation of supremal sublanguages differ in case of modular and distributed DES with global specification
languages, are sharpened by showing that the (weaker) necessary conditions of [7] and [8] are also sufficient.

Because this paper aims at readers from the theoretical computer science community, there is an additional tutorial
text in Section 2 for computer scientists on the concepts and results of control theory for discrete-event systems. This
paper is the extended version of the paper [11].

The paper has the following structure. The next section is an introduction to supervisory control. In Section 3 a
coalgebraic approach used in the sufficiency proofs is briefly recalled. Section 4 is devoted to modular control with
complete observations and with decomposable specification languages. In Section 5 the case of a distributed DES and
a decomposable specification is treated. In Section 6 the case is discussed of a modular DES with an indecomposable
specification. Finally in Section 7 the case of a distributed system with an indecomposable specification is treated.
The complexity issues are discussed in Section 8. In Section 9 concluding remarks are proposed.

2. Control of discrete-event systems—Introduction

In this section basic notation and terminology of supervisory control is recalled. The notation used in this paper is
mostly taken from the lecture notes of Wonham [27] and the book [2].

A (deterministic) generator

G = (Q, A, f, q0, Qm),

is an algebraic structure consisting of a state set Q, an event set A, a partial transition function f : Q × A → Q,
an initial state q0 ∈ Q, and a subset of marked states Qm ⊆ Q. A transition is also denoted as q

a
7→ q+

= f (q, a).
If a transition is defined then this is denoted by f (q, a)! Denote by A∗ the set of all finite strings of elements of
the alphabet A and the empty string ε. Extend the transition function f to f : Q × A∗

→ Q by induction. Define
respectively the language and the marked language of the generator as,

L(G) = {s ∈ A∗
| f (q0, s)!}, Lm(G) = {s ∈ L(G)| f (q0, s) ∈ Qm}.

Note that unlike Lm(G), L(G) is always prefix-closed. The prefix closure of a language K ⊆ A∗ is denoted by
prefix(K ). We often abuse notation and write L instead of L(G). The tuple of languages (Lm(G), L(G)) will be
called the behavior of the generator. The system is said to be nonblocking if the prefix closure of the marked language
Lm(G) equals the language L(G). This is equivalent to the property that every string of the system, s ∈ L(G), can be
extended to a marked string, thus there exists a string v ∈ A∗ such that sv ∈ Lm(G).
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A controlled generator is a structure

(G, Ac,Γc), where,
G is a generator,

Ac ⊆ A is the subset of controllable events,
Au = A \ Ac is the subset of uncontrollable events, and

Γc = {S ⊆ A|Au ⊆ S}, is called the set of control patterns.

A supervisory control or a supervisor for the controlled generator is a map S : L(G) → Γc. S(s) is the subset
of events that the supervisor enables after string s has been generated by G. The closed-loop system associated with
a controlled generator and a supervisory control as denoted above is defined as the language L(S/G) ⊆ A∗ and the
marked language Lm(S/G) ⊆ L(S/G), which are the smallest sublanguages satisfying,

(1) ε ∈ L(S/G),

(2) if s ∈ L(S/G) and if a ∈ S(s) such that sa ∈ L(G)

then sa ∈ L(S/G);

Lm(S/G) = L(S/G) ∩ Lm(G).

Note that at the automata level the supervision is implemented by the parallel composition (synchronous product) of
the generator and the supervisor. The supervisor must be such that if an uncontrollable event is defined in a state of
the uncontrolled system then it must be defined also in the corresponding state of the supervisor so that this event
is not disabled by synchronizing the uncontrolled system with the supervisor. This can be achieved via the so-called
prioritized synchronous composition. Since we work with behaviors of deterministic automata, the original language
framework introduced by W.M. Wonham is chosen.

Problem 2.1 (Supervisory Control Problem). Consider a controlled generator (G, Ac,Γc) and a specification
sublanguage K ⊂ Lm(G). Does there exist a supervisor S such that the closed-loop system satisfies (1) Lm(S/G) =

K and (2) L(S/G) is nonblocking?

Because often the specification sublanguage K contains only the safe strings, thus the unsafe strings are excluded, the
control objective (1) of the above problem is called the safety control objective. Not every language can be exactly
achieved by a supervisor. The property called controllability is needed.

Definition 2.2. A language K ⊆ A∗ is said to be controllable with respect to plant language L = L(G) and alphabet
Au if ∀s ∈ prefix(K ) and ∀a ∈ Au such that sa ∈ L we have that sa ∈ prefix(K ). Equivalently, if

prefix(K )Au ∩ L ⊆ prefix(K ). (1)

Theorem 2.3. (Due to Ramadge, Wonham, See [20].) There exists a nonblocking supervisory control S for a generator
G such that Lm(S/G) = K and L(S/G) = prefix(K ) if and only if

(1) K is controllable with respect to L(G) and Au and
(2) K = prefix(K ) ∩ Lm(G) (then one says that K is Lm(G)-closed.).

As a corollary for prefix-closed specifications:

Corollary 2.4. Let ∅ 6= K ⊆ Lm(G) be prefix closed. There exists a supervisory control S for G such that
Lm(S/G) = K and L(S/G) = K if and only if K is controllable with respect to L(G) and Au .

The corresponding supervisory control S : L(G) → Γc is:

S(s) = Au ∪ {a ∈ Ac : sa ∈ prefix(K )}.

Note the abuse of notation, where the same symbol is used to denote a supervisor and a control law. This is justified
by the fact that, considering a supervisor, the control law is described by the transition function of the supervisor
in the form of the set of enabled active events after string s has been processed by the supervisor. Most often one
is concerned only with the safety issue, i.e. the controlled behavior must be included in the specification language
hence L(S/G) ⊆ K . This is why for specifications which are not controllable, supremal controllable sublanguages
are considered. The notation sup C(K , L , Au) is chosen for the supremal controllable sublanguage of K with respect
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to L and Au . This language always exists, it is the union of all controllable sublanguages because controllability is
preserved by language unions [29].

A discrete-event system is said to have complete observations if all events are observed and are available for the
supervisory control. A discrete-event system is said to have partial observations if only a strict subset of the events
are observed and are available for the supervisory control. A modular discrete-event system is a system consisting of
a composition of two or more subsystems where each subsystem or module has complete observations of its (local)
events. A distributed discrete-event system is a system consisting of a composition of two or more subsystems where
at least one subsystem has only partial observations of its events.

In the presence of partial observations additional issues appear. A generator with partial observations is a structure
(G, Ao) where G is a generator, Ao ⊆ A is called the subset of observable events, and Auo = A \ Ao is called the
subset of unobservable events. In this case one defines the natural projection as morphism of monoids P : A∗

→ A∗
o

such that P(a) = P(ε) = ε for a ∈ Auo and P(a) = a for a ∈ Ao . Hence, P erases the unobservable events. Note
that the supervisor cannot distinguish between two strings with the same projections, i.e. after two such strings the
same control law must be applied. Therefore, a supervisor with partial observations is a map S : P(L(G)) → Γc.
Define also the inverse projection P−1

: Pwr(A∗
o) → Pwr(A∗) on subsets of strings or languages.

Let K be a specification language. The supervisory control with partial observations is defined as:

S(s) = Au ∪ {a ∈ Ac : ∃s′
∈ prefix(K ) with P(s′) = s and s′a ∈ prefix(K )}. (2)

This original control law is nowadays called permissive, because in order to allow an a-transition in G after string
s is observed it is sufficient that there exists one indistinguishable string s′ which can be prolongated by a within
the specification, while there might exist another indistinguishable string s′′ whose a-prolongation leaves the prefix-
closure of K . In other words this permissive control policy yields in general a larger language than the specification,
which is not desirable if safety properties are expressed by the specification. Therefore the dual control policy (called
antipermissive) will be studied in the next sections. Note that at the automata level in the presence of partial observation
only selfloops are allowed for supervisor’s transitions labelled by unobservable events, because the set of enabled
events, encoded by the supervisor’s transition function, cannot change with an unobservable transition. Let us remark
that the prefix-closed language L(S/G) ⊆ A∗ and the marked language Lm(S/G) ⊆ L(S/G) are defined in the same
way as above (for the case of complete observations) except that in the condition (2) for sa ∈ L(S/G), i.e. for a ∈ A
to be enabled after s ∈ L(G) has been generated, it is required that a ∈ S(P(s)) instead of a ∈ S(s). More details can
be found in the proof of the so-called controllability and observability theorem in [2], pages 192–194.

The additional property needed to exactly achieve a specification language by a supervisor with partial observations
is called observability.

Definition 2.5. The sublanguage K ⊆ L is said to be observable with respect to the plant language L and the
projection P if

∀s, s′
∈ prefix(K ), ∀a ∈ Ac,

sa ∈ L , s′a ∈ prefix(K ), and P(s) = P(s′) ⇒ sa ∈ prefix(K ). (3)

Theorem 2.6 (Due to F. Lin and W.M. Wonham, See [16]). Consider a generator with partial observations. There
exists a nonblocking supervisory control S with partial observations such that Lm(S/G) = K and L(S/G) =

prefix(K ) if and only if

(1) K is controllable with respect to L(G) and Au ,
(2) K is observable with respect to L(G) and P, and
(3) K = prefix(K ) ∩ Lm(G). (K is Lm(G)-closed.)

Unfortunately, unlike controllability, observability is not preserved by language unions. This is why a stronger
property, called normality, has been introduced.

Definition 2.7 ([2]). Consider a controlled generator with partial observations and a specification sublanguage
K ⊆ Lm(G). Call the specification sublanguage K (L , P)-normal if

prefix(K ) = P−1 P(prefix(K )) ∩ L . (4)
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It is known that normal languages are closed with respect to unions, hence the supremal normal sublanguage of K
always exists, it is the union of all normal sublanguages of K and it is denoted by sup N(K , L , P).

Recall finally that in the case Ac ⊆ Ao normality coincides with observability. This assumption is widely accepted
in the computer science community, where unobservable actions are supposed to be uncontrollable.

For control problems with partial observations and a safety control objective, supremal controllable and normal
sublanguages are important.

Recall that the synchronous product (also called the parallel composition) of languages L1 ⊆ A∗

1 and L2 ⊆ A∗

2 is
defined by L = L1 ‖ L2 = ∩

2
i=1 P−1

i (L i ) ⊆ A∗, where Pi : A∗
→ A∗

i , i = 1, 2 are natural projections to the local
event sets.

Definition 2.8. Consider two generators,

G1 = (Q1, A1, f1, q1,0, Q1,m), G2 = (Q2, A2, f2, q2,0, Q2,m).

Their synchronous product is the generator

G1‖G2 = (Q1 × Q2, A1 ∪ A2, f, q0, Qm),

q0 = (q1,0, q2,0), Qm = Q1,m × Q2,m,

f ((q1, q2), a) =


( f1(q1, a), f2(q2, a)) if a ∈ A1 ∩ A2,

fi (qi , a)! for i = 1, 2,

( f1(q1, a), q2), if a ∈ A1 \ A2, f1(q1, a)!

(q1, f2(q2, a)), if a ∈ A2 \ A1 f2(q2, a)!

undefined, otherwise.

It can then be proven that,

L(G1‖G2) = L(G1)‖L(G2), Lm(G1‖G2) = Lm(G1)‖Lm(G2).

Denote for n ∈ Z the set of the first n positive natural numbers by Zn = {1, 2, . . . , n}. Then Definition 2.8 can be
extended from n = 2 to general n ∈ N, n ≥ 2.

Definition 2.9. A modular discrete-event system (also called a concurrent discrete-event system) is the synchronous
product of two or more modules or local subsystems in which each module has complete observations of the state of
its own module but does not have observations of the states of other modules unless it shares events with these other
modules. Mathematically, a modular discrete-event system with n ∈ Z modules is a structure {Gi , Ai,c, Ai,o,Γi,c, i ∈

Zn} consisting of n controlled generators. The associated global system is the synchronous product of the modules or
the local subsystems, ‖

n
i=1Gi . Denote the natural projections by Pi : (∪n

j=1 A j )
∗

→ A∗

i for all i ∈ Zn.
A distributed discrete-event system is a structure as above consisting of n controlled generators where at least one

of the modules has only partial observations of that module.

3. Automata in terms of coalgebra

In this section generators introduced above are formulated in a coalgebraic framework. This was first done by
J.J.M.M. Rutten, who called them partial automata, and his framework will be used in this paper. The transition
function together with the output function can be viewed as a coalgebraic set functor.

Now we recall from [21] that partial automata are coalgebras of a special functor in the category of sets with
functions as morphisms. Denote by ⇑= {∅} the one element set and by 2 = {0, 1} the set of Booleans.

A partial automaton is a pair S = (S, 〈o, t〉), where S is a set of states, and 〈o, t〉 : S → 2 × (⇑ +S)A is a
pair of functions consisting of an output function o : S → 2 and a transition function t : S → (⇑ +S)A. The
output function o indicates whether a state s ∈ S is accepting (or terminating): o(s) = 1, denoted also by s ↓, or not:
o(s) = 0, denoted by s ↑. The transition function t associates with each state s in S a function t (s) : A → (⇑ +S).
The set ⇑ +S is the disjoint union of S and ⇑. The meaning of the state transition function is that t (s)(a) = ∅ iff
t (s)(a) is undefined, which means that there is no a-transition from the state s ∈ S. t (s)(a) ∈ S means that the
a-transition from s is possible and we define in this case t (s)(a) = sa , which is denoted mostly by s

a
→ sa . This
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notation can be extended by induction to arbitrary strings in A∗. Assuming that s
w
→ sw has been defined, define s

wa
→

iff t (sw)(a) ∈ S, in which case swa = t (sw)(a), also denoted by s
wa
→ swa . It is easy to see that partial automata are

coalgebras of the set functor F = 2 × (⇑ +(.) )A.

A homomorphism between partial automata S = (S, 〈o, t〉) and
S′

= (S′, 〈o′, t ′〉) is a function f : S → S′ with, for all s ∈ S and a ∈ A:

o′( f (s)) = o(s) and s
a

→ sa iff f (s)
a

→ f (sa),

in which case: f (s)a = f (sa).

(⇑ +S)A �t
S

2

o
-

(⇑ +S′)A
?

(1 + f )A

�t ′
S′

f

?
o′ -

A partial automaton S′
= (S′, 〈o′, t ′〉) is a subautomaton of S = (S, 〈o, t〉) if S′

⊆ S and the inclusion function
i : S′

→ S is a homomorphism.
A bisimulation between two partial automata S = (S, 〈o, t〉) and S′

= (S′, 〈o′, t ′〉) is a relation R ⊆ S × S′ with,
for all s ∈ S and s′

∈ S′:

if 〈s, s′
〉 ∈ R then


(i) o(s) = o(s′), i.e. s ↓ iff s′

↓

(ii) ∀a ∈ A : s
a

→ ⇒ (s′ a
→ and 〈sa, s′

a〉 ∈ R, ) and
(iii) ∀a ∈ A : s′ a

→ ⇒ (s
a

→ and 〈sa, s′
a〉 ∈ R).

We write s ∼ s′ whenever there exists a bisimulation R with 〈s, s′
〉 ∈ R. This relation is the union of all bisimulations,

i.e. the greatest bisimulation also called bisimilarity.

3.1. Final automaton of partial languages

Below a partial automaton of partial languages over an alphabet (input set) A, denoted by L = (L, 〈oL, tL〉), is
recalled. More formally,

L = {(V, W ) | V ⊆ W ⊆ A∗, W 6= ∅, and W is prefix-closed},

and the transition function tL : L → (⇑ +L)A is defined using input derivatives. Recall that for any partial language
L = (L1, L2) ∈ L, La = (L1

a, L2
a), where L i

a = {w ∈ A∗
| aw ∈ L i

}, i = 1, 2. If a 6∈ L2 then La is undefined.
Given any L = (L1, L2) ∈ L, the partial automaton structure of L is given by:

oL(L) =

{
1 if ε ∈ L1

0 if ε 6∈ L1 and tL(L)(a) =

{
La if La is defined
∅ otherwise.

Notice that if La is defined, then L1
a ⊆ L2

a, L2
a 6= ∅, and L2

a is prefix-closed. The following notational conventions
will be used: L ↓ iff ε ∈ L1, and L

w
→ Lw iff Lw is defined (iff w ∈ L2).

3.2. Final automata and coinduction

We recall from [21] that the partial automaton L is final among all partial automata.

Theorem 3.1. The partial automaton L = (L, 〈oL, tL〉) is final among all partial automata: for any partial
automaton S = (S, 〈o, t〉) there exists a unique homomorphism l : S → L. This homomorphism identifies bisimilar
states: for s, s′

∈ S: l(s) = l(s′) iff s ∼ s′.

As a consequence, L satisfies the coinductive proof principle.

Theorem 3.2. L satisfies the principle of coinduction: for all K and L in L, if K ∼ L then K = L.
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Another consequence of finality of L is that coinductive definitions can be used: definition by coinduction of an op-
eration on partial languages is done by defining the same coalgebraic structure on this operation: i.e. input derivatives
and output functions. The coinductive definition of supremal controllable sublanguage and synchronous product will
be needed. For the synchronous product we assume that K is defined over the alphabet A1 and L over A2. Then the
synchronous product K ‖ L is a partial language over A1 ∪ A2 with the following coinductive definition:

Definition 3.3 (Synchronous Product).

(K ‖ L)a =


Ka ‖ La if a ∈ A1 ∩ A2

Ka ‖ L if a ∈ A1 \ A2

K ‖ La if a ∈ A2 \ A1

and (K ‖ L) ↓ if and only if K ↓ and L ↓.

In the definitions below Au ⊆ A denotes the subset of the uncontrollable events. Now we recall from [10] the follow-
ing binary operation on partial languages:

Definition 3.4 (Supremal Controllable Sublanguage). Define the following binary operation on (partial) languages
for all K , L ∈ L and ∀a ∈ A:

(K/SC
Au

L)a =


Ka/SC

Au
La if K

a
→ and L

a
→

and if ∀u ∈ A∗
u :

La
u

→ ⇒ Ka
u

→

∅ otherwise

and (K/SC
Au

L) ↓ iff L ↓ .

We have shown in [10] that for a partial order that considers only second (prefix-closed) components of the languages
involved:

Theorem 3.5.

(K/SC
Au

L) = sup C(K , L , Au) (5)
= sup{M ⊆ K | Mis controllable with respect to L , Au}, (6)

i.e. K/SC
Au

L equals the supremal controllable sublanguage of K .

More details about coinduction and finality can be found in [22] or [21].

4. Modular supervisory control with a decomposable specification

In this section the concurrent behavior of the modules {Gi , i ∈ Zn} is considered. This case arises in applications
and was often studied from the late 1980s: e.g. [30,28,25,3,18,19] etc. In the first papers on the topic, the input
alphabets of all local components were identical [30]. The general case of different local input alphabets has been
studied in [28], where shared events are supposed to be controllable. This assumption has been generalized recently in
[25] to the condition that the shared events must have the same control status for all subsystems that share a particular
event. Very little attention has been payed so far to the distributed control. A special case of it was studied in [18].

Consider the local alphabets of these subplants, {Ai , i ∈ Zn}, which are not necessarily pairwise disjoint. Denote
the partition of the local alphabet into the subset of controllable events, Aic, and the subset of uncontrollable events,
Aiu , by Ai = Aiu ∪ Aic for all i ∈ Zn.

Definition 4.1. Consider a modular DES. The local plants {Gi , i ∈ Zn} agree on the controllability of their common
events if

Aiu ∩ A j = Ai ∩ A ju, ∀i, j ∈ Zn. (7)

This definition stemming from [25] means that the events shared by two modules or local subsystems must have the
same control status for both controllers associated with these subsystems. In the following it will often be assumed that
the modules satisfy the condition of agreement on the controllability of their common events. Denote Ac = ∪

n
i=1 Aic.
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The assumption on the agreement on common events implies that Aic = Ac ∩ Ai . Also, if we denote Au = ∪
n
i=1 Aiu

then we still have the disjoint union A = Ac ∪ Au due to the assumption of agreement on the controllability of
their common events. Denote by A = ∪

n
i=1 Ai the global alphabet and by Pi : A → Ai the projections to the local

alphabets. The concept of inverse projection P−1
i : Pwr(Ai ) → Pwr(A) is also used.

The local plant languages or the languages of the modules will be denoted by {L i , i ∈ Zn} and the local
specification languages by {Ki , i ∈ Zn}. We assume in this section that the global plant L and the specification
K languages are decomposable into local plant and local specification languages: L =‖

n
i=1 L i and K =‖

n
i=1 Ki . This

formulation is equivalent to the following definition.

Definition 4.2. Consider a modular DES. One says that L ⊆ A∗ is decomposable with respect to {Pi , i ∈ Zn} if
L = ‖

n
i=1 Pi (L).

Proposition 4.3. Consider a modular DES. L ⊆ A∗ is decomposable with respect to {Pi , i ∈ Zn} if and only if there
exists {L i ⊆ A∗

i , i ∈ Zn} such that

L =‖
n
i=1 L i = ∩

n
i=1(Pi )

−1(L i ). (8)

Proof. (⇒) It is sufficient to consider L i := Pi (L).
(⇐) If L =‖

n
i=1 L i = ∩

n
i=1(Pi )

−1(L i ), then it follows from properties of projections that

Pi (L) ⊆ L i ∩ ∩ j 6=i Pi P−1
j (L j ) ⊆ L i , ∀i ∈ Zn.

Thus we have that,

‖
n
i=1 Pi (L) = ∩

n
i=1(Pi )

−1 Pi (L) ⊆ ∩
n
i=1 P−1

i (L i ) = L ,

by our assumption. The first inclusion follows from the fact that Pi (Pi )
−1 is identity and that projection of an

intersection is contained in the intersection of projections. The inclusion L ⊆ ∩
n
i=1 P−1

i (Pi (L)) is obvious. �

Note that Pj (L) ⊆ L j for all j ∈ Zn means that for any tuple of languages {L ′

i ⊆ A∗

i , i ∈ Zn} such that
L =‖

n
i=1 L ′

i we have Pj (L) ⊆ L ′

j for all j ∈ Zn, i.e. {Pi (L), i ∈ Zn} is the smallest possible decomposition of L
into local languages.

Definition 4.4. Consider a modular discrete-event system and either a global specification language or a family of
local specifications. From the local specifications one can always compute the global specification as described above.

Global control synthesis of a modular discrete-event system is the procedure by which first all modules are com-
bined into the global plant and then control synthesis is carried out as described in Section 2. This can refer to either
computation of a supervisor which meets the specification or to the computation of the supremal (safe) supervisor.

Modular control synthesis of a modular discrete-event system is the procedure by which control synthesis is carried
out for each module or local subsystem. The global supervisor formally consists of the synchronous product of the
local supervisors though that product is not computed in practice.

In terms of behaviors, the optimal global control synthesis is represented by the closed-loop language

sup C(K , L , Au) = sup C(‖n
i=1 Ki , ‖

n
i=1 L i , Au),

using the operation supremal controllable sublanguage sup C(K , L , Au) defined in the last sections. Similarly,
modular control synthesis yields in terms of behaviors

‖
n
i=1 sup C(Ki , L i , Aiu).

Problem 4.5. Consider a modular discrete-event system and a decomposable specification language. Determine
necessary and sufficient conditions with respect to which modular control synthesis equals global control synthesis
for the supremal controllable sublanguage within the specification language. Equivalently,

‖
n
i=1 sup C(Ki , L i , Aiu) = sup C(‖n

i=1 Ki , ‖
n
i=1 L i , Au). (9)

Later in the paper also the problems are investigated of when modular control synthesis equals global control synthesis
for the supremal normal sublanguage, for the supremal controllable and normal sublanguage, and for the closed-loop
language in case of an antipermissive control policy.
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There exists an example which establishes that modular control synthesis does not equal global control synthesis
in general. Theorem 4.7 provides necessary and sufficient conditions for modular control synthesis to equal global
control synthesis. This problem has been studied algebraically in [25]. The concept of mutual controllability [25]
plays the key role.

Definition 4.6. Consider a modular DES. The modular plant languages {L i ⊆ A∗

i , i ∈ Zn} are called mutually
controllable if

prefix(L j )(A ju ∩ Ai ) ∩ Pj (Pi )
−1prefix(L i ) ⊆ prefix(L j ), ∀i, j ∈ Zn, i 6= j. (10)

Note that both local and global plant languages are typically prefix closed, in which case the prefix closures above can
be removed.

Mutual controllability can be viewed as local controllability of the modular plant languages with respect to the
shared uncontrollable events; thus, for all i, j ∈ Zn with i 6= j , the modular language L j is controllable with respect
to the shared uncontrollable events (A ju ∩ Ai ) and the local view of the other module (Pi (Pj )

−1(L j )) as the new
plant. This condition is important for modular computation of global supremal controllable sublanguages.

The computational complexity of checking mutual controllability is much lower than that of checking
controllability of a sublanguage over the global alphabet.

Theorem 4.7. Modular control synthesis equals global control synthesis for the supremal controllable sublanguage
in the case of a modular DES. Assume that the local plants agree on the controllability of their common events.

If the local plant languages {L i ⊆ A∗

i , i ∈ Zn} are mutually controllable then for any decomposable specification
K ⊆ L

‖
n
i=1 sup C(Ki , L i , Aiu) = sup C(‖n

i=1 Ki , ‖
n
i=1 L i , Au). (11)

Conversely, if for fixed local plant languages {L i , i ∈ Zn} Eq. (11) holds for any {Ki ⊆ L i , i ∈ Zn} then, for all
i ∈ Zn, Pi (L) is controllable with respect to L i and Aiu; equivalently, then

Pi (L)Aiu ∩ L i ⊆ Pi (L), ∀i ∈ Zn. (12)

Proof. The sufficiency part is due to K.C. Wong and S.-H. Lee, see [25]. We have proposed a coalgebraic proof in [4]
and [9].

It remains to prove the necessity part of the theorem. Assume now that for fixed local plant languages {L i , i ∈ Zn}

Eq. (11) holds for any local specification languages Ki ⊆ L i . Then it holds in particular for Ki := Pi (L). Since L
and K are decomposable we have

L =

n⋂
i=1

P−1
i Pi (L) =

n⋂
i=1

P−1
i Ki = K , (cf. Proposition 4.3). (13)

L = K = sup C(L , L , Au) =‖
n
i=1 sup C(Pi (L), L i , Aiu)

= ∩
n
i=1 P−1

i (sup C(Pi (L), L i , Aiu)),

L ⊆ (Pi )
−1(sup C(Pi (L), L i , Aiu), ∀i ∈ Zn; (14)

Note that Pi (L) ⊆ L i , ∀i ∈ Zn, because L is decomposable. Indeed

Pi (L) = Pi

(
n⋂

i=1

P−1
i (L i )

)
⊆ Pi (Pi )

−1(L i ) ∩ ∩ j 6=i Pi (Pj )
−1(L j ) ⊆ L i ,

where the last inclusion follows from Pi (Pi )
−1(L i ) = L i .

By applying the projection on both sides of inclusion (14)
it follows from the monotonicity of projections that

Pi (L) ⊆ Pi (Pi )
−1sup C(Pi (L), L i , Aiu) = sup C(Pi (L), L i , Aiu) ⊆ Pi (L),

from the definition of supremal controllable sublanguages. Hence,
Pi (L) = sup C(Pi (L), L i , Aiu),

i.e. for all i ∈ Zn, Pi (L) is controllable with respect to L i and Aiu . �
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Note that in the case, where for all i ∈ Zn Pi (L) = L i the necessary condition is trivially satisfied. See Section 8.1
for the comparison of the computational time complexity of global and modular control synthesis for the supremal
controllable sublanguage in the case of a decomposable specification.

Finally we show that mutual controllability is not a necessary structural condition, which is illustrated by the
following example, where the modular and global computation of supremal controllable sublanguage coincide for all
specifications, while mutual controllability does not hold.

Example 4.8. Let A1 = {a, u, u1} and A2 = {a, u, u2} with A1u = {u, u1} and A2u = {u, u2}. Consider the local
plant languages L1 = prefix(auu1u∗) and L2 = prefix(au∗u2). Then for any local specifications Ki ⊆ L i and
i = 1, 2 we have sup C(Ki , L i , Aiu) = {ε} as well as sup C(‖n

i=1 Ki , ‖
n
i=1 L i , Au) = ε, i.e. Eq. (11) holds trivially

true, while L1 and L2 are not mutually controllable. Indeed, auu ∈ L1(A1u ∩ A2)∩ P1 P−1
2 (L2)\L1, which contradicts

mutual controllability. This shows that mutual controllability is not a necessary structural (specification independent)
condition.

5. Distributed supervisory control with a decomposable specification

In this section we consider the situation of a distributed plant, thus for which at least one module or subsystem
does not have complete observations but only partial observations. For each local plant, the local alphabet admits a
partition, denoted by Ai = Ao,i ∪ Auo,i , ∀i ∈ Zn into locally observable and locally unobservable event sets. The
global system has observation set Ao = ∪

n
i=1 Ao,i ⊆ A = ∪

n
i=1 Ai . Globally unobservable events are denoted by

Auo = A \ Ao and locally unobservable events by Auo,i = Ai \ Ao,i . The projections of the global alphabet into the
local ones are denoted by Pi : A∗

→ A∗

i , i ∈ Zn. Partial observations in individual modules are expressed via local
projections P loc

i : A∗

i → A∗

o,i , while the global projection is denoted by P : A∗
→ A∗

o.

Definition 5.1. Consider a distributed DES. The local plants are said to agree on the observability of their common
events if

Ao,i ∩ A j = Ai ∩ Ao, j , ∀i, j ∈ Zn. (15)

5.1. Supremal controllable and normal sublanguages

In this subsection we recall a single step algorithm for computation of supremal controllable and normal
sublanguages from [10]. The concept of ε-transitions is needed to formulate an observational indistinguishability
relation due to partial observations. Generators of DES are partial automata S = (S, 〈o, t〉).

Definition 5.2 (ε-Transition). For s ∈ S we define s ε
⇒ s′ if ∃τ ∈ A∗

uo : s
τ

→ sτ = s′.

Denote the initial state of the DES generator S by s0. An auxiliary concept that reflects the fact which is due to
partial observations and it is not possible to distinguish between states is recalled from [10]:

Definition 5.3 (Observational Indistinguishability Relation on S). A binary relation Aux(S) on S, called the
observational indistinguishability relation is the smallest relation satisfying:

(i) 〈s0, s0〉 ∈ Aux(S)

(ii) ∀〈s, t〉 ∈ Aux(S) : (s ε
⇒ s′ and t ε

⇒ t ′) ⇒ 〈s′, t ′〉 ∈ Aux(S)

(iii) ∀〈s, t〉 ∈ Aux(S) and ∀a ∈ Ao : (s
a

→ sa and t
a

→ ta) ⇒ 〈sa, ta〉 ∈ Aux(S).

Next we recall the concept of state-partition automaton, which we define here as follows.

Definition 5.4 (State-Partition Automaton). A partial automaton S is called a state-partition automaton if ∀s ∈ S:
s = (s0)w1 = (s0)v1 for w1 ∈ A∗ and v1 ∈ A∗ and ∀s′

∈ S: s′
= (s0)v2 for v2 ∈ A∗ with P(v2) = P(v1) there exists

w2 ∈ A∗ with P(w2) = P(w1) and s′
= (s0)w2 .

Since for P(w1) = P(v1) it is sufficient to put w2 = v2, it is equivalent to require the condition of Definition 5.4 to
hold only for P(w1) 6= P(v1).

We assume that a partial language L is represented by a partial automaton S with initial state s0. We mean by this
that the corresponding behavior homomorphisms l : S → L satisfies l(s0) = L . We recall [10]:
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Lemma 5.5. For any s, s′
∈ S: 〈s, s′

〉 ∈ Aux(S) if and only if there exists w, w′
∈ L such that P(w) = P(w′),

s = (s0)w and s′
= (s0)w′ . Moreover, if S is a state-partition automaton then ∀v ∈ L and s′

∈ S we have
〈(s0)v, s′

〉 ∈ Aux(S) if and only if there exists v′
∈ L such that P(v) = P(v′) and s′

= (s0)v′ .

Remark 5.6. Since we deal with properties that depend only on prefix-closed languages we write in the sequel K and
L instead of prefix(K ) and prefix(L).

Now we repeat a ‘single-step’ algorithm for the computation of supremal controllable and normal sublanguages from
[10] that will form the basis for our main results.

Algorithm 1. Let automata S and T representing K and L (with K ⊆ L), respectively, be such that S is a subau-
tomaton of T and S is a state-partition automaton. The transition functions of S and T are denoted by → and →1,
respectively. Let us construct the partial automaton S̃ = (S̃, 〈õ, t̃〉) with t̃ denoted by →′ .

Define the auxiliary condition (*) as follows:
if a ∈ Au ∪ Auo then ∀u ∈ (Au ∪ Auo)

∗: sa
u

→ ⇒ sa
u

→1;
if a ∈ Ac ∩ Ao then ∀s′

≈Aux(S) s : s′ a
→ ⇒ s′ a

→1, in which case also ∀u ∈ (Au ∪ Auo)
∗: s′

a
u

→ ⇒ s′
a

u
→1.

(1) Let S̃ := {s0}.
(2) For any s ∈ S̃ and a ∈ A we put s

a
→′ sa if s

a
→1 and condition (*) is satisfied; and we put in the case s

a
→′ also

S̃ := S̃ ∪ {sa}.
(3) For any s ∈ S̃ we put õ(s) = o(s).

As usual, we denote by l̃ the unique (behavior) homomorphism given by finality of L.

We can verify by coinduction that [10]:

Theorem 5.7. l̃(s0) is the supremal controllable (with respect to L and Au) and
(L , P)-normal sublanguage of K .

5.2. Modular and global control synthesis for distributed DES

The problem is to determine necessary and sufficient conditions for modular control synthesis to equal global
control synthesis for a distributed control system. In Theorem 5.9 and Corollary 5.11 below a condition similar to
mutual controllability is needed. By analogy it is called mutual normality.

Definition 5.8. Consider a distributed DES. Local plant languages
{L i ⊆ A∗

i , i ∈ Zn} are called mutually normal if

(P loc
i )−1 P loc

i (L i ) ∩ Pi (Pj )
−1(L j ) ⊆ L i , ∀i, j ∈ Zn, i 6= j. (16)

Mutual normality can be viewed as normality of the local plant languages with respect to the local views of the other
plant languages. Let us introduce the notation sup CN(K , L , P, Au) for the supremal (L , P)-normal and controllable
sublanguage of K with respect to Au .

Using Algorithm 1 we have proven in [5] the sufficiency part of the following theorem:

Theorem 5.9. Distributed control synthesis equals global control synthesis for supremal controllable and normal
sublanguage in the case of a distributed DES. Assume that the local plants agree on the controllability of their
common events and on the observability of their common events.

If the local plant languages {L i ⊆ A∗

i , i ∈ Zn} are mutually controllable and mutually normal then for any
decomposable specification K ⊆ L

‖
n
i=1 sup CN(Ki , L i , P loc

i , Aiu) = sup CN(‖n
i=1 Ki , ‖

n
i=1 L i , P, Au). (17)

Conversely, if for fixed local plant languages {L i i ∈ Zn} Eq. (17) holds for any {Ki ⊆ L i , i ∈ Zn}, then
{Pi (L), i ∈ Zn} is such that (1) Pi (L) is normal with respect to L i and P loc

i for all i ∈ Zn and (2) Pi (L) is
controllable with respect to L i and Aiu for all i ∈ Zn.
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Proof. The complete sufficiency proof is available in [5]. Now we show the necessity part of the theorem. Assume
now that for fixed local plant languages {L i i ∈ Zn} Eq. (17) holds for any local specification languages Ki ⊆ L i .
Then it holds in particular for Ki := Pi (L). Since L is decomposable we have

L =

n⋂
i=1

P−1
i Pi (L) = K ;

L = sup CN(L , L , P, Au) =‖
n
i=1 sup CN(Pi (L), L i , P loc

i , Aiu). Thus,

L ⊆ (Pi )
−1sup CN(Pi (L), L i , P loc

i , Aiu), ∀i ∈ Zn. Recall that (18)
Pi (L) ⊆ L i , because L is decomposable. (19)

By applying projection Pi on both sides of the inclusion (18)
it follows from the monotonicity of projections that

Pi (L) ⊆ Pi (Pi )
−1sup CN(Pi (L), L i , P loc

i , Aiu) = sup CN(Pi (L), L i , P loc
i , Aiu).

Also, sup CN(Pi (L), L i , P loc
i , Aiu) ⊆ Pi (L),

from the definition of supremal normal sublanguages. Hence,
Pi (L) = sup CN(Pi (L), L i , P loc

i , Aiu),

which means that for all i ∈ Zn, Pi (L) is controllable with respect to L i and Aiu and Pi (L) is normal with respect to
L i and P loc

i . �

In [25] there is a procedure to change a plant which does not satisfy the mutual controllability condition to one that
satisfies it. It may be that a similar procedure can be found in the future for mutual normality. Nevertheless one cannot
hope to find a universal procedure how to make a set of local plant languages mutually normal. Indeed, in the shuffle
case mutual normality cannot hold as we show in the next section. However this is a much simpler case, where mutual
normality is not needed. In fact, we have

Corollary 5.10. Assume that the local alphabets are pairwise disjoint, i.e. Ai ∩ A j = ∅ for any i, j ∈ Zn with i 6= j .
Then

‖
n
i=1 sup CN(Ki , L i , P loc

i , Aiu) = sup CN(‖n
i=1 Ki , ‖

n
i=1 L i , P, Au). (20)

Proof. Note that in view of Theorem 5.13 (the shuffle case) mutual controllability is trivially satisfied and mutual
normality is not needed for this sufficiency condition. �

In the case where controllability is not an issue we obtain the following corollary.

Corollary 5.11. Distributed control synthesis equals global control synthesis for supremal normal sublanguages in
the case of a distributed DES. Assume that the local plants agree on the observability of their common events.

If {L i ⊆ A∗

i , i ∈ Zn} are mutually normal then

sup N(‖n
i=1 Ki , ‖

n
i=1 L i , P) =‖

n
i=1 sup N(Ki , L i , P loc

i ). (21)

Conversely, if for fixed local plant languages {L i , i ∈ Zn} Eq. (21) holds for any {Ki ⊆ L i , i ∈ Zn}, then

Pi (L) are normal with respect to L i and P loc
i , ∀i ∈ Zn. (22)

The proof of the above theorem for one direction depends only on the assumption that the local plants agree on the
observability of their common events. Hence the following corollary is obtained.

Corollary 5.12. If the local plants agree on the observability of their common events then we have

sup N(‖n
i=1 Ki , ‖

n
i=1 L i , P) ⊇‖

n
i=1 sup N(Ki , L i , P loc

i ). (23)

Theorem 5.9 is useful for the computation of (global) supremal controllable and normal sublanguages of large
distributed plants. If the conditions of the theorem are satisfied, then it is sufficient to compute local supremal
controllable and normal sublanguages and to synchronize these.
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The interest of this theorem should be clear: under the conditions which are stated it is possible to do the optimal
(least restrictive) control synthesis with partial observations locally, and this represents an exponential savings on the
computational complexity and makes in fact the optimal control synthesis of large distributed plants feasible.

In the sequel it will be shown that mutual normality cannot be satisfied in the so-called shuffle case (the case, where
event sets are pairwise disjoint). However this is a much simpler case where mutual normality is not needed. In fact,
we have

Theorem 5.13. Modular control synthesis equals global control synthesis in the shuffle case of a distributed DES.
Assume that the local alphabets are pairwise disjoint, i.e. Ai ∩ A j = ∅ for any i, j ∈ Zn with i 6= j . Then for any
decomposable specification K ⊆ L

‖
n
i=1 sup N(Ki , L i , P loc

i ) = sup N(‖n
i=1 Ki , ‖

n
i=1 L i , P). (24)

Proof. In the shuffle case mutual controllability is trivially satisfied and we show that mutual normality is not needed.
The proof relies on Algorithm 1 specialized to the case Ac = A, i.e. Au = ∅. We work with the behaviors (languages)
generated by the automata representations of the globally and locally supremal normal sublanguages resulting from
their computations according to Algorithm 1. The notation is as follows: let S representing K and T representing L
are such that S is a subautomaton of T and S is a state-partition automaton. The transition functions of S and T are
denoted by → and →1, respectively. Algorithm 1 yields partial automaton S̃ = 〈õ, t̃〉 with t̃ denoted by →′ and its
behavior by l̃ : S̃ → L.
Similarly, for i ∈ Zn, Si and Ti representing Ki and L i , respectively, are such that Si is a subautomaton of Ti and
Si is a state-partition automaton. The transition functions of Si and Ti are denoted by →1i and →i , respectively.
Construction of Algorithm 1 yields partial automaton S̃i = (S̃i , 〈õi , t̃i 〉) with t̃i denoted by →i ′ and its behavior by
l̃i : S̃ → L. The (common) initial state of S and T is denoted by s0 and for i ∈ Zn the (common) initial states of Si
and Ti are denoted by si

0. The transition function of Si and S is denoted by →1 and the transition function of Ti and
T is denoted by →. Therefore, l̃(s0) = sup N(K , L , P) and for any i ∈ Zn: l̃i (si

0) = sup N(Ki , L i , P loc
i ).

It is sufficient to show that

R = {〈[l̃(s0)]v, [‖
n
i=1 l̃i (si

0)]v〉 | v ∈ (l̃(s0))
2
}

is a bisimulation relation, from which the claim of the theorem follows by coinduction. From Corollary 5.12 it follows
that only one inclusion is to be shown.

Let [l̃(s0)]v
a

→, i.e. condition (*) of Algorithm 1 is satisfied. Note that [‖
n
i=1 l̃i (si

0)]v =‖
n
i=1 [l̃i (si

0)]vi , where

vi := Pi (v). We show that ∀i ∈ Zn : [l̃i (si
0)]vi

a
→, i.e. li (si

0)vi
a

→. According to Algorithm 1 applied to Si and Ti
we must show that condition (*) holds. Let a ∈ A. Then there exists one and only one i ∈ Zn such that a ∈ Ai . We
have two possibilities: either a ∈ Auo,i or a ∈ Ao,i . We first take a ∈ Auo,i ⊆ Auo. According to Algorithm 1 it is
sufficient to show that ∀ui ∈ A∗

uo,i : (si
0)vi a

ui
→i ⇒ (si

0)vi a
ui

→1i . In the shuffle case for a ∈ Auo,i ⊆ Auo we have

∀ j 6= i : Pj (a) = ε. Let ui ∈ A∗

uo,i : (si
0)vi a

ui
→i . Hence, vi aui ∈ L i . We know that condition (*) holds for S̃, i.e.

∀u ∈ A∗
uo: (s0)va

u
→ ⇒ (s0)va

u
→1. In order to use this assumption it must be shown that (s0)va

u
→ for a u ∈ A∗

uo,
i.e. vau ∈ L =‖

n
i=1 L i . Let us take u := ui . Then using once more the property of the shuffle case Pi (u) = ui , while

∀ j 6= i : Pj (u) = ε. We already know that vau ∈ P−1
i L i , because vi aui = Pi (vau) ∈ L i . For any j 6= i we get

trivially : Pj (vau) = v j ∈ L j , because v ∈ L . Therefore vau ∈ L and (s0)va
u

→. Thus, (s0)va
u

→1, which means that

vau ∈ K , i.e. vi aui = Pi (vau) ∈ Ki . Equivalently, (s1
0)vi a

ui
→1i , which was to be shown.

Now let a ∈ Ao,i ⊆ Ao then we know that ∀s′
≈Aux(S) (s0)v : s′ a

→ ⇒ s′ a
→1, in which case also ∀u ∈ A∗

uo:
s′

a
u

→ ⇒ s′
a

u
→1. It must be shown that (si

0)vi
a

→′ , i.e. ∀q i
≈Aux(Si ) (si

0)vi : q i a
→i ⇒ q i a

→1i , in which case also

∀ui ∈ A∗

uo,i : q i
a

ui
→i ⇒ q i

a
ui

→1i . Let q i
≈Aux(Si ) (si

0)v : q i a
→i . Since Si is a state-partition automaton, there exists

v′

i ∈ A∗

i such that P loc
i (v′

i ) = P loc
i (vi ) and q i

= (si
0)v′

i
. Since q i a

→i we have v′

i a ∈ Ki ⊆ L i . Then v′a ∈ P−1
1 (v′

1a).

Therefore v′a ∈ P−1
i (L i ). We show that v′a ∈ P−1

j (L j ) for all j 6= i . Indeed, Pj (v
′a) = v′

j ∈ L j , because v′
∈ L .

Therefore v′a ∈ P−1
j (L j ). Thus, v′a ∈ L = ∩

n
i=1 P−1

i (L i ). Since P(v′) = P(v), we have (s0)v′ ≈Aux(S) (s0)v .

From (s0)v
a

→′ and condition (*) of Algorithm 1, it follows that (s0)v′

a
→ ⇒ (s0)v′

a
→1, and also ∀u ∈ A∗

uo:
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(s0)v′a
u

→ ⇒ (s0)v′a
u

→1. But this implies that (si
0)v′

i
= q i a

→1i , because v′a ∈ K =‖
n
i=1 Ki implies that

v′

i a = Pi (v
′a) ∈ Ki . We show also that ∀ui ∈ A∗

uo,i : q i
a

ui
→i ⇒ q i

a
ui

→1i . Indeed, q i
a

ui
→ means v′

i au1 ∈ L i . Similarly

as for a ∈ Auo, by considering u = ui ∈ A∗
uo we obtain using shuffle property that v′au ∈ L , i.e. (s0)v′a

u
→ whence

(s0)v′a
u

→1. But this means that v′au ∈ K , i.e. v′

i aui = Pi (v
′au) ∈ Ki , or equivalently q i

a
ui

→1i . �

Example and verification of sufficient conditions

The purpose of this section is mainly to illustrate our results with an example. Before starting with concrete
examples we consider several extreme cases of distributed DES. First of all, if all event alphabets are disjoint, the
so-called shuffle case, we notice that Pi (Pj )

−1(L j ) = A∗

i for any L j ⊆ A∗

j . This means that the condition of mutual
normality cannot be satisfied. In view of Theorem 5.13 this is not a problem.

On the other hand, it is obvious from the definition of mutual normality that in the case of full local observations
(all P loc

i ’s become identity mappings), mutual normality is trivially satisfied. Another extreme case occurs when all
subsystems have the same event alphabets. Then all the Pi ’s are identity mappings, i.e. the mutual normality becomes
usual normality between two languages in a slightly more general sense (the assumption is lifted that one of the
languages is a sublanguage of the other). This might justify why we call our condition mutual normality, it is a
symmetric notion of normality.

We show an example of a plant composed of two modules, where the commutativity between the supremal normal
sublanguages and parallel product does not hold. Therefore mutual normality does not hold either.

Example 5.14. Let A = {a, a1, a2, τ, τ1, τ2}, A1 = {a1, τ1, a, τ }, A2 = {a2, τ2, a, τ }, Ao = {a1, a2, a}, Ao,1 =

{a1, a}, and Ao,2 = {a2, a}. Consider the following plant languages and specification sublanguages (the marked
languages are not considered):

K1 = L1 K2 L2

(K1)τ

�
τ

(K1)τ1
τ1

-
(K2)τ

�
τ

(K2)τ2

τ2
-

(L2)τ

�
τ

(L2)τ2

τ2
-

(K1)τa

a
?

(K1)τ1a1

a1
?

(K2)τa

a
?

(L2)τa

a
?

(L2)τ2a

a
?

We use the notation U1 = sup N(K1, L1, P loc
1 ), U2 = sup N(K2, L2, P loc

2 ), U = sup N(K1, L1, P loc
1 ) ‖

sup N(K2, L2, P loc
2 ), and V = sup N(K1 ‖ K2, L1 ‖ L2, P). We have trivially that U1 = K1 = L1. It is easy to see

that U2 = sup N(K2, L2, P loc
2 ) = {ε, τ, τ2}. Computing the parallel products K = K1 ‖ K2 and L = L1 ‖ L2 yields

K = L , i.e. we obtain trivially K = L = V as is shown in the diagram below, where U = U1 ‖ U2 is also computed:

U2 U K = L = V

(U2)τ

�
τ

(U2)τ2

τ2
-

Uτ

�
τ

Uτ1

τ1
?

Uτ2

τ2
-

Kτ

�
τ

Kτ1

τ1
?

Kτ2

τ2
-

Uτ1a1

a1
?

Uτ1τ2

τ2
-

Uτ2τ1

τ1
-

Kτa

a
?

Kτ1a1

a1
?

Kτ1τ2

τ2
-

Kτ2τ1

τ1
-

Uτ1a1τ2

τ2
?

Uτ1τ2a1

a1
?

Uτ2τ1a1

a1
?

Kτ1a1τ2

τ2
?

Kτ1τ2a1

a1
?

Kτ2τ1a1

a1
?

Thus, U 6= V , because Uτ 6
a

→, while Vτ
a

→. Therefore we only have the strict inclusion U ⊂ V and the commuta-
tivity studied in this paper does not hold for this example. According to Theorem 5.11 mutual normality cannot hold.
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Indeed, we have

(P loc
1 )−1 P loc

1 (L1) ∩ P1(P2)
−1(L2) = τ ∗

1 (ττ ∗

1 a1 + a1τ
∗

1 τ)τ ∗

1 ,

but we have e.g. (τ1)
n

6∈ L1 for n ≥ 2.

Antipermissive control policy

The standard permissive control law is useful for safety control problems only if the specification is observable,
otherwise it yields infimal observable and controllable superlanguages of K . If K represents safety specifications then
these are violated if permissive control policy is applied.

There exists a dual control policy for DES with partial observations, called antipermissive. For the supervisor to
enable event a ∈ A it is necessary that all indistinguishable events corresponding to this trace can be prolongated
within K (in permissive control policy it is sufficient that one of those strings can be prolongated within K ). The
interest of the antipermissive control policy concerns the safety control objective and the fact that the synthesized
languages are observable languages which are in general larger than supremal normal sublanguages.

Denote by SA the antipermissive control policy for a partial automaton S: SA : P(L(G)) → Γc, where Γc is the
class of enabled events, also called control patterns (i.e. supersets of the event subset Au that are always enabled).
Algebraically, the antipermissive control policy is defined as follows:

SA(s) = Au ∪

{
a ∈ Ac : ∀s′

∈ prefix(K ) ∩ P−1 P(s)
(s′a ∈ L ⇒ s′a ∈ prefix(K ))

}
. (25)

Similarly as for the permissive control policy, the supervisor marks all states that have been marked in the plant and
that ‘survive’ under supervision.

We have formulated in [10] a single-step algorithm for computation of closed-loop languages with respect to the
antipermissive control policy. This algorithm has been used in [6] for deriving sufficient conditions under which these
languages are preserved by modular (local) control synthesis.

Denote for all i ∈ Zn by AP(Ki , L i , P loc
i ) the closed-loop language corresponding to the local antipermissive

control synthesis (with local projection P loc
i , local DES L i , and local specification Ki ). Similarly, AP(‖n

i=1 Ki , ‖
n
i=1

L i , P) stands for closed-loop language corresponding to the global antipermissive control synthesis.
In Theorem 5.16 a condition similar to mutual controllability [25] is used. By analogy it is called mutual

observability.

Definition 5.15. Consider a distributed DES. The local plant languages {L i ⊆ A∗

i , i ∈ Zn} are called mutually
observable if

∀i, j ∈ Zn, i 6= j, ∀s, s′
∈ L i and ∀a ∈ Aic :

(sa ∈ Pi (Pj )
−1(L j ) and P loc

i (s) = P loc
i (s′) and s′a ∈ L i )

⇒ sa ∈ L i . (26)

Now we extend the main result of [6] where only sufficient conditions were presented.

Theorem 5.16. Modular control synthesis equals global control synthesis for the closed-loop language in the case of
local specifications using an antipermissive control policy. Assume that the modular plants agree on the observability
of their common events.

If the local plant languages {L i ⊆ A∗

i , i ∈ Zn} are mutually observable then for any decomposable specification
K ⊆ L

AP(‖n
i=1 Ki , ‖

n
i=1 L i , P) =‖

n
i=1 AP(Ki , L i , P loc

i ). (27)

Conversely, if for fixed local plant languages {L i i ∈ Zn} Eq. (27) holds for any {Ki ⊆ L i , i ∈ Zn}, then
{Pi (L), i ∈ Zn} are observable with respect to L i and Ao,i .

Proof. The sufficiency part can be found in [6] by coinduction. In view of our previous results it is straightforward
to show that a necessary structural condition for local antipermissive control policy to equal global antipermissive
control policy is that AP(Pi (L), L i , P loc

i ) = Pi (L), which means that for all i ∈ Zn, Pi (L) is observable with respect
to L i and Ai,o. �
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6. Modular supervisory control with an indecomposable specification

In many engineering problems the specification is only defined globally and is not decomposable unlike the plant
language. An example is the specification for a communication protocol of a wireless network. In this section the case
of general specification languages that are neither necessarily decomposable nor contained in the global plant language
is studied. Necessary and sufficient conditions are found with respect to which handling of the global plant is avoided
for the computation of supremal controllable sublanguages of (global) indecomposable specification languages.

Consider a modular discrete-event system and assume that the local plants agree on the controllability of their
common events. Denote the global plant and the specification languages by L and K , respectively. In our setting, L is
decomposable into local plant languages: L = L1 ‖ · · · ‖ Ln (note that the L i may have different alphabets). In most
of the works on this topic K is similarly decomposable into local specification languages and K ⊆ L . The general
case is when this condition is not satisfied and, moreover, K may not be included in L . This case has been studied in
[3], where the assumption that all shared events are controllable is used. A condition on K called G-observability was
needed for local synthesis of the supremal controllable sublanguage.

Instead of local specifications, the languages Ki := K ∩ P−1
i (L i ) are considered. These will play the role of local

components of specification languages, although their alphabet is the global alphabet A. They can be considered as
local over-approximations of K ∩ L , because clearly K ∩ L = ∩

n
i=1 Ki .

Definition 6.1. Consider a modular DES. The modular plant languages {L i , i ∈ Zn} are called globally mutually
controllable if

P−1
j (L j )(A ju) ∩ P−1

i (L i ) ⊆ P−1
j (L j ), ∀i, j ∈ Zn, i 6= j. (28)

Proposition 6.2. Consider a modular DES. Global mutual controllability (GMC) is equivalent to the following
property:

P−1
j (L j )Au ∩ P−1

i (L i ) ⊆ P−1
j (L j ), ∀i, j ∈ Zn, i 6= j. (29)

Proof. Note that the only difference is that A ju in GMC is replaced by Au . Therefore the new property is
clearly stronger then GMC. Maybe surprisingly the converse implication is satisfied as well. Let GMC hold true,
s ∈ P−1

j (L j ), u ∈ Au , and su ∈ P−1
i (L i ). Then we have two cases: either u ∈ A j or u 6∈ A j . The former case entails

that u ∈ A ju due to the shared event controllability status assumption. Using GMC we conclude su ∈ P−1
j (L j ). In

the latter case we notice that Pj (u) = ε, i.e. Pj (su) = Pj (s), which means that Pj (su) ∈ L j , i.e. su ∈ P−1
j (L j ). �

Definition 6.3. Consider a modular DES. The modular plant languages {L i , i ∈ Zn} are called modularly controllable
if

L Au ∩ P−1
i (L i ) ⊆ L , ∀i ∈ Zn. (30)

Modular controllability is in general weaker than global mutual controllability and it will play the role of a necessary
condition.

Proposition 6.4. Consider a modular DES. Global mutual controllability (GMC) implies modular controllability.

Proof. Let for any i 6= j ∈ Zn :

P−1
j (L j )Au ∩ P−1

i (L i ) ⊆ P−1
j (L j ).

Since for j = i the inclusion is trivially true, we have the inclusion for any i, j ∈ Zn . Then, by taking intersection for
j over Zn we obtain:

n⋂
j=1

[P−1
j (L j )Au ∩ P−1

i (L i )] ⊆

n⋂
j=1

P−1
j (L j ) = L .

Since [
⋂n

j=1 P−1
j (L j )]Au ⊆

⋂n
j=1[P−1

j (L j )Au] we obtain finally,
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L Au ∩ P−1
i (L i ) =

[
n⋂

j=1

P−1
j (L j )

]
Au ∩ P−1

i (L i ) ⊆ L ,

i.e. modular controllability (MC). �

As for the opposite inclusion, it turns out that it holds only for n = 2. We have

Proposition 6.5. Consider a modular DES. For n = 2 global mutual controllability (GMC) is equivalent to modular
controllability.

Proof. According to Proposition 6.4 it is sufficient to show that for n = 2 modular controllability implies GMC. Let
MC holds. We show that

P−1
j (L j )Au ∩ P−1

i (L i ) ⊆ P−1
j (L j ).

Let s ∈ P−1
j (L j ), u ∈ Au , and su ∈ P−1

i (L i ). Then we have s ∈ P−1
i (L i ) as well, because P−1

i (L i ) is prefix-closed.
Since we have two modules and i 6= j we obtain s ∈ L . Now using MC

su ∈ L Au ∩ P−1
i (L i ) ⊆ L ⊆ P−1

j (L j ),

whence su ∈ P−1
j (L j ) and GMC holds. �

For a number of modules greater than or equal to 3 however, GMC and MC differ, because we cannot deduce s ∈ L
from s ∈ P−1

j (L j ), u ∈ Au , and su ∈ P−1
i (L i ). This is illustrated through the following simple example:

Example 6.6.

L1 = {prefix(u∗

13(uu∗

13 + au13))}, L2 = {prefix(au + u)},

L3 = {prefix(u∗

13uu∗

13)}

A1 = {a, u, u13} = A3, A2 = {a, u}, A1,c = {a} = A2,c = A3,c.

The modules agree on controllability of common events because
Ai ∩ A j,u = {u} = A j,u ∩ Ai , i = 2, j ∈ {1, 3},

A1 ∩ A3,u = {u, u13} = A1,u ∩ A3.

Since L = L3 , it is easy to see that modular controllability holds for this example. However, L1 and L2 are not GMC,
because au13u13 ∈ P−1

1 (L1)A1u ∩ P−1
2 (L2) \ P−1

1 (L1).

The next theorem provides novel necessary and sufficient conditions for modular control synthesis to equal global
control synthesis. In [12] it was shown only that global mutual controllability is a sufficient condition.

Theorem 6.7. Modular control synthesis equals global control synthesis for the supremal controllable sublanguage
in the case of complete observations and of indecomposable specifications. Consider a modular discrete-event system.
Assume that the local plants agree on the controllability of their common events.

If the local plants {L i , i ∈ Zn} are modularly controllable then for any indecomposable specification K ⊆ A∗,

sup C(K ∩ L , L , Au) =

n⋂
i=1

sup C(Ki , P−1
i (L i ), Au). (31)

Conversely, if for a given modular plant equality (31) holds for any global specification K then the local plant
languages, {L i , i ∈ Zn} are modularly controllable.

Proof. For sufficiency the coinductive proof principle will be used, i.e. it is sufficient to show that under the conditions
listed above the following relation (cf. coinductive definition and notation for sup C!)

R =

{〈
(K ∩ L)/SC

Au
L ,

n⋂
i=1

[Ki/
SC
Au

P−1
i (L i )]

〉
; K , L ∈ L

}
is a bisimulation relation, from which the equality follows by coinduction. In order to show that R is a bisimulation
of partial languages we must show the points (i)–(iii) below (see Definition 3.4 of Section 3).
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(i) This item is obvious from the coinductive definition of supremal controllable sublanguages.
(ii) If for a ∈ A:

⋂n
i=1[Ki/

SC
Au

P−1
i (L i )]

a
→ then ∀i ∈ Zn: [Ki/

SC
Au

P−1
i (L i )]

a
→. Thus, we have for a ∈ A that

∀i ∈ Zn : Ki
a

→, P−1
i (L i )

a
→ and ∀u ∈ A∗

u : P−1
i (L i )a

u
→ ⇒ (Ki )a

u
→.

We must show that (K ∩ L)/SC
Au

L
a

→, which according to the coinductive definition of the supremal controllable

sublanguage means that (K ∩ L)
a

→, L
a

→, and ∀u ∈ A∗
u : La

u
→ ⇒ (K ∩ L)a

u
→. First of all, (K ∩ L)

a
→

immediately follows from Ki
a

→, because K ∩ L = K ∩
⋂n

i=1 P−1
i (L i ) =

⋂n
i=1[K ∩ P−1

i (L i )] =
⋂n

i=1 Ki .

Obviously, (K ∩ L)
a

→ implies L
a

→. Now let u ∈ A∗
u such that La

u
→. Then ∀i ∈ Zn : P−1

i (L i )a
u

→, whence

∀i ∈ Zn : (Ki )a
u

→. It follows that (K ∩ L)
a

→.
(iii) Let (K ∩ L)/SC

Au
L

a
→ for a ∈ A. It follows from the coinductive definition of the supremal controllable

sublanguage that (K ∩ L)
a

→, L
a

→, and ∀u ∈ A∗
u : La

u
→ ⇒ (K ∩ L)a

u
→. We need to show that

∩
n
i=1[Ki/

SC
Au

P−1
i (L i )]

a
→, i.e. that ∀i ∈ Zn : [Ki/

SC
Au

P−1
i (L i )]

a
→. First of all we notice that ∀i ∈ Zn : Ki

a
→,

because as we have seen in (ii) above,
⋂n

i=1 Ki = K ∩ L
a

→. In the very same way, ∀i ∈ Zn : P−1
i (L i )

a
→

follows from L
a

→. Now let P−1
i (L i )a

u
→ for some u ∈ A∗

u , i.e. au ∈ P−1
i (L i ). Due to our assumption of modular

controllability au ∈ L Au ∩ P−1
i (L i ) ⊆ L , hence au ∈ L . According to our assumption we deduce from La

u
→ that

(K ∩ L)a
u

→. Therefore for any i ∈ Zn (Ki )a
u

→, which was to be shown.
Now we will prove the second part of the theorem. The necessity of modular controllability is easy to show: Let

L i , i ∈ Zn be given and let Eq. (31) hold for any K ⊆ A∗. Then in particular (the more difficult) inclusion

sup C(K ∩ L , L , Au) ⊆

n⋂
i=1

sup C(Ki , P−1
i (L i ), Au)

holds for any K ⊆ A∗. This is equivalent to

sup C(K ∩ L , L , Au) ⊆ sup C(Ki , P−1
i (L i ), Au), ∀K ⊆ A∗ and i ∈ Zn .

Then the inclusion holds in particular for K = L , which entails Ki = L for any i ∈ Zn . Hence, L =

sup C(K ∩ L , L , Au) ⊆ sup C(L , P−1
i (L i ), Au). Since sup C(L , P−1

i (L i ), Au) ⊆ L by definition of the sup C
operator, we obtain L = sup C(L , P−1

i (L i ), Au). But this means that L is controllable with respect to P−1
i (L i )

and Au for any i ∈ Zn, which is the modular controllability condition. �

Note that as a consequence of Theorem 6.7 global mutual controllability is not a necessary condition, because modular
controllability is both necessary and sufficient structural condition and although for n = 2 these two conditions
coincide, for n ≥ 3 global mutual controllability is in general stronger than modular controllability. The computational
time complexity for both global and modular control synthesis in this case is discussed in the Sections 8.2 and 8.3.

Global mutual controllability is quite a strong condition. We show a simple example, where global mutual
controllability holds. Consequently, according to Theorem 6.7 modular and global computation of supremal
controllable sublanguage coincide for all specifications K ⊆ A∗.

Example 6.8.

L1 = {ε, a, au, a1, a1u}, L2 = {ε, a, au, a2, a2u},

A1 = {a, u, a1}, A2 = {a, u, a2}, A1,c = {a, a1}A2,c = {a, a2}.

Modules agree on controllability of common events,
A1 ∩ A2,u = {u} = A1,u ∩ A2.

It is easy to see that global mutual controllability holds for this example. Therefore we have

sup C(K ∩ P−1
1 (L1), P−1

1 (L1), Au) ∩ sup C(K ∩ P−1
2 (L2), P−1

2 (L2), Au)

= sup C(K ∩ L , L , Au), ∀K ⊆ A∗,

i.e. modular and global computation of supremal controllable sublanguage coincide for all specifications K ⊆ A∗.



J. Komenda, J.H. van Schuppen / Theoretical Computer Science 388 (2007) 199–226 217

7. Distributed supervisory control with an indecomposable specification

In this section the case is studied of control of a distributed discrete-event system, thus for which one or more of the
local plants has only partial observations, and of an indecomposable specification. First a structural condition called
global mutual normality is introduced. It is similar to mutual normality in the case of decomposable specification, but
it concerns P−1

i (L i ) instead of L i itself.

Definition 7.1. Consider a distributed DES. The modular plant languages {L i ⊆ A∗

i , i ∈ Zn} are called globally
mutually normal if

(P−1 P P−1
j )(L j ) ∩ P−1

i L i ⊆ P−1
j L j , ∀i, j ∈ Zn, i 6= j. (32)

In the next definition the concept needed for a necessary and sufficient condition is introduced.

Definition 7.2. Consider a distributed DES. Modular plant languages {L i , i ∈ Zn} are called modularly normal if L
is (P−1

i (L i ), P)-normal; or, equivalently,

P−1 P(L) ∩ P−1
i (L i ) ⊆ L , ∀i ∈ Zn. (33)

Modular normality is in general weaker than global mutual normality (GMN).

Proposition 7.3. Consider a distributed DES. Global mutual normality (GMN) implies modular normality (MN).

Proof. Let GMN holds, or, equivalently,

(P−1 P P−1
j )(L j ) ∩ P−1

i L i ⊆ P−1
j L j , ∀i, j ∈ Zn, i 6= j.

Since for i = j the inclusion becomes trivial, we may assume that the inclusion is satisfied for any i, j ∈ Zn . We
obtain:

P−1 P(L) ∩ P−1
i (L i ) = P−1 P

(
n⋂

j=1

P−1
j (L j )

)
∩ P−1

i (L i )

⊆

n⋂
j=1

(P−1 P P−1
j )(L j ) ∩ P−1

i (L i ) ⊆

n⋂
j=1

P−1
j (L j ) = L ,

where the last inclusion follows from intersecting both sides of the first inclusion (GMN) for j ranging over Zn. Thus
MN holds. �

7.1. Modular computation of supremal controllable and normal sublanguages

Theorem 7.4. Modular control synthesis equals global control synthesis for the supremal controllable and normal
sublanguage in the case of a distributed DES and of an indecomposable specification. Consider a distributed DES.
Assume that the local plants (1) agree on the controllability of their common events and (2) agree on the observability
of their common events.

If the local plant languages {L i , i ∈ Zn} are modularly controllable and modularly normal, then for any
indecomposable specification K ⊆ A∗

sup CN(K ∩ L , L , P, Au) =

n⋂
i=1

sup CN(Ki , P−1
i (L i ), P, Au). (34)

Conversely, if for a given modular plant equality (34) holds for any global specification K then the local plant
languages {L i , i ∈ Zn} are modularly controllable and modularly normal.

Proof. The sufficiency part of the proof relies on Algorithm 1 for computation of sup CN and the coinduction
proof principle. Algorithm 1 is used for the computation of sup CN(K ∩ L , L , P) as well as for computation of
sup CN(Ki , P−1

i (L i ), P) with the first two parameters represented by partial automata Si and Ti defined below. Let



218 J. Komenda, J.H. van Schuppen / Theoretical Computer Science 388 (2007) 199–226

S representing K ∩ L and T representing L be the same as in Algorithm 1. Algorithm 1 yields the partial automaton
S̃ = (S̃, 〈õ, t̃〉), subautomaton of S, that represents sup N(K ∩ L , L , P) according to Theorem 5.7.

Similarly, let partial automata Si = (Si , 〈o1i , t1i 〉) and Ti = (Ti , 〈oi , ti 〉) representing Ki and P−1
i (L i ), i ∈ Zn ,

respectively, be such that for all i ∈ Zn : Si is a subautomaton of Ti , and Si is a state-partition automaton. The
common initial state of these automata is denoted by si

0 and the transition functions t1i and ti are denoted by →1i and
→i , respectively. Denote by Aux(Si ) the observation indistinguishability relation with respect to the projection P .
Algorithm 1 is used to construct partial automata S̃i = (S̃i , 〈õi , t̃i 〉), subautomata of Si , with t̃i denoted by →′i and
the behavior homomorphism l̃i : S̃i → L. According to Theorem 5.7 S̃i represent the “local” sup N(Ki , P−1

i (L i ), P).
This enables us to consider the behaviors of the corresponding output automata S̃ and S̃i of Algorithm 1 with the

corresponding parameters detailed above. We show that

R =

{〈
[l̃(s0)]w,

[
n⋂

i=1

l̃i (si
0)

]
w

〉
| w ∈ (l̃(s0))

}

is a bisimulation relation, from which the claim of the theorem follows by coinduction. Take a w ∈ (l̃(s0)) arbitrary,
but fixed. The items (i)–(iii) below refer to the definition of a bisimulation stated in Section 3.

(i) is trivial: marking is not considered.
(ii) Let [l̃(s0)]w

a
→ for a ∈ A, i.e. (s0)w

a
→′ . Thus, according to step 2 of Algorithm 1 (s0)w

a
→1 and condition (*)

of Algorithm 1 is satisfied. Thus, we know that wa ∈ L and wa ∈ (K ∩ L). It must be shown that [∩
n
i=1l̃i (si

0)]w
a

→.

We need to show that for any i ∈ Zn we have [l̃i (si
0)]w

a
→, i.e. (si

0)w
a

→′i . According to Algorithm 1 this amounts

to show that for any i ∈ Zn we have (si
0)w

a
→1i and condition (*) of Algorithm 1 holds. Notice that for any i ∈ Zn

we have (si
0)w

a
→1i , because wa ∈ (K ∩ L) = ∩

n
i=1 Ki . Next we show that condition (*) of Algorithm 1 (with

appropriate parameters) is satisfied. If a ∈ Au ∪ Auo then according to condition (*) of Algorithm 1 it must be
checked that ∀v ∈ (Au ∪ Auo)

∗: (si
0)wa

v
→i ⇒ (si

0)wa
v

→1i . Let v ∈ (Au ∪ Auo)
∗: (si

0)wa
v

→i . This is equivalent to

wav ∈ P−1
i (L i ). We need to show that (si

0)wa
v

→1i . The structural conditions of modular controllability (MC) and
modular normality (MN) will be used. It will be shown by structural induction along the string v ∈ (Au ∪ Auo)

∗ that
wav ∈ L . It is clear that v = v1 . . . vk for some k ∈ N with vm ∈ Au ∪ Auo, m ∈ Zk . The base step is trivial: waε ∈ L .
The induction hypothesis is that wav1 . . . vm−1 ∈ L . We show that wav1 . . . vm ∈ L as well using GMC and GMN.
We assume that wav1 . . . vm−1 ∈ L . Thus, if vm ∈ Au , then using MC wav1 . . . vm−1vm ∈ L Au ∩ P−1

i (L i ) ⊆ L .
If vm ∈ Auo (i.e. P(vm) = ε) then MN is applied: P(wav1 . . . vm−1vm) = P(wav1 . . . vm−1), implies using MN
wav1 . . . vm−1vm ∈ P−1 P(L) ∩ P−1

i (L i ) ⊆ L . By induction we have wav ∈ L . This is equivalent to (s0)wa
v

→.

Since a ∈ Au ∪ Auo and v ∈ (Au ∪ Auo)
∗, it follows from (s0)w

a
→′ and condition (*) of Algorithm 1 that (s0)wa

v
→1.

This is equivalent to wav ∈ (K ∩ L). Since K ∩ L =
⋂n

i=1 Ki we have also wav ∈ Ki . This shows that (si
0)wa

v
→1i .

If a ∈ Ac ∩ Ao then according to condition (*) of Algorithm 1 it must be checked that ∀s′
≈Aux(Si ) (si

0)w : s′ a
→i

⇒ s′ a
→1i , in which case also ∀v ∈ (Au ∪ Auo)

∗: s′
a

v
→i ⇒ s′

a
v

→1i . Let s′
≈Aux(Si ) (si

0)w : s′ a
→i . According

to the second part of Lemma 5.5 (Si is a state-partition automaton) there exists r ∈ A∗ such that P(w) = P(r) and
s′

= (si
0)r . Thus, s′ a

→i is equivalent to ra ∈ P−1
i L i . It must be shown that s′ a

→1i , i.e. ra ∈ Ki . We recall first that
wa ∈ L and P(wa) = P(ra). Hence, ra ∈ P−1 P(L) ∩ P−1

i (L i ) ⊆ L . Thus, we have ra ∈ L , which is equivalent

to (s0)r
a

→. Since by Lemma 5.5 (s0)r ≈Aux(S) (s0)w, condition (*) of Algorithm 1 (applied to (s0)r playing the role
of s′) implies that (s0)r

a
→1, which is equivalent to ra ∈ (K ∩ L). Since for any i ∈ Zn : (K ∩ L) ⊆ Ki , we have

s′ a
→1i , which was to be shown. The rest is similar as for a ∈ Au ∪ Auo: the end of the second part of condition (*)

of Algorithm 1 is similar to the first part of condition (*) of Algorithm 1. The inductive application of MC and MN
shows that ∀v ∈ (Au ∪ Auo)

∗: s′
a

v
→i ⇒ s′

a
v

→1i . We conclude that (si
0)w

a
→′i for any i ∈ Zn , i.e. [∩

n
i=1l̃i (si

0)]w
a

→.

(iii) Let ∩
n
i=1l̃i (si

0)w
a

→, i.e. for any i ∈ Zn we have [l̃i (si
0)]w

a
→, or equivalently, (si

0)w
a

→′i . We must show that

[l̃(s0)]w
a

→ for a ∈ A, i.e. (s0)w
a

→′ . It must be checked that (s0)w
a

→1 and condition (*) of Algorithm 1 applied
to automata S and T is satisfied. Firstly, according to step 2 of Algorithm 1 we must show that (s0)w

a
→1. But this

is straightforward: from ∀i ∈ Zn (si
0)w

a
→′i we have in particular (si

0)w
a

→i and (si
0)w

a
→1i . Equivalently, ∀i ∈ Zn :
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wa ∈ P−1
i (L i ) and wa ∈ Ki . Thus, we have wa ∈ L =

⋂n
i=1 P−1

i (L i ) and wa ∈ (K ∩ L) =
⋂n

i=1 Ki , which means

that (s0)w
a

→ and (s0)w
a

→1. Secondly, we must show that condition (*) of Algorithm 1 holds: if a ∈ (Au ∪ Auo) then
∀u ∈ (Au ∪ Auo)

∗: (s0)wa
u

→ ⇒ (s0)wa
u

→1; and if a ∈ Ao ∩ Ac then ∀s′
≈Aux(S) (s0)w : s′ a

→ ⇒ s′ a
→1, in which

case also ∀u ∈ (Au ∪ Auo)
∗: s′

a
u

→ ⇒ s′
a

u
→1. Let a ∈ (Au ∪ Auo) and u ∈ (Au ∪ Auo)

∗: (s0)wa
u

→. Hence, we have
wau ∈ L , i.e. ∀i ∈ Zn : wau ∈ P−1

i (L i ). The last statement is equivalent to ∀i ∈ Zn : (si
0)wa

u
→i . Our assumption that

∀i ∈ Zn : (si
0)w

a
→′i implies according to condition (*) of Algorithm 1 that (si

0)wa
u

→i implies (si
0)wa

u
→1i , which is

equivalent to wau ∈ Ki . Hence wau ∈ (K ∩ L) =
⋂n

i=1 Ki , which is equivalent to (s0)wa
u

→1.
Now, let a ∈ Ao ∩ Ac and s′

≈Aux(S) (s0)w : s′ a
→. According to condition (*) of Algorithm 1 we must

show that s′ a
→1 and ∀u ∈ (Au ∪ Auo)

∗: s′
a

u
→ ⇒ s′

a
u

→1. It follows from Lemma 5.5 (applied to S) and
s′

≈Aux(S) (s0)w that there exists w′
∈ A∗ such that P(w′) = P(w) and s′

= (s0)w′ ∈ S. Hence, s′
a

u
→ is equivalent to

w′a ∈ L =
⋂n

i=1 P−1
i (L i ). An application of Lemma 5.5 to Si yields also (si

0)w′ ≈Aux(Si ) (si
0)w (note that Aux(Si ) is

based on the same projection P as Aux(S)). We notice that w′a ∈ L ⊆ P−1
i (L i ). Therefore (si

0)w′

a
→, i.e. according to

condition (*) of Algorithm 1 (with Si playing the role of S and Ti playing the role of T ) (si
0)w′

a
→1i . The last statement

is equivalent to w′a ∈ Ki . Therefore we have also w′a ∈ ∩
n
i=1 Ki = (K ∩ L). But this is equivalent to s′ a

→1, which

was to be shown. The rest is similar to the case a ∈ (Au ∪ Auo): if u ∈ (Au ∪ Auo)
∗: s′

a
u

→, then w′au ∈ L with the
same w′ as above. Thus, ∀i ∈ Zn : w′au ∈ P−1

i (L i ). The last statement is equivalent to ∀i ∈ Zn : (si
0)w′a

u
→i . Our

assumption that ∀i ∈ Zn : (si
0)w

a
→′i implies according to the second part of condition (*) of Algorithm 1 (with (si

0)w′

playing the role of s′) that (si
0)w′a

u
→i (meaning in Algorithm 1 s′

a
u

→i ) implies (si
0)w′a

u
→1i , which is equivalent to

w′au ∈ Ki . Hence w′au ∈ (K ∩ L), which is equivalent to s′
a

u
→1. The conclusion is (s0)w

a
→′ , which is equivalent

to [l̃(s0)]w
a

→.
Now we will prove the necessity part. The necessity of modular controllability and modular normality is easy to

show along the same lines as in the complete observation case. Let L i , i ∈ Zn be given and let Eq. (34) hold for any
K ⊆ A∗. Then in particular (the more difficult) inclusion

sup CN(K ∩ L , L , P, Au) ⊆

n⋂
i=1

sup CN(Ki , P−1
i (L i ), P, Au)

holds for any K ⊆ A∗. This is equivalent to

sup CN(K ∩ L , L , P, Au) ⊆ sup CN(Ki , P−1
i (L i ), P, Au), K ⊆ A∗ and i ∈ Zn .

The inclusion holds in particular for K = L , which entails Ki = L for any i ∈ Zn . Hence, L = sup CN(K ∩

L , L , P, Au) ⊆ sup CN(L , P−1
i (L i ), P, Au). Since sup CN(L , P−1

i (L i ), P, Au) ⊆ L by definition of the sup C
operator, we obtain L = sup CN(L , P−1

i (L i ), P, Au). But this means that L is for any i ∈ Zn both controllable
with respect to P−1

i (L i ) and Au and (P−1
i (L i ), P)-normal, which are the modular controllability and the modular

normality conditions. �

Note that global mutual controllability together with global mutual normality imply modular controllability and
modular normality, and the former notions are easier to verify than the latter ones, because they do not include the
global plant. In fact, although modular controllability and modular normality can be checked in polynomial time
(but in size of global DES!), their verification requires the construction of the global system, which contradicts the
modular approach, because the size of global system grows exponentially with the number of components. On the
other hand verification of global mutual controllability and global mutual normality is polynomial in the size of
the local components. A polynomial algorithm for checking observability (can be adapted for normality) has been
presented in [24]. See Section 8.4 for comments on the computational time complexity of both global and modular
control synthesis in this case.

7.2. Case of supremal normal sublanguage

As a special case of Theorem 7.4 we have.
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Corollary 7.5. Modular control synthesis equals global control synthesis for the supremal normal sublanguage in the
case of a distributed DES and of an indecomposable specification. Consider a distributed DES. Assume that the local
plants agree on the observability of their common events.

If the local plant languages {L i , i ∈ Zn} are modularly normal then for any indecomposable specification K ⊆ A∗

sup N(K ∩ L , L , P) =

n⋂
i=1

sup N(Ki , P−1
i (L i ), P). (35)

Conversely, if for a given modular plant equality (35) holds for any global specification K ⊆ A∗ then the local plant
(partial) languages {L i , i ∈ Zn} are modularly normal.

Now we present an example, where it is shown that global mutual normality (GMN) is not a necessary condition.

Example 7.6. Let A = {e, e1, a2, τ, τ1, τ2}, A1 = {e1, τ1, e, τ }, A2 = {e2, τ2, e, τ }, Ao = {e1, e2, e}, Ao,1 = {e1, e},
and Ao,2 = {e2, e}. Consider the local plant languages (the marked languages are not considered) displayed in the
figure below.
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Let prefix(K ) = {ε, e, e1, e1e2}. One can easily verify that K is not decomposable. Indeed, the inclusion prefix(K ) ⊂

P−1
1 P1(prefix(K ))∩P−1

2 P2(prefix(K )) is strict, i.e. prefix(K ) 6= P−1
1 P1(prefix(K ))∩P−1

2 P2(prefix(K )). Computing
further the parallel product L = L1 ‖ L2 yields:

sup N(K ∩ L , L , P) = {ε}.

Note that in this example Ki = K ∩ P−1
i L i = K for i = 1, 2. It is also easy to see that sup N(Ki , P−1

i (L i ), P) = {ε}

as well for i = 1, 2. i.e. the commutativity holds trivially true. On the other hand, global mutual normality does not
hold. We have e.g.

τ1 ∈ (P−1 P P−1
1 )(L1) ∩ (P2)

−1(L2) \ P−1
1 (L1).

This only shows that global mutual normality is not a necessary condition (and not necessary structural condition),
because for another specification K ′

= {ε, e, eτ, e1, e1e2} notice that eτ ∈ K ′
\K we have also K ′

i = K ′
∩ P−1

i (L i ) =

K ′, i = 1, 2, thus sup N(K ′
∩ L , L , P) = {ε, a, aτ }, while still sup N(K ′

i , P−1
i (L i ), P) = {ε}. Therefore, for K ′,

modular and global computation of the (global) supremal normal sublanguage differ, which is not in contradiction with
Theorem 7.5, because we know that global mutual normality does not hold for this example. Note that an example,
showing that GMN is not necessary among structural conditions, requires that n ≥ 3, similarly as for GMC.

7.3. Antipermissive control policy

In this subsection our intention is to generalize the results concerning modular computation of supremal normal
sublanguages of global specifications to modular computation of closed-loop languages using the antipermissive
control policy. This will be done in the very same way as was done in Section 4 for local specification. Unlike the
setting of Section 4 we will work with P−1

i (L i ) instead of L i . Since we work with the global alphabet, synchronous
composition coincides with intersection. The concept of modular observability using Definition 2.5 is needed:

Definition 7.7. Consider a distributed DES. The modular plant languages {L i , i ∈ Zn} are called modularly
observable if for any i ∈ Zn we have that L is observable with respect to P−1

i (L i ) and Ao.
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Theorem 7.8. Modular control synthesis equals global control synthesis for the closed-loop language in the case of a
distributed DES, of an indecomposable specification, and of an antipermissive control policy. Consider a distributed
discrete-event system. Assume that the local plants (1) agree on the controllability of their common events and (2)
agree on the observability of their common events.

If {L i , i ∈ Zn} are modularly observable then for any indecomposable specification K ⊆ A∗

AP(K ∩ L , L , P) =

n⋂
i=1

AP(Ki , P−1
i (L i ), P). (36)

Conversely, if for a given modular plant equality (36) holds for any global specification K then the local plant (partial)
languages {L i , i ∈ Zn} are modularly observable.

Proof. The sufficiency part can be shown by coinduction using the same algorithm for closed-loop language under
antipermissive control policy as was done in [6] in the case of local specification languages. The proof is very
similar to the proof of Theorem 7.4. In view of our previous results it is straightforward to show that a necessary
structural condition for local antipermissive control policy to equal global antipermissive control policy is that
AP(L , P−1

i (L i ), P) = L , which means that modular observability holds. �

A sufficient condition can be formulated in terms of global mutual observability, which is similar to strong global
mutual normality, except that observability plays the role of normality. Similarly as for normality, global mutual
observability is then computationally much easier to verify than modular observability.

8. Computational complexity of modular control synthesis

The aim of this section is to illustrate the interest of modular control synthesis by comparing the computational
complexity of modular control synthesis with the global control synthesis. This will be done for several control
problems studied in the previous sections.

8.1. Computational complexity in the case of a decomposable specification

We start with Section 3 and the synthesis of modular supervisors with full observations, i.e. supremal controllable
sublanguages that are used. The following symbols will be used.

nm ∈ N number of modules,
ni size of the minimal state set of a recognizer of module i ∈ Znm ,

n∗
= max

i∈Znm

ni ∈ N,

mi size of the event set of module i ∈ Znm ,

m∗
= max

i∈Znm

mi , m∗ = min
i∈Znm

mi ,

r∗
= max

i, j∈Znm

‖Ai ∩ A j‖ ∈ N,

nL = size of the minimal state set of the recognizer of the global plant,
m = size of the event set of the global system,
ki size of the minimal state set of a recognizer i ∈ Znm , of the local specification Ki ⊆ A∗

i ,

k∗
= max

i∈Znm

ki ∈ N,

mK size of the event set of the minimal recognizer of the specification,
nK size of the minimal state set of the recognizer of the specification.

We have the following simple inequalities and bounds:

nL ≤

nm∏
i=1

ni ≤ (n∗)nm , (37)
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nK ≤

nm∏
i=1

ki ≤ (k∗)nm (38)

m ≤

nm∑
i=1

mi ≤ (m∗)nm . (39)

It was shown in [1, p. 115] that the time complexity of the computation of the supremal controllable sublanguage of
the global plant in terms of the minimal size of the state set n and the minimal size of the specification recognizer nK
is

O(nLn2
K ). (40)

We also recall that it has been shown in [13] that for prefix-closed specification the time complexity of the computation
of the supremal controllable sublanguage of the global plant is of the order O(nLnK ), which is the basis for our
estimates. This is also the complexity for checking the controllability of the specification. Hence,we have

Proposition 8.1. The computational time complexity of the global computation of the optimal supervisor (represented
by the supremal controllable sublanguage) is given by

O(nLnK ) ≤ O((n∗)nm (k∗)nm ). (41)

The computation of modular control synthesis proceeds by the followings steps:

Algorithm 2. (1) Check whether the modules agree on the controllability of their common events:

Aiu ∩ A j = Ai ∩ A ju, ∀i, j ∈ Znm . (42)

(2) Test whether mutual controllability holds: i.e.

prefix(L j )(A ju ∩ Ai ) ∩ Pj (Pi )
−1prefix(L i ) ⊆ prefix(L j ), ∀i, j ∈ Zn, i 6= j. (43)

(3) For each module compute the local supremal controllable sublanguage:

sup C(Ki , L i , Aiu), ∀i ∈ Znm . (44)

Proposition 8.2. Consider the discrete-event system defined above.

(a) The time complexity of checking the agreement on the controllability of their common events is

O(nm(nm − 1)m∗) = O(n2
mm∗). (45)

(b) The time complexity of the check of mutual controllability is

O

(
nm∑
i=1

nm∑
j=1

(2ni )n j

)
= O(n2

m2n∗

n∗). (46)

Note that the term 2ni appears, because Pi P−1
j (L j ) must be computed and the natural projections are computed

with exponential worst case complexity, although in most cases it can be calculated much faster (cf. [31]).
(c) The time complexity of the computation of all local supremal controllable sublanguages is

sup C(Ki , L i , Aiu) O(ni ki ), (47)

{sup C(Ki , L i , Aiu), i ∈ Znm } O

(
nm∑
i=1

ni ki

)
= O(nmn∗k∗). (48)

(d) The time complexity of the computation of the supremal controllable sublanguage by modular control synthesis
as described in Section 4 is

O(n2
m2n∗

k∗m∗). (49)

Proof (d).

O(n2
mm∗) + O(n2

m2n∗

n∗) + O(nmn∗k∗) ≤ O(n2
m2n∗

k∗m∗). �
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8.2. Time complexity of the computation of the supremal controllable language in the case of a global specification

Algorithm 3. Computation of the global specification. Let us denote by nK the size of the minimal state set of the
recognizer of the global specification. The remaining notation is as introduced before.

(1) Compute the intersection of the specification and the plant (denoted resp. G K and GL ),

K ∩ L = L(G K ) ∩ L(GL) = L(G K∩L) = L(Gk × GL). (50)

(2) Compute the supremal controllable sublanguage according to the algorithm described in [1].

sup C(K ∩ L , L , Au). (51)

Proposition 8.3. The computational time complexity of the supremal controllable sublanguage of the global plant in
the case of an indecomposable global specification.

(a) The computational time complexity of the computation of the intersection of the specification and the plant.

O(nLnK ). (52)

(b) The computational time complexity of the computation of the supremal controllable sublanguage of the global
system.

O(nL .nL .nK ) = O(n2
LnK ) ≤ O((n∗)2nm nK ). (53)

8.3. The time complexity of the modular computation of the supremal controllable sublanguage in the case of an
indecomposable global specification

Algorithm 4. The computation of the supremal controllable sublanguage according to modular control synthesis
proceeds by the followings steps:

(1) Check whether the modules agree on the controllability of their common events:

Aiu ∩ A j = Ai ∩ A ju, ∀i, j ∈ Znm . (54)

(2) Compute the global inverse images of the modules:

P−1
i (L i ), ∀i ∈ Znm . (55)

This is done by adding at every state of the recognizer of L i selfloops for the events in A\Ai .
(3) Test whether global mutual controllability holds

P−1
j (L j )A ju ∩ P−1

i (L i ) ⊆ P−1
j (L j ), ∀i, j ∈ Znm , i 6= j. (56)

(4) Computation of the over approximation of the local specification,

Ki = K ∩ P−1
i (L i ), ∀i ∈ Znm . (57)

This is done by computing the product automaton

L(G Ki ) = L(G K ∩ P−1
i (L i )) = L(G K × G P−1

i (L i )
). (58)

(5) For each module compute the local supremal controllable sublanguage:

sup C(Ki , P−1
i (L i ), Au), ∀i ∈ Znm . (59)

(6) Computation of the intersection

n⋂
i=1

sup C(Ki , P−1
i (L i ), Au). (60)
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Proposition 8.4. Consider the discrete-event system defined above.

(a) The time complexity of checking the agreement on the controllability of their common events is

O(nm(nm − 1)m∗) = O(n2
mm∗). (61)

(b) The time complexity of computing the global inverse images of the modules is

P−1
i (L i ) O(ni (m − mi )) ≤ O(ni m); (62)

{P−1
i (L i ), i ∈ Znm } O

(
nm∑
i=1

ni (m − mi )

)
≤ O(nmn∗m). (63)

(c) The time complexity of the over approximation of the local specification,

Ki = K ∩ P−1
i (L i ) O(ni nK m); (64)

{Ki , i ∈ Znm } O

(
nm∑
i=1

ni nK m

)
= O(nmn∗nK m). (65)

(d) The time complexity of the check of global mutual controllability is

O

(
nm∑
i=1

nm∑
j=1

ni mn j m

)
= O(n2

m(n∗)2m2). (66)

(e) The time complexity of the computation of all local supremal controllable sublanguages is

sup C(Ki , L i , Eu) O(ni ni nK m) = O(n2
i nK m), (67)

{sup C(Ki , L i , Eu), i ∈ Znm } O

(
nm∑
i=1

n2
i nK m

)
= O(nm(n∗)2nK m). (68)

(f) The time complexity of the computation of the supremal controllable sublanguage by modular control synthesis
as described in this paper is

O(n2
m(n∗)2n2

K m2). (69)

Proof (f).

O(n2
mm∗) + O(nmn∗m) + O(nmn∗nK m) + O(n2

m(n∗)2m2) + O(nm(n∗)2nK m) ≤ O(n2
m(n∗)2nK m2). �

8.4. The time complexity for the computation of the supremal controllable and normal sublanguage

The time complexity of the computation of the supremal controllable and normal sublanguage is stated in [1] as
being exponential in the size of a minimal recognizer and of the size of the minimal recognizer of the specification
language. The same expression is used in the paper [13]. The formulas need to be used to derive an explicit expression
for the time complexity. Below is used the following formula

O(2nL ·nK ). (70)

It follows that the complexity of the global computation is double exponential: O(2(n∗)2nm ·nK )) in the case of a global
specification and O(2(n∗)nm ·(k∗)nm )) in the case of local specifications.

On the other hand, modular computation is only single exponential in the size of local plants and specifications.
The main step: computation of local supremal controllable and normal sublanguage takes O(2(n∗)2

·nK ) time for global
specification and O(2n∗

·k∗

) for local specifications. One can verify that together with checking all sufficient conditions,
for a large number of modules it is much more advantageous to apply modular control synthesis method over global
synthesis method.
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9. Conclusion

An overview of the main concepts and results have been presented for modular control synthesis to equal global
control synthesis for control of discrete-event systems together with several new results. Most of the possible special
cases of modular and distributed control have been covered (both fully and partially observed systems, both local and
global specifications). Among the new results, we have provided for all cases necessary conditions for modular control
synthesis to equal global control synthesis. Antipermissive control policy was proposed for the global specification
and necessary and sufficient conditions have been presented for global antipermissive control policy to yield the same
result as computationally much more efficient local antipermissive control policy. It was shown that in the shuffle case
of a distributed DES with a decomposable specification, where mutual normality fails, this condition is actually not
needed for modular control synthesis to equal global control synthesis.

These results are important for the optimal supervisory control of large distributed plants, because with respect to
the derived conditions control synthesis can be implemented modularly. All the sufficient conditions we have presented
have a lower computational time complexity than their counterparts for global systems. The structural conditions do
not depend on the specification, which is very important for global (indecomposable) specifications.
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