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a b s t r a c t

In this paper, we study the existence of solutions for nonlinear fractional differential
equations and inclusions of order q ∈ (1, 2] with families of mixed and closed boundary
conditions. In case of inclusion problems, the existence results are established for convex
as well as nonconvex multivalued maps. Our results are based on Leray–Schauder degree
theory, nonlinear alternative of Leray–Schauder type, and some fixed point theorems for
multivalued maps. Some interesting special cases are also discussed.
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1. Introduction

Differential equations and inclusions of fractional order have recently been addressed by several researchers for a variety
of problems. The fractional calculus has found its applications in various disciplines of science and engineering such as
physics, chemistry, biology, economics, control theory, signal and image processing, biophysics, blood flow phenomena,
aerodynamics, fitting of experimental data, etc. [1–4]. For some recent work on fractional differential equations and
inclusions, see [5–15] and the references therein.

In this paper, we consider for T > 0 and 1 < q ≤ 2 the following fractional differential equation
cDqx(t) = f (t, x(t)), t ∈ [0, T ], (1.1)

where cDq denotes the Caputo fractional derivative of order q and f : [0, T ]×R → R. We study (1.1) subject to two families
of boundary conditions:

(i) Mixed boundary conditions

Tx′(0) = −ax(0)− bx(T ) Tx′(T ) = bx(0)+ dx(T ). (1.2)

(ii) Closed boundary conditions

x(T ) = αx(0)+ βTx′(0), Tx′(T ) = γ x(0)+ δTx′(0), (1.3)

where a, b, d, α, β, γ , δ ∈ R are given constants.
Here we remark that the boundary conditions (1.2) interpolate between Neumann (a = b = d = 0) and Dirichlet

(a = b = d = ∞) boundary conditions while (1.3) include quasi-periodic boundary conditions (β = γ = 0) and
interpolate between periodic (α = δ = 1, β = γ = 0) and antiperiodic (α = δ = −1, β = γ = 0) boundary conditions.
Notice that Zaremba boundary conditions x(0) = 0, x′(T ) = 0 can be considered either as mixed boundary conditions with
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a = ∞, b = d = 0 or as quasi-periodic boundary conditions with α = ∞, γ = δ = 0. For more details on Zaremba
boundary conditions, see [16–18].

Let us recall some definitions of fractional calculus [1–3].

Definition 1.1. For a function g : [0,∞) → R, the Caputo derivative of fractional order q is defined as

cDqg(t) =
1

Γ (n − q)

∫ t

0
(t − s)n−q−1g(n)(s)ds, n − 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 1.2. The Riemann–Liouville fractional integral of order q is defined as

Iqg(t) =
1

Γ (q)

∫ t

0

g(s)
(t − s)1−q

ds, q > 0,

provided the integral exists.

Definition 1.3. The Riemann–Liouville fractional derivative of order q for a function g(t) is defined by

Dqg(t) =
1

Γ (n − q)


d
dt

n ∫ t

0

g(s)
(t − s)q−n+1

ds, n = [q] + 1,

provided the right-hand side is pointwise defined on (0,∞).

To solve the boundary value problems (1.1) and (1.2), and (1.1) and (1.3), we need the following known result.

Lemma 1.1 ([3]). For q > 0, the general solution of the fractional differential equation cDqx(t) = 0 is given by

x(t) = c0 + c1t + c2t2 + · · · + cn−1tn−1,

where ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [q] + 1).

In view of Lemma 1.1, it follows that

IqcDqx(t) = x(t)+ c0 + c1t + c2t2 + · · · + cn−1tn−1, (1.4)

for some ci ∈ R, i = 0, 1, 2, . . . , n − 1 (n = [q] + 1).

Lemma 1.2. For f ∈ C([0, T ] × R,R), a unique solution of the boundary value problem (1.1) and (1.2) is given by

x(t) =

∫ T

0
G1(t, s)f (s, x(s))ds,

where G1(t, s) is the Green function given by

G1(t, s) =



(t − s)q−1

Γ (q)
−

1
∆1


[T (b + d)+ (b2 − ad)t](T − s)q−1

TΓ (q)

+
[(a + b)t − (1 + b)T ](T − s)q−2

Γ (q − 1)


, 0 ≤ s ≤ t ≤ T ,

−
1
∆1


[T (b + d)+ (b2 − ad)t](T − s)q−1

TΓ (q)
+

[(a + b)t − (1 + b)T ](T − s)q−2

Γ (q − 1)


,

0 ≤ t ≤ s ≤ T ,

(1.5)

with

∆1 = (1 + b)(b + d)− (a + b)(d − 1) ≠ 0. (1.6)

Proof. Using (1.4), for some constants c0, c1 ∈ R, we have

x(t) = Iqf (t, x(t))− c0 − c1t =

∫ t

0

(t − s)q−1

Γ (q)
f (s, x(s))ds − c0 − c1t. (1.7)

In view of the relations cDqIqx(t) = x(t) and IqIpx(t) = Iq+px(t) for q, p > 0, x ∈ L(0, T ), we obtain

x′(t) =

∫ t

0

(t − s)q−2

Γ (q − 1)
f (s, x(s))ds − c1.
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Using the boundary conditions (1.2) in (1.7), we find that

c0 =
1
∆1


(b + d)

∫ T

0

(T − s)q−1

Γ (q)
f (s, x(s))ds − T (1 + b)

∫ T

0

(T − s)q−2

Γ (q − 1)
f (s, x(s))ds


,

c1 =
1
∆1


(b2 − ad)

T

∫ T

0

(T − s)q−1

Γ (q)
f (s, x(s))ds + (a + b)

∫ T

0

(T − s)q−2

Γ (q − 1)
f (s, x(s))ds


,

where∆1 is given by (1.6). Substituting the values of c0 and c1 in (1.7), we obtain

x(t) =

∫ t

0

(t − s)q−1

Γ (q)
f (s, x(s))ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
f (s, x(s))ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
f (s, x(s))ds



=

∫ T

0
G1(t, s)f (s, x(s))ds,

where G1(t, s) is given by (1.5). This completes the proof. �

Lemma 1.3. For f ∈ C([0, T ] × R,R), the unique solution of the boundary value problem (1.1) and (1.3) is given by

x(t) =

∫ T

0
G2(t, s)f (s, x(s))ds,

where G2(t, s) is the Green function given by

G2(t, s) =



(t − s)q−1

Γ (q)
−

1
∆2


[T (1 − δ)+ γ t](T − s)q−1

TΓ (q)

+
[(1 − α)t − (1 − β)T ](T − s)q−2

Γ (q − 1)


, 0 ≤ s ≤ t ≤ T ,

−
1
∆2


[T (1 − δ)+ γ t](T − s)q−1

TΓ (q)
+

[(1 − α)t − (1 − β)T ](T − s)q−2

Γ (q − 1)


,

0 ≤ t ≤ s ≤ T ,

(1.8)

with

∆2 = γ (1 − β)+ (1 − α)(1 − δ) ≠ 0. (1.9)

Proof. We do not provide the proof as it is similar to that of Lemma 1.2. �

2. Existence of solutions

In relation to the problems (1.1) and (1.2), and (1.1) and (1.3), we define

µ1 =
1

Γ (q + 1)


1 +

|b + d + b2 − ad| + q|a − 1|
|∆1|


, (2.1)

µ2 =
1

Γ (q + 1)


1 +

|1 − δ + γ | + q|α − β|

|∆2|


, (2.2)

where∆1 and∆2 are given by (1.6) and (1.9) respectively.

Theorem 2.1. Assume that there exist constants 0 ≤ κ < 1
µ1

and M > 0 such that |f (t, x)| ≤
κ
Tq |x| + M for all

t ∈ [0, T ], x ∈ C[0, T ]. Then the boundary value problem (1.1) and (1.2) has at least one solution.

Proof. Using Lemma 1.2, the problem (1.1) and (1.2) can be transformed into a fixed point problem as

x = zx, (2.3)
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where z : C[0, T ] → C[0, T ] is given by

(zx)(t) =

∫ t

0

(t − s)q−1

Γ (q)
f (s, x(s))ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
f (s, x(s))ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
f (s, x(s))ds


, t ∈ [0, T ].

Thus we just need to prove the existence of at least one solution x ∈ C[0, T ] satisfying (2.3). Define a suitable ball
BR ⊂ C[0, T ] with radius R > 0 as

BR = {x ∈ C[0, T ] : max
t∈[0,T ]

|x(t)| < R},

where Rwill be fixed later. Then, it is sufficient to show that z : BR → C[0, T ] satisfies

x ≠ λzx, ∀x ∈ ∂BR and ∀λ ∈ [0, 1]. (2.4)

Let us set

H(λ, x) = λzx, x ∈ C(R) λ ∈ [0, 1].

Then, by the Arzela–Ascoli theorem, hλ(x) = x − H(λ, x) = x − λzx is completely continuous. If (2.4) is true, then the
following Leray–Schauder degrees are well defined and by the homotopy invariance of topological degree, it follows that

deg(hλ, BR, 0) = deg(I − λz, BR, 0) = deg(h1, BR, 0)
= deg(h0, BR, 0) = deg(I, BR, 0) = 1 ≠ 0, 0 ∈ Br ,

where I denotes the unit operator. By the nonzero property of Leray–Schauder degree, h1(t) = x− λzx = 0 for at least one
x ∈ BR. In order to prove (2.4), we assume that x = λzx for some λ ∈ [0, 1] and for all t ∈ [0, T ] so that

|x(t)| = |λzx(t)|

≤

∫ t

0

(t − s)q−1

Γ (q)
|f (s, x(s))|ds +

|T (b + d)+ (b2 − ad)t|
T |∆1|

∫ T

0

(T − s)q−1

Γ (q)
|f (s, x(s))|ds

+
|(a + b)t − (1 + b)T |

|∆1|

∫ T

0

(T − s)q−2

Γ (q − 1)
|f (s, x(s))|ds

≤


κ

T q
|x| + M

∫ t

0

(t − s)q−1

Γ (q)
ds +

|T (b + d)+ (b2 − ad)t|
T |∆1|

∫ T

0

(T − s)q−1

Γ (q)
ds

+
|(a + b)t − (1 + b)T |

|∆1|

∫ T

0

(T − s)q−2

Γ (q − 1)
ds



≤


κ

T q
|x| + M


T q

Γ (q + 1)


1 +

|b + d + b2 − ad| + q|a − 1|
|∆1|


,

which, on taking norm (supt∈[0,T ] |x(t)| = ‖x‖) and using (2.1) yields

‖x‖ ≤
MT qµ1

(1 − κµ1)
.

Letting R =
MTqµ1
(1−κµ1)

+ 1, (2.4) holds. This completes the proof. �

Example 2.1. Consider the following boundary value problemcDqx(t) =
1

(4π)
sin

2πx
T q


+

|x|
1 + |x|

, t ∈ [0, T ], 1 < q ≤ 2,

Tx′(0) = −2x(0)− x(T ) Tx′(T ) = x(0)+ x(T ).
(2.5)

Clearly

|f (t, x)| =

 1
(4π)

sin

2πx
T q


+

|x|
1 + |x|

 ≤
1

2T q
‖x‖ + 1,

with κ =
1
2 <

4Γ (q+1)
5+q for 1 < q ≤ 2 andM = 1. Thus, the conclusion of Theorem 2.1 applies to the problem (2.5).



1242 B. Ahmad et al. / Computers and Mathematics with Applications 62 (2011) 1238–1250

Theorem 2.2. Assume that there exist constants 0 ≤ κ < 1
µ2

and M > 0 such that |f (t, x)| ≤
κ
Tq |x| + M for all

t ∈ [0, T ], x ∈ C[0, T ]. Then the boundary value problem (1.1) and (1.3) has at least one solution.

Proof. Using Lemma 1.3 together with the arguments employed in the proof of Theorem 2.1, the proof can easily be
constructed. So we omit the details. �

Remark 2.1. For positive constants N1,N2, we canmodify the assumption on the nonlinear function f (t, x) in Theorems 2.1
and 2.2 respectively as

|f (t, x)| ≤
N1

T qµ1
, ∀t ∈ [0, T ], x ∈ [−N1,N1],

|f (t, x)| ≤
N2

T qµ2
, ∀t ∈ [0, T ], x ∈ [−N2,N2],

where µ1, µ2 are respectively given by (2.1) and (2.2).

3. Fractional differential inclusions

In this section, we consider the fractional differential inclusions
cDqx(t) ∈ F(t, x(t)), t ∈ [0, T ], T > 0, 1 < q ≤ 2, (3.1)

where F : [0, T ]× R → P (R) is a compact-valued map, and P (R) is the family of all nonempty subsets of R. We will study
the existence of solutions for (3.1) subject to two families of boundary conditions (1.2) and (1.3).

Let C([0, T ]) denote a Banach space of continuous functions from [0, T ] into R with the norm ‖x‖ = supt∈[0,T ] |x(t)|. Let
L1([0, T ],R) be the Banach space of measurable functions x : [0, T ] → R which are Lebesgue integrable and normed by
‖x‖L1 =

 T
0 |x(t)|dt .

Now let us recall some basic concepts of multivalued maps [19,20] and set terminology.
For a normed space (X, ‖.‖), let P(X) = {Y ⊆ X : Y ≠ ∅}, Pcl(X) = {Y ∈ P (X) : Y is closed}, Pb(X) = {Y ∈ P (X) :

Y is bounded}, Pcp(X) = {Y ∈ P (X) : Y is compact}, and Pcp,c(X) = {Y ∈ P (X) : Y is compact and convex}. A multivalued
map G : X → P (X) is convex (closed) valued if G(x) is convex (closed) for all x ∈ X . The map G is bounded on bounded
sets if G(B) = ∪x∈B G(x) is bounded in X for all B ∈ Pb(X) (i.e. supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞). G is called upper semi-
continuous (u.s.c.) on X if for each x0 ∈ X , the set G(x0) is a nonempty closed subset of X , and if for each open set N of X
containing G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N.G is said to be completely continuous if
G(B) is relatively compact for every B ∈ Pb(X). If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).G has a fixed
point if there is x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be denoted by FixG. A
multivalued map G : [0, 1] → Pcl(R) is said to be measurable if for every y ∈ R, the function

t −→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable.

Definition 3.1. A multivalued map F : [0, T ] × R → P (R) is said to be L1-Carathéodory if

(i) t −→ F(t, x) is measurable for each x ∈ R;
(ii) x −→ F(t, x) is upper semi-continuous for almost all t ∈ [0, T ];
(iii) for each q > 0, there exists ϕq ∈ L1([0, T ],R+) such that

‖F(t, x)‖ = sup{|v| : v ∈ F(t, x)} ≤ ϕq(t) for all ‖x‖∞ ≤ q and for a.e. t ∈ [0, T ].

For each y ∈ C([0, T ],R), define the set of selections of F by

SF ,y := {v ∈ L1([0, T ],R) : v(t) ∈ F(t, y(t)) for a.e. t ∈ [0, T ]}.

Let E be the Banach space, X a nonempty closed subset of E and G : X → P (E) a multivalued operator with closed
values. G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩ B ≠ ∅} is open for any open set B in E. Let A be a subset
of [0, T ] × R. A is L ⊗ B measurable if A belongs to the σ -algebra generated by all sets of the form J × D , where J is
Lebesguemeasurable in [0, T ] and D is Borel measurable in R. A subset A of L1([0, T ],R) is decomposable if for all x, y ∈ A
and measurable J ⊂ [0, T ] = J , the function xχJ + yχJ−J ∈ A, where χJ stands for the characteristic function of J.

Definition 3.2. Let Y be a separable metric space and let Φ : Y → P (L1([0, T ],R)) be a multivalued operator. We say Φ
has a property (CD) ifΦ is lower semi-continuous (l.s.c.) and has nonempty closed and decomposable values.
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Let F : [0, T ]. × R → P (R) be a multivalued map with nonempty compact values. Define a multivalued operator
F : C([0, T ] × R) → P (L1([0, T ],R)) associated with F as

F (x) = {w ∈ L1([0, T ],R) : w(t) ∈ F(t, x(t)) for a.e. t ∈ [0, T ]},

which is called the Nymetzki operator associated with F .

Definition 3.3. Let F : [0, T ] × R → P (R) be a multivalued function with nonempty compact values. We say F is of lower
semi-continuous type (l.s.c. type) if its associated Nymetzki operator F is lower semi-continuous and has nonempty closed
and decomposable values.

Let (X, d) be a metric space. Consider Hd : P (X)× P (X) → R ∪ {∞} given by

Hd(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)},

where d(a, B) = infb∈B d(a, b). Hd is the (generalized) Pompeiu–Hausdorff functional. It is known that (Pb,cl(X),Hd) is a
metric space and (Pcl(X),Hd) is a generalized metric space (see [21]).

Definition 3.4. A multivalued operator N : X → Pcl(X) is called

(a) γ -Lipschitz if and only if there exists γ > 0 such that

Hd(N(x),N(y)) ≤ γ d(x, y) for each x, y ∈ X;

(b) a contraction if and only if it is γ -Lipschitz with γ < 1.

The following lemmas will be used in what follows.

Lemma 3.1 ([22]). Let X be a Banach space. Let F : [0, T ] × R → Pcp,c(X) be an L1-Carathéodory multivalued map and let Θ
be a linear continuous mapping from L1([0, T ], X) to C([0, T ], X). Then the operator

Θ ◦ SF : C([0, T ], X) → Pcp,c(C([0, T ], X)), x → (Θ ◦ SF )(x) = Θ(SF ,x)

is a closed graph operator in C([0, T ], X)× C([0, T ], X).

Lemma 3.2 ([23]). Let Y be a separable metric space and let N : Y → P (L1([0, T ],R)) be a multivalued operator satisfying the
property (BC). Then N has a continuous selection, that is, there exists a continuous function (single-valued) g : Y → L1([0, T ],R)
such that g(x) ∈ N(x) for every x ∈ Y .

Lemma 3.3 ([24]). Let (X, d) be a complete metric space. If N : X → Pcl(X) is a contraction, then FixN ≠ ∅.

Theorem 3.1. Assume that

(H1) F : [0, T ] × R → P (R) is L1-Carathéodory and has compact and convex values;
(H2) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function p ∈ L1([0, T ],R+) such that

‖F(t, x)‖P := sup{|y| : y ∈ F(t, x)} ≤ p(t)ψ(‖x‖∞) for each (t, x) ∈ [0, T ] × R;

(H3) there exists a number M1 > 0 such that

Γ (q)M1

T q−1


1 +

|b+d+b2−ad|+(q−1)|a−1|
|∆1|


ψ(M1)‖p‖L1

> 1.

Then the boundary value problem (3.1) and (1.2) has at least one solution on [0, T ].

Proof. Define an operatorΩ : C([0, T ],R) → P (C([0, T ],R)) as

Ω(x) =


h ∈ C([0, T ],R) : h(t) =

∫ t

0

(t − s)q−1

Γ (q)
f (s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

×

∫ T

0

(T − s)q−1

Γ (q)
f (s)ds + [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
f (s)ds


, f ∈ SF ,x


.
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We will show that Ω satisfies the assumptions of the nonlinear alternative of Leray–Schauder type. The proof consists of
several steps. As a first step, we show thatΩ(x) is convex for each x ∈ C([0, T ],R). For that, let h1, h2 ∈ Ω(x). Then there
exist f1, f2 ∈ SF ,x such that for each t ∈ [0, T ], we have

hi(t) =

∫ t

0

(t − s)q−1

Γ (q)
fi(s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
fi(s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
fi(s)ds


, i = 1, 2.

Let 0 ≤ ω ≤ 1. Then, for each t ∈ [0, T ], we have

[ωh1 + (1 − ω)h2](t) =

∫ t

0

(t − s)q−1

Γ (q)
[ωf1(s)+ (1 − ω)f2(s)]ds −

1
∆1

×


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
[ωf1(s)+ (1 − ω)f2(s)]ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
[ωf1(s)+ (1 − ω)f2(s)]ds


.

Since SF ,x is convex (F has convex values), it follows that ωh1 + (1 − ω)h2 ∈ Ω(x).
Next, we show that Ω(x) maps bounded sets into bounded sets in C([0, T ],R). For a positive number r , let Br = {x ∈

C([0, T ],R) : ‖x‖∞ ≤ r} be a bounded set in C([0, T ],R). Then, for each h ∈ Ω(x), x ∈ Br , there exists f ∈ SF ,x such that

h(t) =

∫ t

0

(t − s)q−1

Γ (q)
f (s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
f (s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
f (s)ds


and

|h(t)| ≤

∫ t

0

|t − s|q−1

Γ (q)
|f (s)|ds +

1
|∆1|


|T (b + d)+ (b2 − ad)t|

T

∫ T

0

|T − s|q−1

Γ (q)
|f (s)|ds

+ |(a + b)t − (1 + b)T |

∫ T

0

|T − s|q−2

Γ (q − 1)
|f (s)|ds



≤
T q−1

Γ (q)


1 +

|b + d + b2 − ad| + (q − 1)|a − 1|
|∆1|

∫ T

0
ϕr(s)ds.

Thus,

‖h‖∞ ≤
T q−1

Γ (q)


1 +

|b + d + b2 − ad| + (q − 1)|a − 1|
|∆1|

∫ T

0
ϕr(s)ds.

Now we show that Ω maps bounded sets into equicontinuous sets of C([0, T ],R). Let t ′, t ′′ ∈ [0, T ] with t ′ < t ′′ and
x ∈ Br , where Br is a bounded set of C([0, T ],R). For each h ∈ Ω(x), we obtain

|h(t ′′)− h(t ′)| =


∫ t ′′

0

(t ′′ − s)q−1

Γ (q)
f (s)ds −

∫ t ′

0

(t ′ − s)q−1

Γ (q)
f (s)ds −

1
∆1


[(b2 − ad)(t ′′ − t ′)]

T

×

∫ T

0

(T − s)q−1

Γ (q)
f (s)ds + (a + b)(t ′′ − t ′)

∫ T

0

(T − s)q−2

Γ (q − 1)
f (s)ds


≤


∫ t ′

0

[(t ′′ − s)q−1
− (t ′ − s)q−1

]

Γ (q)
f (s)ds

+

∫ t ′′

t ′

(t ′′ − s)q−1

Γ (q)
f (s)ds


+

 (t ′′ − t ′)
∆1


(b2 − ad)

T

∫ T

0

(T − s)q−1

Γ (q)
f (s)ds + (a + b)

∫ T

0

(T − s)q−2

Γ (q − 1)
f (s)ds

 .
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Obviously the right-hand side of the above inequality tends to zero independently of x ∈ Br ′ as t ′′−t ′ → 0. AsΩ satisfies the
above three assumptions, it follows by the Ascoli–Arzela theorem that Ω : C([0, T ],R) → P (C([0, T ],R)) is completely
continuous.

In our next step, we show thatΩ has a closed graph. Let xn → x∗, hn ∈ Ω(xn) and hn → h∗. Then we need to show that
h∗ ∈ Ω(x∗). Associated with hn ∈ Ω(xn), there exists fn ∈ SF ,xn such that for each t ∈ [0, T ],

hn(t) =

∫ t

0

(t − s)q−1

Γ (q)
fn(s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
fn(s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
fn(s)ds


.

Thus we have to show that there exists f∗ ∈ SF ,x∗ such that for each t ∈ [0, T ],

h∗(t) =

∫ t

0

(t − s)q−1

Γ (q)
f∗(s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
f∗(s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
f∗(s)ds


.

Let us consider the continuous linear operatorΘ : L1([0, T ],R) → C([0, T ],R) given by

f → Θ(f )(t) =

∫ t

0

(t − s)q−1

Γ (q)
f (s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
f (s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
f (s)ds


.

Observe that

‖hn(t)− h∗(t)‖ =


∫ t

0

(t − s)q−1

Γ (q)
(fn(s)− f∗(s))ds

−
1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
(fn(s)− f∗(s))ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
(fn(s)− f∗(s))ds

 → 0 as n → ∞.

Thus, it follows by Lemma 3.1 thatΘ ◦ SF is a closed graph operator. Further, we have hn(t) ∈ Θ(SF ,xn). Since xn → x∗, we
have

h∗(t) =

∫ t

0

(t − s)q−1

Γ (q)
f∗(s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
f∗(s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
f∗(s)ds


for some f∗ ∈ SF ,x∗ .

Finally, we discuss a priori bounds on solutions. Let x be a solution of (1.1). Then there exists f ∈ L1([0, T ],R) with
f ∈ SF ,x such that, for t ∈ [0, T ], we have

x(t) =

∫ t

0

(t − s)q−1

Γ (q)
f (s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
f (s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
f (s)ds


.

In view of (H2), for each t ∈ [0, T ], we obtain
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|x(t)| ≤
T q−1

Γ (q)


1 +

|b + d + b2 − ad| + (q − 1)|a − 1|
|∆1|


ψ(‖x‖∞)

∫ T

0
p(s)ds.

Consequently, we have

Γ (q)‖x‖∞

T q−1


1 +

|b+d+b2−ad|+(q−1)|a−1|
|∆1|


ψ(‖x‖∞)‖p‖L1

≤ 1,

In view of (H3), there existsM1 such that ‖x‖∞ ≠ M1. Let us set

U = {x ∈ C([0, T ],R) : ‖x‖∞ < M1 + 1}.

Note that the operatorΩ : U → P (C([0, T ],R)) is upper semi-continuous and completely continuous. From the choice of
U , there is no x ∈ ∂U such that x ∈ µΩ(x) for someµ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray–Schauder
type [25], we deduce that Ω has a fixed point x ∈ U which is a solution of the problem (3.1) and (1.2). This completes the
proof. �

Theorem 3.2. Assume that (H1), (H2) and the following condition hold:

(H3) there exists a number M1 > 0 such that

Γ (q)M1

T q−1


1 +

|1−δ+γ |+(q−1)|α−β|

|∆2|


ψ(M1)‖p‖L1

> 1.

Then the boundary value problem (3.1) and (1.3) has at least one solution on [0, T ].

Proof. We omit the proof as it employs the arguments used in the proof of Theorem 3.1. �

As a next result, we study the case when F is not necessarily convex valued. Our strategy to deal with these problems is
based on the nonlinear alternative of Leray–Schauder type together with the selection theorem of Bressan and Colombo [23]
for lower semi-continuous maps with decomposable values.

Theorem 3.3. Assume that (H2)–(H3) and the following conditions hold:

(H4) F : [0, T ] × R → P (R) is a nonempty compact-valued multivalued map such that
(a) (t, x) −→ F(t, x) is L ⊗ B measurable,
(b) x −→ F(t, x) is lower semi-continuous for each t ∈ [0, T ];

(H5) for each σ > 0, there exists ϕσ ∈ L1([0, T ],R+) such that

‖F(t, x)‖ = sup{|y| : y ∈ F(t, x)} ≤ ϕσ (t) for all ‖x‖∞ ≤ σ and for a.e. t ∈ [0, T ].

Then the boundary value problem (3.1) and (1.2) has at least one solution on [0, T ].

Proof. It follows from (H4) and (H5) that F is of l.s.c. type. Then from Lemma 3.2, there exists a continuous function
f : C([0, T ],R) → L1([0, T ],R) such that f (x) ∈ F (x) for all x ∈ C([0, T ],R).

Consider the problemcDqx(t) = f (x(t)), t ∈ [0, T ], T > 0, 1 < q ≤ 2,
Tx′(0) = −ax(0)− bx(T ) Tx′(T ) = bx(0)+ dx(T ). (3.2)

Observe that if x ∈ C2([0, T ]) is a solution of (3.2), then x is a solution to the problem (3.1) and (1.2). In order to transform
the problem (3.2) into a fixed point problem, we define the operatorΩ as

Ωx(t) =

∫ t

0

(t − s)q−1

Γ (q)
f (x(s))ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
f (x(s))ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
f (x(s))ds


.

It can easily be shown thatΩ is continuous and completely continuous. The remaining part of the proof is similar to that of
Theorem 3.1. So we omit it. This completes the proof. �
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Remark 3.1. The analogue form of Theorem 3.3 for the problem (3.1) and (1.3) replaces the assumption (H3) by (H3).

Next we prove the existence of solutions for the problem (3.1) with a nonconvex valued right-hand side by applying a
fixed point theorem for multivalued map due to Covitz and Nadler [24].

Theorem 3.4. Assume that the following conditions hold:

(H6) F : [0, T ] × R → Pcp(R) is such that F(., x) : [0, T ] → Pcp(R) is measurable for each x ∈ R.
(H7) Hd(F(t, x), F(t, x̄)) ≤ m(t)|x− x̄| for almost all t ∈ [0, T ] and x, x̄ ∈ R with m ∈ L1([0, T ],R+) and d(0, F(t, 0)) ≤ m(t)

for almost all t ∈ [0, T ].

Then the problem (3.1) and (1.2) has at least one solution on [0, T ] if

T q−1
‖m‖L1

Γ (q)


1 +

|b + d + b2 − ad| + (q − 1)|a − 1|
|∆1|


< 1.

Proof. Observe that the set SF ,x is nonempty for each x ∈ C([0, T ],R) by the assumption (H6), so F has a measurable
selection (see Theorem III.6 [26]). Now we show that the operatorΩ satisfies the assumptions of Lemma 3.2. To show that
Ω(x) ∈ Pcl((C[0, T ],R)) for each x ∈ C([0, T ],R), let {un}n≥0 ∈ Ω(x) be such that un → u(n → ∞) in C([0, T ],R). Then
u ∈ C([0, T ],R) and there exists vn ∈ SF ,x such that, for each t ∈ [0, T ],

un(t) =

∫ t

0

(t − s)q−1

Γ (q)
vn(s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
vn(s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
vn(s)ds


.

As F has compact values, we pass onto a subsequence to obtain that vn converges to v in L1([0, T ],R). Thus, v ∈ SF ,x and for
each t ∈ [0, T ],

un(t) → u(t) =

∫ t

0

(t − s)q−1

Γ (q)
v(s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
v(s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
v(s)ds


.

Hence u ∈ Ω(x).
Next we show that there exists γ1 < 1 such that

Hd(Ω(x),Ω(x̄)) ≤ γ1‖x − x̄‖∞ for each x, x̄ ∈ C([0, T ],R).

Let x, x̄ ∈ C([0, T ],R) and h1 ∈ Ω(x). Then there exists v1(t) ∈ F(t, x(t)) such that, for each t ∈ [0, T ],

h1(t) =

∫ t

0

(t − s)q−1

Γ (q)
v1(s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
v1(s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
v1(s)ds


.

By (H4), we have

Hd(F(t, x), F(t, x̄)) ≤ m(t)|x(t)− x̄(t)|.

So, there existsw ∈ F(t, x̄(t)) such that

|v1(t)− w| ≤ m(t)|x(t)− x̄(t)|, t ∈ [0, T ].

Define U : [0, T ] → P (R) by

U(t) = {w ∈ R : |v1(t)− w| ≤ m(t)|x(t)− x̄(t)|}.

Since the multivalued operator U(t)∩ F(t, x̄(t)) is measurable (Proposition III.4 [26]), there exists a function v2(t)which is
a measurable selection for U . So v2(t) ∈ F(t, x̄(t)) and for each t ∈ [0, T ], we have |v1(t)− v2(t)| ≤ m(t)|x(t)− x̄(t)|.
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For each t ∈ [0, T ], let us define

h2(t) =

∫ t

0

(t − s)q−1

Γ (q)
v2(s)ds −

1
∆1


[T (b + d)+ (b2 − ad)t]

T

∫ T

0

(T − s)q−1

Γ (q)
v2(s)ds

+ [(a + b)t − (1 + b)T ]

∫ T

0

(T − s)q−2

Γ (q − 1)
v2(s)ds


.

Thus

|h1(t)− h2(t)| ≤

∫ t

0

(t − s)q−1

Γ (q)
|v1(s)− v2(s)|ds +

1
|∆1|


|T (b + d)+ (b2 − ad)t|

T

∫ T

0

(T − s)q−1

Γ (q)

× |v1(s)− v2(s)|ds + |(a + b)t − (1 + b)T |

∫ T

0

(T − s)q−2

Γ (q − 1)
|v1(s)− v2(s)|ds



≤
T q−1

Γ (q)


1 +

|b + d + b2 − ad| + (q − 1)|a − 1|
|∆1|

∫ T

0
m(s)ds‖x − x‖.

Hence

‖h1(t)− h2(t)‖∞ ≤
T q−1

‖m‖L1

Γ (q)


1 +

|b + d + b2 − ad| + (q − 1)|a − 1|
|∆1|


‖x − x‖∞.

Analogously, interchanging the roles of x and x, we obtain

Hd(Ω(x),Ω(x̄)) ≤ γ1‖x − x̄‖∞

≤
T q−1

‖m‖L1

Γ (q)


1 +

|b + d + b2 − ad| + (q − 1)|a − 1|
|∆1|


‖x − x‖∞.

Since Ω is a contraction, it follows by Lemma 2.2 that Ω has a fixed point x which is a solution of (1.1)–(1.2). This
completes the proof. �

Theorem 3.5. Assume that (H6) and (H7) hold. Then the problem (3.1)–(1.3) has at least one solution on [0, T ] if

T q−1
‖m‖L1

Γ (q)


1 +

|1 − δ + γ | + (q − 1)|α − β|

|∆2|


< 1.

Proof. We do not provide the proof as it can easily be traced on the pattern of the proof of Theorem 3.4. �

Example 3.1. Consider the following inclusion boundary value problem
cD3/2x(t) ∈ F(t, x(t)), t ∈ [0, 1],

x′(0) = −x(0)−
1
3
x(1) x′(1) =

1
3
x(0)+

2
3
x(1),

(3.3)

where q = 3/2, T = 1, a = 1, b = 1/3, d = 2/3 and F : [0, 1] × R → P (R) is a multivalued map given by

x → F(t, x) =

[
x3

x3 + 3
+ t3 + 3,

x
x + 1

+ t + 1
]
.

For f ∈ F , we have

|f | ≤ max


x3

x3 + 3
+ t3 + 3,

x
x + 1

+ t + 1


≤ 5, x ∈ R.

Thus,

‖F(t, x)‖P := sup{|y| : y ∈ F(t, x)} ≤ 5 = p(t)ψ(‖x‖∞), x ∈ R,

with p(t) = 1, ψ(‖x‖∞) = 5. Further, using the condition
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Γ (q)M1

T q−1


1 +

|b+d+b2−ad|+(q−1)|a−1|
|∆1|


ψ(M1)‖p‖L1

> 1,

we find that M1 >
25

2
√
π
. Clearly, all the conditions of Theorem 3.1 are satisfied. So there exists at least one solution of the

problem (3.3) on [0, 1].

4. Discussion

This paper studies the existence of solutions for some nonlinear boundary value problems of fractional differential
equations of order q ∈ (1, 2]. Our results give rise to various interesting situations. Some of them are listed below:

(i) The results for a nonlinear boundary value problem of fractional order q ∈ (1, 2] with quasi-periodic (quasi-
antiperiodic) boundary conditions follow as a special case of the result (Theorem2.2) of this paper by takingβ = γ = 0.

(ii) The results for an antiperiodic boundary value problem of fractional differential equations of order q ∈ (1, 2] can be
obtained by taking α = −1 = δ, β = γ = 0.

(iii) For q = 2,weobtain new results for secondorder boundary value problemswithmixed and closedboundary conditions.
In this case, the Green functions G1(t, s) and G2(t, s) take the form

G1(t, s) =


(t − s)−

1
∆1


[T (b + d)+ (b2 − ad)t](T − s)

T
+ [(a + b)t − (1 + b)T ]


, 0 ≤ s ≤ t ≤ T ,

−
1
∆1


[T (b + d)+ (b2 − ad)t](T − s)

T
+ [(a + b)t − (1 + b)T ]


, 0 ≤ t ≤ s ≤ T ,

G2(t, s) =


(t − s)−

1
∆2


[T (1 − δ)+ γ t](T − s)

T
+ [(1 − α)t − (1 − β)T ]


, 0 ≤ s ≤ t ≤ T ,

−
1
∆2


[T (1 − δ)+ γ t](T − s)

T
+ [(1 − α)t − (1 − β)T ]


, 0 ≤ t ≤ s ≤ T .

The Green functions G2(t, s) for the second order antiperiodic boundary value problem (α = −1 = δ, β = γ = 0) is

G2(t, s) =


1
4
(−T − 2t + 2s), 0 ≤ t < s ≤ T ,

1
4
(−T + 2t − 2s), 0 ≤ s ≤ t ≤ T .
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