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Inner classes in object-oriented languages play a role similar to nested function definitions in func-
tional languages, allowing an object to export other objects that have direct access to its own methods
and instance variables. However, the similarity is deceptive: a close look at inner classes reveals sig-
nificant subtleties arising from their interactions with inheritance. The goal of this work is a precise
understanding of the essential features of inner classes; our object of study is a fragment of Java
with inner classes and inheritance (and almost nothing else). We begin by giving a direct reduction
semantics for this language. We then give an alternative semantics by translation into a yet smaller
language with only top-level classes, closely following Java’s Inner Classes Specification. We prove
that the two semantics coincide, in the sense that translation commutes with reduction, and that both
are type-safe. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

It has often been observed that the gap between object-oriented and functional programming styles is
not as large as it might first appear; in essence, an object is just a record of function closures. However,
there are differences as well as similarities. On the one hand, objects and classes incorporate important
mechanisms not present in functions (static members, inheritance, object identity, access protection,
etc.). On the other hand, functional languages usually allow nested definitions of functions, giving inner
functions direct access to the local variables of their enclosing definitions.

In fact, the first object-oriented language, Simula [3], did support nested class declarations. Although
most succeeding object-oriented languages left them out, a few object-oriented languages follow Simula
and support various kinds of nesting. For example, Smalltalk [9] has special syntax for “block” objects,
similar to anonymous functions. Beta [17] provides patterns, unifying classes and functions, that can
be nested arbitrarily. More recently, inner classes have been popularized by their inclusion in
Java 1.1 [10, 14].

Inner classes are useful when an object needs to send another object a chunk of code that can
call the first object’s methods or manipulate its instance variables. Such situations are typical in user-
interface programming: for example, Java’s Abstract Windowing Toolkit [13] allows a listener object
to be registered with a user-interface component such as a button; when the button is pressed, the

1 Preliminary summaries appeared in The Informal Proceedings of the 7th International Workshop on Foundations of Object-
Oriented Languages (FOOL7), Boston, MA, January 2000 and in The Proceedings of the 14th European Conference on Object-
Oriented Programming (ECOOP2000), Cannes, France, June 2000, Lecture Notes on Computer Science, Vol. 1850, pp. 129–153,
Springer-Verlag, Berlin/New York.

2 This work was done while the author was visiting University of Pennsylvania as a research fellow of the Japan Society of
the Promotion of Science.
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actionPerformed method of the listener is invoked. For example, suppose we want to increment a
counter when a button is pressed. We begin by defining a class Counter with an inner class Listener:

class Counter {
int x;
class Listener implements ActionListener {
public void actionPerformed(ActionEvent e) { x++; }

}
void listenTo(Button b) {
b.addActionListener(new Listener());

}
}

In the definition of the method actionPerformed, the field x of the enclosing Counter object is
changed. The method listenTo creates a new listener object and sends it to the given Button. Now
we can write

Counter c = new Counter();
Button b = new Button("Press me");
c.listenTo(b);
gui.add(b);

to create and display a button that increments a counter every time it is pressed.3

Inner classes are a powerful abstraction mechanism, allowing programs like the one above to be
expressed much more conveniently and transparently than would be possible using only top-level classes.
However, this power comes at a significant cost in complexity: inner classes interact with other features
of object-oriented programming—especially inheritance—in some quite subtle ways. For example, a
closure in a functional language has a simple lexical environment, including all the bindings in whose
scope it appears. An inner class, on the other hand, has access, via methods inherited from superclasses,
to a chain of lexical environments—including not only the lexical environment in which it appears,
but also the lexical environment of each superclass (which may in general be completely different).
Conversely, the presence of inner classes complicates our intuitions about inheritance. What should it
mean, for example, for an inner class to inherit from its enclosing class? What happens if a top-level
class inherits from an inner class defined in a different top-level class?

The language issues arising from inner classes are not limited to their interactions with inheritance.
Java’s surface syntax includes a variety of abbreviated forms related to inner classes—for example, the
class Listener above can be referred to by its simple name Listener inside the class Counter, while
it should be called Counter.Listener (its fully qualified name) at the top-level. Such abbreviations
can be expanded to fully qualified forms, following scoping rules similar to those found in conventional
block-structured languages. The rules are, however, somewhat more complicated in Java since the scope
of a name can extend to subclasses of the class in which the name is declared. Also, the semantics of
access annotations (public/private/etc.) becomes a bit more complicated (for example, what does a
public member mean inside a private inner class?).

JavaSoft’s Inner Classes Specification [14], later incorporated into the Java language definition [11],
provides one answer to questions about inner classes by showing how to translate a program with inner
classes into one using only top-level classes, adding to each inner class an extra field that points to
an instance of the enclosing class. This specification gives clear basic intuitions about the behavior of
inner classes, but it is not a completely satisfying account. For one thing, its style is indirect, forcing
programmers to reason about their code by first passing it through a rather heavy transformation.
Moreover, the document itself is somewhat imprecise, consisting only of examples and English prose.
Different compilers (even different versions of Sun’s JDK) have interpreted the specification differently
in some significant ways (cf. Section 6).

3 Strictly speaking, the increment of x should be performed after the acquisition of the lock, by using synchronized, on
the counter with which the listener is associated because there may be simultaneous accesses to the counter. (There may be more
then one listener for one counter.)
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The goal of this work is a precise understanding of the essential features of inner classes. Our
contributions are threefold:

• First, we give a direct operational semantics and typing rules for a small language with inner
classes and inheritance. The typing rules are shown to be sound for the operational semantics in the
standard sense. To our knowledge, this direct formal semantics is the first that has been given for inner
classes in any language.

We base our direct semantics on the new Java language specification [11]. To keep the model as
simple as possible, we focus on the most basic form of inner classes in Java (classes that are members of
other classes), omitting the related mechanisms of anonymous classes, local classes within blocks, and
static nested classes. Also, we do not deal with the (important) interactions between access annotations
and inner classes (cf. [1, 2, 14]).

• Next, we give a translation from our language with inner classes to an even smaller language with
only top-level classes, formalizing the translation semantics of the Java Inner Classes Specification [14].
We show that the translation preserves typing.

• Finally, we prove that the two semantics coincide—that they define the same behavior for inner
classes—in the sense that the translation commutes with the high-level reduction relation in the direct
semantics. This property, together with the property of preservation of typing, guarantees correctness
of the translation semantics with respect to the direct semantics, for the case where whole programs
are being translated. (The case where some translated classes are linked with classes written directly in
the target language is more subtle, and we do not handle it here. The main desired theorem in this case
would be full abstraction, which states that translated expressions that can be distinguished by a target
language context can also be distinguished in the source language. However, our present translation
is not fully abstract, because our modeling language does not include private fields, which are used
by the real translation to prevent observers from directly accessing the field of an inner class instance
that holds a pointer to its containing object. The question of full abstraction for full-scale inner class
translations has been considered by Abadi [1] and Pugh [2].)

Aside from the main contributions listed above, we also tackle the issue of formalizing Java’s rather
complex scoping rules for inner classes. To separate this problem from more basic semantic questions,
we consider two different languages: an external language, in which abbreviated forms are allowed,
and a simpler internal language, for which we define a formal semantics and type system. External
language programs are translated to internal language programs by an elaboration process that records
the results of the scoping rules.

The basis of our work is a core calculus called Featherweight Java, or FJ. This calculus was originally
proposed in the context of a formal study [12] of GJ [4], an extension of Java with parameterized classes.
FJ is designed to omit as many features of Java as possible (even assignment), while maintaining the
essential flavor of the language and its type system. Its definition fits comfortably on a page, and its basic
properties can be proved with no more difficulty than, say, those of the simply typed lambda-calculus
with subtyping. This extreme simplicity makes it an ideal vehicle for the rigorous study of new language
features such as parameterized classes and inner classes.

The omission of assignment in the present study is justified by the fact that we are only dealing
here with inner classes as top-level members of other classes; the fundamental interaction of such inner
classes with assignment is minimal. Other forms of inner classes, which allow classes to appear inside
method bodies, interact with assignment in more interesting ways. For example, in Java, parameters and
local variables referred to by an inner class within a method body are actually copied into instances of
the inner class; these local variables must be marked final to ensure that this copying makes sense. To
analyze the correctness of this scheme, we would need to extend our account with assignment. There
is no fundamental difficulty with doing so, but the consequent increase in notational complexity would
make the formalization somewhat heavier.

The remainder of the article is organized as follows. Section 2 briefly reviews Featherweight Java.
Section 3 opens with a detailed discussion of the main issues that must be dealt with to understand inner
classes and then proceeds to a formal definition of the internal language FJI, an extension of FJ with
inner classes, giving its syntax, typing rules, and reduction rules and developing standard type soundness
results. Section 4 defines a compilation from FJI to FJ, modeling the translation semantics of the Inner
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Classes Specification, and proves its correctness with respect to the direct semantics in the previous
section. Section 5 discusses the elaboration process from the external language to FJI. Section 6 examines
some changes made from the original Inner Class Specification [14] and some behavioral differences
between compilers resulting from inconsistencies in the old specification. Section 7 discusses related
work, and Section 8 offers concluding remarks.

2. FEATHERWEIGHT JAVA

We begin by reviewing the basic definitions of Featherweight Java [12]. FJ is a tiny fragment of Java,
including only top-level class definitions, object instantiation, field access, and method invocation. (The
original version of FJ also included typecasts, which are required to model the compilation of GJ into
Java. They are omitted from this article, since they do not interact with inner classes in any significant
way.) Our main goal in designing FJ was to make a proof of type soundness (“well-typed programs do
not get stuck”) as concise as possible, while still capturing the essence of the soundness argument for
the sequential part of the full Java language.

A key simplification in FJ (and also FJI) is the omission of assignment, which makes FJ a purely
functional language. In essence, all fields and method parameters in FJ are implicitly marked final.
Although most useful examples of programming in Java do involve its side-effecting features, we exclude
them to focus on the issues on interaction between inner classes and inheritance. In particular, member
classes, the only form of inner classes we deal with here, are expected to interact with assignments less
significantly than local or anonymous classes.

2.1. Syntax

The abstract syntax of FJ class declarations, constructor declarations, method declarations, and ex-
pressions is given in Fig. 1. The metavariables A, B, C, D, and E range over class names; f and g range
over field names; m ranges over method names; x ranges over parameter names; c, d, and e range over
expressions; L ranges over class declarations; K ranges over constructor declarations; and M ranges over
method declarations. We write f̄ as shorthand for a possibly empty sequence f1,. . .,fn (and simi-
larly for C̄ , x̄, ē, etc.) and write M̄ as shorthand for M1. . . Mn (with no commas). We write the empty
sequence as • and denote concatenation of sequences using a comma. The length of a sequence x̄
is written #(x̄). We abbreviate operations on pairs of sequences in the obvious way, writing “C̄ f̄” as
shorthand for “C1 f1,. . .,Cn fn” (where n is the length of both C̄ and f̄) and “C̄ f̄;” as shorthand for
“C1 f1;. . . Cn fn;” and “this.f̄ = f̄;” as shorthand for “this.f1= f1;. . . this.fn = fn;”. Sequences
of field declarations, parameter names, and method declarations are assumed to contain no duplicate
names.

A class declaration has declarations of its name (class C), fields (C̄ f̄), one constructor (K), and
methods (M̄); moreover, every class must explicitly declare its superclass with extends even if it is
Object. Each argument of a constructor corresponds to an initial (and also final) value of each field of
the class. As in Java, fields inherited from superclasses are initialized by super(f̄); and newly declared
fields by this.f̄ = f̄;, although, as we will see, those statements do not play any role during execution
of programs: they are included just so that we can say that FJ is literally a subset of full Java. A body
of a method just returns an expression, which is either a variable, field access, method invocation, or
object instantiation. We treat this in method bodies as an ordinary variable and so require no special
syntax for it. As we will see later, the typing rules prohibit this from appearing as a method parameter
name.

L ::= class C extends D {C̄ f̄; K M̄}

K ::= C(C̄ f̄){ super(f̄); this.f̄=f̄; }

M ::= C m(C̄ x̄){ return e; }

e ::= x | e.f | e.m(ē) | new C(ē)

FIG. 1. FJ: syntax.
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C <: C
C <: D D <: E

C <: E

CT(C) = class C extends D {...}

C <: D

FIG. 2. FJ: subtyping rules.

A class table CT is a mapping from class names C to class declarations L. A program is a pair (CT, e)
of a class table and an expression. Object is treated specially in every FJ program: the definition of
Object class never appears in the class table and the auxiliary functions that look up fields and method
declarations in the class table are equipped with special cases for Object that return the empty sequence
of fields and the empty set of methods. (As we will see later, method lookup functions takes a pair of
class and method names as arguments; the case for Object is just undefined.) To lighten the notation
in what follows, we always assume a fixed class table CT .

By looking at the class table, we can read off the subtype relation between classes. We write C <:D
when C is a subtype of D—the reflexive and transitive closure of the immediate subclass relation given
by the extends clauses in CT . Formally, it is defined in Fig. 2.

The given class table is assumed to satisfy some sanity conditions: (1) CT(C) = class C... for
every C ∈ dom(CT); (2) Object /∈ dom(CT); (3) for every class name C (except Object) appearing
anywhere in CT , we have C ∈ dom(CT); and (4) there are no cycles in the subtype relation induced by
CT—that is, the <: relation is antisymmetric. Given these conditions, we can identify a class table with
a sequence of class declarations in an obvious way.

For the typing and reduction rules, we need a few auxiliary definitions, given in Fig. 3. The fields of
a class C, written fields(C), is a sequence C̄ f̄ pairing the class of a field with its name, for all the fields
declared in class C and all of its superclasses. The type of the method m in class C, written mtype(m, C),
is a pair, written B̄→ B, of a sequence of argument types B̄ and a result type B. Similarly, the body of
the method m in class C, written mbody(m, C), is a pair, written (x̄, e), of a sequence of parameters x̄ and
an expression e. (In Java proper, method body lookup is based not only on the method name but also

Field lookup:

fields(Object) = •

CT(C) = class C extends D {C̄ f̄; K M̄} fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

Method type lookup:

CT(C) = class C extends D {C̄ f̄; K M̄} B m(B̄ x̄){ return e; }∈ M̄

mtype(m, C) = B̄→ B

CT(C) = class C extends D {C̄ f̄; K M̄} m is not defined in M̄

mtype(m, C) = mtype(m, D)

Method body lookup:

CT(C) = class C extends D {C̄ f̄; K M̄} B m(B̄ x̄){ return e; }∈ M̄

mbody(m, C) = (x̄, e)

CT(C) = class C extends D {C̄ f̄; K M̄} m is not defined in M̄

mbody(m, C) = mbody(m, D)

FIG. 3. FJ: auxiliary definitions.
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Computation:

fields(C0) = C̄ f̄

new C0(ē).fi → ei
(R-FIELD)

mbody(m, C) = (x̄, e0)

new C(ē).m(d̄)→ [d̄/x̄, new C(ē)/this]e0
(R-INVK)

Congruence:

e0 → e0
′

e0.f→ e0
′.f

(RC-FIELD)
e0 → e0

′

e0.m(ē)→ e0
′.m(ē)

(RC-INVRECV)

ei → ei
′

e0.m( . . . ,ei, . . . )→ e0.m( . . . ,ei
′, . . . )

(RC-INVARG)

ei → ei
′

new C( . . . ,ei, . . . )→ new C( . . . ,ei
′, . . . )

(RC-NEWARG)

FIG. 4. FJ: reduction rules.

on the static types of the actual arguments to deal with overloading, which we drop from FJ.) Note that
the functions mtype(m, C) and mbody(m, C) are both partial functions: since Object is assumed to have
no methods in FJ, both mtype(m, Object) and mbody(m, Object) are undefined.

2.2. Computation

The reduction relation is of the form e→ e′, read “expression e reduces to expression e′ in one
step.” We write →∗ for the reflexive and transitive closure of →, and →+ for the transitive closure
of →.

The reduction rules are given in Fig. 4. There are two reduction rules, one for field access and one
for method invocation. A field access new C(ē).fi looks up and obtains the field names f̄ of C with
fields(C); then it reduces to the constructor argument ei of the corresponding position. Method invocation
new C(ē).m(d̄) first looks up mbody(m, C) and obtains a pair of a sequence of formal arguments x̄ and
the method body; then, it reduces to the method body in which x̄ are replaced with the actual arguments
d̄ and this with the receiver new C(ē). We write [d̄/x̄, e/y]e0 to stand for the result of replacing x1

by d1, . . . , xn by dn , and y by e in the expression e0.
The reduction rules may be applied at any point in an expression, so we also need the obvious

congruence rules (if e→ e′ then e.f→ e′.f, and the like), which also appear in the figure.
For example, given the class definitions

class A extends Object { A() { super(); } }
class B extends Object { B() { super(); } }

class Pair extends Object {
Object fst; Object snd;
Pair(Object fst, Object snd) {
super(); this.fst=fst; this.snd=snd;

}
Pair setfst(Object newfst) {
return new Pair(newfst, this.snd);

}
}
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the expression new Pair(new A(), new B()).setfst(new B()) reduces to new Pair(new B(),
new B()) as follows

new Pair(new A(), new B()).setfst(new B())
−→ new Pair(new B(), new Pair(new A(), new B()).snd)
−→ new Pair(new B(), new B())

where the underlined subexpressions are the ones being reduced at each step.

2.3. Typing

The typing rules for expressions, method declarations, and class declarations are in Fig. 5. An
environment � is a finite mapping from variables to types, written x̄ : C̄ .

The typing judgment for expressions has the form � � e∈ C, read “in the environment �, expression
e has type C.” The typing rules are syntax directed, with one rule for each form of expression. The
typing rules for constructor–method invocations check that each actual parameter has a type which is
a subtype of the corresponding formal. We abbreviate typing judgments on sequences in the obvious
way, writing � � ē∈ C̄ as shorthand for � � e1 ∈ C1, . . . , � � en ∈ Cn and writing C̄ <: D̄ as shorthand
for C1 <: D1, . . . , Cn <: Dn .

The typing judgment for method declarations has the form M OK IN C, read “method declara-
tion M is ok if it occurs in class C.” It uses the expression typing judgment on the body of the
method, where the free variables are the parameters of the method with their declared types, plus
the special variable this with type C. (Thus, a method with a parameter of name this is not al-
lowed as the type environment is ill formed.) In case of overriding, if a method with the same
name is declared in a superclass then the two methods must have the same argument and result
types.

Expression typing:

� � x∈ �(x) (T-VAR)

� � e0 ∈ C0 fields(C0) = C̄ f̄

� � e0.fi ∈ Ci
(T-FIELD)

� � e0 ∈ C0 mtype(m, C0) = D̄→C � � ē∈ C̄ C̄ <: D̄

� � e0.m(ē)∈ C
(T-INVK)

fields(C0) = D̄ f̄ � � ē∈ C̄ C̄ <: D̄

� � new C0(ē)∈ C0
(T-NEW)

Method typing:

x̄ : C̄, this : C � e0 ∈ E0 E0 <: C0

CT(C) = class C extends D {...}

if mtype(m, D) = D̄→ D0, then C̄ = D̄ and C0 = D0

C0 m(C̄ x̄){ return e0; } OK IN C
(T-METHOD)

Class typing:

K = C(D̄ ḡ, C̄ f̄){ super(ḡ); this.f̄=f̄; }

fields(D) = D̄ ḡ M̄ OK IN C

class C extends D {C̄ f̄; K M̄} OK
(T-CLASS)

FIG. 5. FJ: typing rules.
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The typing judgment for class declarations has the form L OK, read “class declaration L is ok.” It checks
that the constructor applies super to the fields of the superclass and initializes the fields declared in
this class and that each method declaration in the class is ok.

2.4. Properties

FJ is type sound, shown by the following subject reduction and progress properties [12].

THEOREM 2.1 (Subject reduction). If � � e∈ C and e → e′, then � � e′ ∈ C ′ for some C ′ <: C.

THEOREM 2.2 (Progress). Suppose e is a well-typed expression.

1. If e includes new C0(ē).f as a subexpression, then fields(C0) = C̄ f̄ and f∈ f̄.

2. If e includes new C0(ē).m(d̄) as a subexpression, then mbody(m, C0) = (x̄, e0) and #(x̄) =
#(d̄).

THEOREM 2.3 (FJ type soundness). If ∅ � e∈ C and e →∗ e′ with e′ being a normal form, then e′

is a value v, given by the syntax v ::= new C(v̄), and ∅ � v∈ D for some D such that D <: C.

3. FJ WITH INNER CLASSES

We now define the language FJI by extending FJ with inner classes. Like FJ, FJI imposes some syn-
tactic restrictions: (1) receivers of field access, method invocation, or inner class constructor invocation
must be explicitly specified (no implicit this); (2) type names are always absolute paths to the classes
they denote (no short abbreviations); and (3) an inner class instantiation expression e0.new C(ē) is
annotated with the static type T of e0, written e0.new T.C(ē). Because of the conditions (2) and (3),
FJI is not quite a subset of Java (whereas FJ is). Rather, FJI should be viewed as an intermediate language
that we use to define a formal semantics and type system separately from dealing with the syntactic
complications found in Java proper. As we mentioned in Section 1, to bridge the syntactic gap between
FJI and Java, we will later define (in Section 5) a more Java-like external language and an elaboration
function mapping from the external language to FJI. For the moment, we focus our attention on the
intermediate language, describing the external language and the elaboration process only informally.

We begin with a brief discussion of the key idea of enclosing instances.

3.1. Enclosing Instances

Consider the following FJI class declaration:

class Outer extends Object {
Pair p;
Outer(Pair p) {super(); this.p = p;}
class Inner extends Object {
Inner() {super();}
Object snd_p() { return Outer.this.p.snd; }

}
Outer.Inner make_inner() { return this.new Outer.Inner(); }

}

Conceptually, each instance o of the class Outer contains a specialized version of the Inner class,
which, when instantiated, yields instances of Outer.Inner that refer to o’s instance variable p. The
object o is called the enclosing instance of these Outer.Inner objects.

This enclosing instance can be named explicitly by a “qualified this” expression (found in both Java
and FJI), consisting of the simple name of the enclosing class followed by “.this”. In general, the
class C1. · · · .Cn can refer to n − 1 enclosing instances, C1.this to Cn−1.this, as well as the usual
this, which can also be written Cn.this. To avoid ambiguity of the meaning of C.this, the name of
an inner class must be different from any of its enclosing classes.
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In FJI, an object of an inner class is instantiated by an expression of the form e0.new T.C(ē), where
e0 is the enclosing instance and T is the static type of e0. The result of e0.new T.C(ē) is always an
instance of T.C, regardless of the run-time type of e0. (Java allows only the notations e0.new C(ē)
(omitting the type of e0) and new T.C(ē) (without a prefix); the latter roughly means an instantiation
from the class T.Cwith an enclosing instance of the class T; see Section 5 for more details.) This rigidity
reflects the static nature of Java’s translation semantics for inner classes. The explicit annotation T is
used in FJI to “remember” the static type of e0. (By contrast, inner classes in Beta can be virtual [16];
i.e., different constructors may be invoked depending on the run-time type of the enclosing instance.
For example, if Inner was declared virtual and there were a subclass Outer′ of the class Outer that
also had an inner class Inner, then o.new Inner() might build an instance of either Outer.Inner
or Outer′.Inner, depending on the dynamic type of o.)

The elaboration process allows type names to be abbreviated in user programs. For example, the FJI
program above can be written

class Outer extends Object {
Pair p;
Outer(Pair p) {super(); this.p = p;}
class Inner extends Object {
Inner() {super();}
Object snd_p() { return p.snd; }

}
Inner make_inner() { return new Inner(); }

}

in the external language described in Section 5 (and in Java, which includes the external language).
Here, the return type Inner of the make_inner method denotes the nearest Inner declaration.
Also, in Java, enclosing instances can be omitted when they are this or a qualified this. Thus,
this.new Outer.Inner() from the original example is written new Inner() here.

3.2. Subclassing and Inner Classes

Almost any form of inheritance involving inner classes is allowed in Java (and FJI): a top-level class
can extend an inner class of another top-level class or an inner class can extend another inner class
from a completely different top-level class. An inner class can even extend its own enclosing class.
(Only one case is disallowed: a class cannot extend its own inner class. We discuss the restriction
later.) This liberality, however, introduces significant complexity because a method inherited from a
superclass must be executed in a “lexical environment” different from the subclass’s. Figure 6 shows a
situation where three inner classes, A1.A2.A3 and B1.B2.B3 and C1.C2.C3, are in a subclass hierarchy.
Each white oval represents an enclosing instance and the three shaded ovals indicate the regions of the

FIG. 6. A chain of environments.
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program where the methods of a C1.C2.C3 object may have been defined. A method inherited from
A1.A2.A3 is executed under the environment consisting of enclosing instances A1.this and A2.this
and may access members of enclosing classes via A1.this and A2.this; similarly for B1.B2.B3 and
C1.C2.C3. In general, when a class has n superclasses which are inner, n different environments may be
accessed by its methods. Moreover, each environment may consist of more than one enclosing instance;
six enclosing instances are required for all the methods of C1.C2.C3 to work in the example above.

From the foregoing, we see that we will have to provide, in some way, six enclosing instances to
instantiate a C1.C2.C3 object. Recall that, when an object of an inner class is instantiated, the enclosing
object is provided by a prefix e0 of the new expression. For example, a C1.C2.C3 object is instantiated by
writing e0.new C1.C2.C3(ē), where e0 is the enclosing instance corresponding to C2.this. Where
do the other enclosing instances come from?

First, enclosing instances from enclosing classes other than the immediately enclosing class, such as
C1.this, do not have to be supplied to a new expression explicitly, because they can be reached via
the direct enclosing instance—for example, the enclosing instance e0 in e0.new C1.C2.C3(ē) has the
form new C1(c̄).new C1.C2(d̄), which includes the enclosing instance new C1(c̄) that corresponds
to C1.this.

Second, the enclosing instances of superclasses are determined by the constructor of a subclass.
Taking a simple example, suppose we extend the inner class Outer.Inner. An enclosing instance
corresponding to Outer.this is required to make an instance of the subclass. Here is an example of a
subclass of Outer.Inner, written in FJI:

class RefinedInner extends Outer.Inner {
Object c;
RefinedInner(Outer this$Outer$Inner, Object c) {
this$Outer$Inner.super(); this.c=c; }

}

In the declaration of the constructor, the ordinary argument this$Outer$Inner becomes the enclosing
instance prefix for the super constructor invocation, providing the value of Outer.this referred to in
the inherited method snd_p. Similarly, in the C1.C2.C3 example, the subclass B1.B2.B3 is written as
follows (we assume A1.A2.A3 has a field a3 of type Object):

class B1 extends ... { ...
class B2 extends ... { ...
class B3 extends A1.A2.A3 {
Object b3;
B3(Object a3, A1.A2 this$A1$A2$A3, Object b3) {

this$A1$A2$A3.super(a3); this.b3 = b3; }
}}}

Note that, since an enclosing instance corresponding to A1.this is included in an enclosing instance
corresponding to A2.this, the B3 constructor takes only one extra argument for enclosing instances.
Here is C1.C2.C3 class:

class C1 extends ... { ...
class C2 extends ... { ...
class C3 extends B1.B2.B3 {
Object c3;
C3(Object a3, A1.A2 this$A1$A2$A3,

Object b3, B1.B2 this$B1$B2$B3, Object c3) {
this$B1$B2$B3.super(a3, this$A1$A2$A3, b3); this.c3 = c3; }

}}}

Since the constructor of a superclass B1.B2.B3 initializes A2.this, the constructor C3 initializes only
B2.this by qualifying the super invocation; the argument this$A1$A2$A3 is just passed to super
as an ordinary argument.
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In FJI, we restrict the qualification of super to be a constructor argument, whereas, in Java, which also
supports qualified super, the qualification can be any expression (or even be omitted). This permits the
same clean definition of operational semantics we saw in FJ, since all the state information (including
fields and enclosing instances) of an object appears in its new expression. Moreover, for technical
reasons connected with the name mangling involved in the translation semantics, we require that a
constructor argument used for qualification of super be named this$C1$ · · · $Cn , where C1. · · · .Cn is
the (direct) superclass, as in the example above. (Note that the enclosing instance of type C1. · · · .Cn−1

is given the mangled variable name this$C1$ · · · $Cn . This naming convention avoids more than one
occurrence of the same variable in constructor arguments: a (possibly) more intuitive convention that
gives this$C1$ · · · $Cn−1 may not work because one class may have, as its superclasses, two inner
classes defined in the same class.)

Lastly, we can now explain why it is not allowed for a class to extend one of its (direct or indirect)
inner classes. It is because there is no sensible way to make an instance of such a class. Suppose we
could define the class below:

class Foo extends Foo.Bar {
Foo(Foo f) { f.super(); }
class Bar { ... }

}

Since Foo extends Foo.Bar, the constructor Foo will need an instance of Foo itself as an argument,
making it impossible to make an instance of Foo. (Perhaps, in Java, one could use null as the enclosing
instance in this case, but this would not be useful, since inner classes are usually supposed to make use
of enclosing instances.)

3.3. Syntax

Now, we proceed to the formal definitions of FJI. The abstract syntax of the language is shown in
Fig. 7. We use the same notational conventions as in the previous section. Besides, the metavariables S,
T, U, and V range over types, which are qualified class names (a sequence of simple names C1, . . . ,Cn

concatenated by periods). For compactness in the definitions, we introduce the notation � for a “null
qualification” and identify �.C with C. The metavariable P ranges over types (T) and �. We write C∈ P
if P = C1. · · · .Cn and C = Ci for some i .

A class declaration L includes declarations of its simple name C, superclass T, fields T̄ f̄, constructor
K, inner classes L̄, and methods M̄. There are two kinds of constructor declaration, depending on whether
the superclass is inner or top-level: when the superclass is inner, the subclass constructor must call
the super constructor with a qualification “f.” to provide the enclosing instance visible from the
superclass’s methods. As we will see in typing rules, constructor arguments should be arranged in the
following order: (1) the superclass’s fields, initialized by super(f̄) (or f.super(f̄)); (2) the enclosing
instance for the direct superclass (if needed); and (3) the fields of the class to be defined, initialized by
this.f̄=f̄. Like FJ, the body of a method just returns an expression, which is a variable, field access,
method invocation, or object instantiation. We assume that the set of variables includes the special
variables this and C.this for every C; the typing rules guarantee that these variables are never used
as the names of arguments to methods.

T ::= C1. · · · .Cn

L ::= class C extends T {T̄ f̄; K L̄ M̄}

K ::= C(T̄ f̄){ super(f̄); this.f̄ = f̄; }

| C(T̄ f̄){ f.super(f̄); this.f̄ = f̄; }

M ::= T m(T̄ x̄){ return e; }

e ::= x | e.f | e.m(ē) | new C(ē) | e.new T.C(ē)

FIG. 7. FJI: syntax.
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T <: T
S <: T T <: U

S <: U

CT(S) = class C extends T {...}

S <: T

FIG. 8. FJI: subtyping rules.

A program is a pair of a class table CT (a mapping from types T to class declarations L) and an
expression e. The type Object is treated exactly in the same way as in FJ. From the class table, we can
read off the subtype relation between classes. We write S <: T when S is a subtype of T—the reflexive
and transitive closure of the immediate subclass relation given by the extends clauses in CT. This
relation is defined formally in Fig. 8.

We impose the following sanity conditions on the class table: (1) CT(P.C) = class C ... for
every P.C∈ dom(CT); (2) if CT(P.C) has an inner class declaration L of name D, then CT(P.C.D) = L;
(3) Object /∈ dom(CT); (4) for every type T (except Object) appearing anywhere in CT , we have
T∈ dom(CT); (5) for every e0.new T.C(ē) (and new C(ē), resp.) appearing anywhere in CT , we
have T.C∈ dom(CT) (and C∈ dom(CT), resp.); (6) there are no cycles in the subtyping relation and (7)
T �<: T.U, for any two types T and T.U. By the conditions (1) and (2), a class table of FJI can be identified
with a set of top-level classes. The condition (7) prohibits a class from extending one of its inner
classes.

3.4. Auxiliary Functions

For the typing and reduction rules, we need a few auxiliary definitions, given in Fig. 9. The fields of
a type T0, written fields(T0), is a sequence T̄ f̄ pairing the type of each field with its name, for all the
fields declared in class T0 and all of its superclasses. In addition, fields(T0) collects the types of (direct)
enclosing instances of all the superclasses of T0. For example, fields(C1.C2.C3) returns the following
sequence:

fields(C1.C2.C3) =
Object a3, (the field from A1.A2.A3)
A1.A2 this$A1$A2$A3, (the enclosing instance bound to A2.this)
Object b3, (the field from B1.B2.B3)
B1.B2 this$B1$B2$B3, (the enclosing instance bound to B2.this)
Object c3 (the field from C1.C2.C3)

The third rule in the definition inserts enclosing instance information between the fields S̄ ḡ of the
superclass U.D and the fields T̄ f̄ of the current class. In a well-typed program, fields(T0) will always
agree with the constructor argument list of T0.

The type of the method m in class T, written mtype(m, T), is a pair, written S̄→ S0, of a sequence of
argument types S̄ and a result type S0. Similarly, the body of the method m in class T, written mbody(m, T),
is a triple, written (x̄, e, S), of a sequence of parameters x̄, an expression e, and a class S; the class S
denotes where the method is defined.

The function enclT(e) plays a crucial role in the semantics of FJI. Intuitively, when e is a top-level or
inner class instantiation, enclT(e) returns the direct enclosing instance of e that is visible from class T
(i.e., the enclosing instance that provides the correct lexical environment for methods inherited from T);
thus, enclT.C(e) is an expression of typeT (or its subtype). The first rule is the simplest case: since the type
of an expression e0.new T.C(ē) agrees with the subscript T.C, it just returns the (direct) enclosing
instance e0. The other rules follow a common pattern; we explain the fifth rule as a representative.
Since the subscripted type T is different from the type S.C of the argument e0.new S.C(d̄, d0, ē),
the enclosing instance e0 is not the correct answer. We therefore make a recursive call with an object
d0.new U.D(d̄) of the superclass obtained by dropping e0 and as many arguments ē as the fields f̄
of the class S.C. We keep going like this until, finally, the argument becomes an instance of T and we
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Field lookup:

fields(Object) = •

CT(T) = class C extends D {T̄ f̄; K L̄ M̄} fields(D) = S̄ ḡ

fields(T) = S̄ ḡ, T̄ f̄

CT(T) = class C extends U.D {T̄ f̄; K L̄ M̄} fields(U.D) = S̄ ḡ

U = C1. · · · .Cn f0 = this$C1$ · · · $Cn$D

fields(T) = S̄ ḡ, U f0, T̄ f̄

Method type lookup:

CT(T) = class C extends S {S̄ f̄; K L̄ M̄}

U0 m(Ū x̄){ return e; }∈ M̄

mtype(m, T) = Ū→ U0

CT(T) = class C extends S {S̄ f̄; K L̄ M̄} m is not defined in M̄

mtype(m, T) = mtype(m, S)

Method body lookup:

CT(T) = class C extends S {S̄ f̄; K L̄ M̄}

U0 m(Ū x̄){ return e; }∈ M̄

mbody(m, T) = (x̄, e, T)

CT(T) = class C extends S {S̄ f̄; K L̄ M̄} m is not defined in M̄

mbody(m, T) = mbody(m, S)

Enclosing instance lookup:

enclT.C(e0.new T.C(ē)) = e0

CT(C) = class C extends D {S̄ f̄;...} #(f̄) = #(ē)

enclT(new C(d̄, ē)) = enclT(new D(d̄))

CT(C) = class C extends U.D {S̄ f̄;...} #(f̄) = #(ē)

enclT(new C(d̄, d0, ē)) = enclT(d0.new U.D(d̄))

T �= S.C CT(S.C) = class C extends D {S̄ f̄;...} #(f̄) = #(ē)

enclT(e0.new S.C(d̄, ē)) = enclT(new D(d̄))

T �= S.C CT(S.C) = class C extends U.D {S̄ f̄;...} #(f̄) = #(ē)

enclT(e0.new S.C(d̄, d0, ē)) = enclT(d0.new U.D(d̄))

FIG. 9. FJI: auxiliary definitions.

match the first rule. For example:

enclA1.A2.A3(e0.new C1.C2.C3(a, e1, b, e2, c))
= enclA1.A2.A3(e2.new B1.B2.B3(a, e1, b))
= enclA1.A2.A3(e1.new A1.A2.A3(a))
= new A1().new A1.A2()

(where e1 = new A1().new A1.A2()
and e2 = new B1().new B1.B2().)
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Computation:

fields(C) = T̄ f̄

new C(ē).fi → ei
(RI-FIELDT)

fields(T.C) = T̄ f̄

e0.new T.C(ē).fi → ei
(RI-FIELDI)

mbody(m, C) = (x̄, d0, C1. · · · .Cn)

cn
def= new C(ē) ci

def= enclC1.···.Ci+1 (ci+1) i∈1...n−1

new C(ē).m(d̄)→
[
d̄/x̄, cn/this,

ci/Ci.this
i∈1...n

]
d0

(RI-INVKT)

mbody(m, T.C) = (x̄, d0, C1. · · · .Cn)

cn
def= e0.new T.C(ē) ci

def= enclC1.···.Ci+1 (ci+1) i∈1...n−1

e0.new T.C(ē).m(d̄)→
[
d̄/x̄, cn/this,

ci/Ci.this
i∈1...n

]
d0

(RI-INVKI)

Congruence:

e0 → e0
′

e0.f→ e0
′.f

(RCI-FIELD)
e0 → e0

′

e0.m(ē)→ e0
′.m(ē)

(RCI-INVRECV)

ei → ei
′

e0.m( . . . ,ei, . . . )→ e0.m( . . . ,ei
′, . . . )

(RCI-INVARG)

ei → ei
′

new C( . . . ,ei, . . . )→ new C( . . . ,ei
′, . . . )

(RCI-TOPARG)

e0 → e0
′

e0.new T.C(ē)→ e0
′.new T.C(ē)

(RCI-INNERENC)

ei → ei
′

e0.new T.C( . . . ,ei, . . . )→ e0.new T.C( . . . ,ei
′, . . . )

(RCI-INNERARG)

FIG. 10. FJI: reduction rules.

Note that the encl function outputs only the direct enclosing instance. To obtain outer enclosing instances,
such as A1.this, encl can be used repeatedly: enclA1.A2(enclA1.A2.A3(e)).

3.5. Computation

As in FJ, the reduction relation of FJI has the form e→ e′. We write →∗ for the reflexive and tran-
sitive closure of → and →+ for the transitive closure of →. The reduction rules are given in Fig. 10.
There are four reduction rules, two for field access and two for method invocation. The field access
expression new C(ē).fi looks up the field names f̄ of C using fields(C) and yields the constructor
argument ei in the position corresponding to fi in the field list; e0.new T.C(ē).fi behaves similarly.
The method invocation expression new C(ē).m(d̄) first calls mbody(m, C) to obtain a triple of the
sequence of formal arguments x̄, the method body e, and the class C1. · · · .Cn where m is defined; it
yields a substitution instance of the method body in which the x̄ are replaced with the actual argu-
ments d̄, the special variables this and Cn.this with the receiver object new C(ē), and each Ci.this
(for i < n) with the corresponding enclosing instance ci , obtained from encl. Since the method to be
invoked is defined in C1. · · · .Cn , the direct enclosing instance Cn−1.this is obtained by enclC1.···.Cn (e),
where e is the receiver object; similarly, Cn−2.this is obtained by enclC1.···.Cn−1 (enclC1.···.Cn (e)), and
so on. The reduction rules may be applied at any point in an expression, so we also need the obvious
congruence rules (if e→ e′ then e.f→ e′.f, and the like), which also appear in the figure.
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For example, if the class table includes Outer, RefinedInner, Pair, A, and B, then

new RefinedInner(
new Outer(new Pair(new A(), new B())), new Object()).snd_p()

reduces to new B() as follows:

new RefinedInner(
new Outer(new Pair(new A(), new B())), new Object()).snd_p()

−→ new Outer(new Pair(new A(), new B())).p.snd
−→ new Pair(new A(), new B()).snd
−→ new B()

3.6. Typing

The typing rules for expressions, method declarations, and class declarations are given in Fig. 11.
An environment � is a finite mapping from variables to types, written x̄ : T̄. The typing judgment

Expression typing:

�(x) = T

� � x∈ T
(TI-VAR)

� � e0 ∈ T0 fields(T0) = T̄ f̄

� � e0.fi ∈ Ti
(TI-FIELD)

� � e0 ∈ T0 mtype(m, T0) = Ū→U0 � � ē∈ S̄ S̄ <: Ū

� � e0.m(ē)∈ U0
(TI-INVK)

fields(C) = T̄ f̄ � � ē∈ S̄ S̄ <: T̄

� � new C(ē)∈ C
(TI-NEWTOP)

fields(T.C) = T̄ f̄

� � e0 ∈ S S <: T � � ē∈ S̄ S̄ <: T̄

� � e0.new T.C(ē)∈ T.C
(TI-NEWINNER)

Method typing:

x̄ : T̄, this : C1. · · · .Cn,

Ci.this : C1. · · · .Ci
i∈1...n � e0 ∈ S0 S0 <: T0

CT(C1. · · · .Cn) = class Cn extends S {...}

if mtype(m, S) = Ū→ U0, then Ū = T̄ and U0 = T0

T0 m(T̄ x̄){ return e0; } OK IN C1. · · · .Cn
(TI-METHOD)

Class typing:

K = C(S̄ ḡ, T̄ f̄){ super(ḡ); this.f̄ = f̄; }

C �∈ P fields(D) = S̄ ḡ M̄ OK IN P.C L̄ OK IN P.C

class C extends D {T̄ f̄; K L̄ M̄} OK IN P
(TI-EXTTOP)

K = C(S̄ ḡ, T g0, T̄ f̄){ g0.super(ḡ); this.f̄ = f̄; }

C �∈ P fields(T.D) = S̄ ḡ M̄ OK IN P.C L̄ OK IN P.C

class C extends T.D {T̄ f̄; K L̄ M̄} OK IN P
(TI-EXTINNER)

FIG. 11. FJI: typing rules.
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for expressions has the form � � e∈ T, read “in the environment �, expression e has type T.” The
typing rules are syntax directed, with one rule for each form of expression. The typing rules for object
instantiations and method invocations check that each actual parameter has a type which is a subtype
of the corresponding formal parameter type obtained by fields or mtype; the enclosing object must
have a type which is a subtype of the annotated type T in new T.C(ē). We abbreviate sequences of
typing or subtyping judgments in the obvious way, writing � � ē∈ T̄ as shorthand for � � e1 ∈ T1, . . . ,
� � en ∈ Tn and S̄ <: T̄ as shorthand for S1 <: T1, . . . , Sn <: Tn .

The typing judgment for method declarations has the form M OK IN C1. · · · .Cn , read “method
declaration M is ok if it is declared in class C1. · · · .Cn .” The body of the method is typed under the
context in which the formal parameters of the method have their declared types and each Ci.this has
the type C1. · · · .Ci . (Thus, as in FJ, a method with a parameter of name this or C.this is rejected as
the type environment is ill formed.) If a method with the same name is declared in the superclass then
it must have the same type in the subclass.

The typing judgment for class declarations has the form L OK IN P, read “class declaration L is
ok if it is declared in P.” If P is a type T, the class declaration L is an inner class; otherwise, L
is a top-level class. The typing rules check that the constructor applies super to the fields of the
superclass and initializes the fields declared in this class, and that each method declaration and inner
class declaration in the class is ok. The condition C /∈ P ensures that the (simple) class name to be defined
is not also a simple name of one of the enclosing classes, so as to avoid ambiguity of the meaning of
C.this.

3.7. Properties

As well as FJ programs, FJI programs also enjoy standard subject reduction (Theorem 3.1) and
progress properties (Theorem 3.2), which together guarantee that a well-typed (closed) program never
gets stuck on field accesses or method invocations and yields a fully evaluated value of an appropriate
type (Theorem 3.3).

THEOREM 3.1 (Subject reduction). If � � e∈ T and e→ e′, then � � e′ ∈ T′ for some T′ such that
T ′ <: T.

THEOREM 3.2 (Progress). Suppose e is a well-typed expression.

1. If e includes new C0(ē).f as a subexpression, then fields(C0) = T̄ f̄ and f∈ f̄. Similarly, if
e includes e0.new T0.C(ē).f as a subexpression, then fields(T0.C) = T̄ f̄ and f∈ f̄.

2. If e includes new C0(ē).m(d̄) as a subexpression, then mbody(m, C0) = (x̄, e0, C1. · · · .Cn)
with #(x̄) = #(d̄) and c1, . . . , cn appearing in the rule RI-INVKT are well defined. Similarly, if e
includes e0.new T0.C(ē).m(d̄) as a subexpression, then mbody(m, T0.C) = (x̄, d0, C1. · · · .Cn) with
#(x̄) = #(d̄) and c1, . . . , cn appearing in the rule RI-INVKI are well defined.

THEOREM 3.3 (FJI type soundness). If ∅ � e∈ T and e →∗ e′ with e′ being a normal form, then e′

is a value v, given by the syntax v ::= new C(v̄) | v.new T.C(v̄), such that ∅ � v∈ S for some type
S with S <: T.

Proof. Immediate from Theorems 3.1 and 3.2.

We develop proofs of Theorems 3.1 and 3.2 below. In what follows, the underlying class table is
assumed to be ok.

LEMMA 3.1. If � � e∈ T, then �, x̄ : T̄ � e∈ T.

Proof. By straightforward induction on the derivation of � � e∈ T.

LEMMA 3.2. If mtype(m, T) = Ū→ U0, then mtype(m, S) = Ū→ U0 for all S <: T.

Proof. Straightforward induction on the derivation of S <: T.

LEMMA 3.3. If � � new C(ē)∈ T and T <: U.D, then � � enclU.D(new C(ē)) ∈ S for some S such
that S <: U. Similarly, if � � e0.new T0.C(ē)∈ T and T <: U.D, then � � enclU.D(e0.new T0.C(ē)) ∈
S for some S such that S <: U.
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Proof. Both parts are proved simultaneously by induction on the derivation of T <: U.D.

Case. T = U.D
The assumption � � new C(ē)∈ T of the first part never holds. As for the second part, by the rule
TI-NEWINNER, we have

T0 = U C = D
� � e0 ∈ S0 S0 <: T0 fields(T0) = T̄ f̄
� � ē∈ S̄ S̄ <: T̄

Since enclU.D(e0.new T0.C(ē)) = e0, letting S = S0 finishes the case.

Case. CT(T) = class C extends U.D {Ū ḡ; ...}
We have two subcases depending on whether T is a simple name or not. We show only the subcase where
T = C as a representative case since the other case is similar. It suffices to show the first part where we
have � � new C(ē)∈ C. (We never have � � e0.new T0.C(ē)∈ C.) By the rule TI-NEWTOP, we have

fields(C) = T̄ f̄ � � ē∈ S̄ S̄ <: T̄

Also, by the third rule in the definition of fields, we have

T̄ f̄ = fields(U.D), U this$C1$ · · · $Cn$D, Ū ḡ

where U = C1. · · · .Cn . Let ē = d̄, d0, c̄ where #(c̄) = #(ḡ). Then, � � d0 ∈ S for some S and S <: U.
On the other hand, by definition,

enclU.D(new C(d̄, d0, c̄)) = enclU.D(d0.new U.D(d̄)) = d0.

finishing the case.

Case. T <: S S <: U.D
We have four subcases depending on whether S is a simple name and whether T is a simple name. We
show the case where T = C and S = E for some C and E; the other cases are similar.

Since � � new C(ē)∈ C, it is easy to show that � � new E(d̄)∈ E for some d̄ such that ē = d̄, . . . .
By the induction hypothesis, � � enclU.D(new E(d̄)) ∈ V for some V such that V <: U. By induction on
the derivation of C <: E, it is easy to show that enclU.D(new E(d̄)) = enclU.D(new C(ē)), finishing the
subcase.

LEMMA 3.4 (Term substitution). If �, x̄ : Ū � e∈ T and � � d̄∈ T̄ where T̄ <: Ū, then � � [d̄/x̄]e∈ S
and S <: T.

Proof. By induction on the derivation of �, x̄ : Ū � e∈ T.

Case TI-VAR. e = y T = �(y)
The subcase y /∈ x̄ is trivial since [d̄/x̄]y = y. On the other hand, if y = xi and T = Ui , then, since
[d̄/x̄]y = di , letting S = Ti finishes the case.

Case TI-FIELD. e = e0.fi T = Si �, x̄ : Ū � e0 ∈ T0

fields(T0) = S̄ f̄

By the induction hypothesis, we have some S0 such that � � [d̄/x̄]e0 ∈ S0 and S0 <: T0. It is easy to
show that

fields(S0) = fields(T0), T̄ ḡ

for some T̄ ḡ. Therefore, by the rule TI-FIELD, � � ([d̄/x̄]e0).fi ∈ Si .
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Case TI-INVK. e = e0.m(ē) �, x̄ : Ū � e0 ∈ T0

mtype(m, T0) = V̄→ T
�, x̄ : Ū � ē∈ T̄ T̄ <: V̄

By the induction hypothesis, we have some S0 and S̄ such that

� � [d̄/x̄]e0 ∈ S0 S0 <: T0

� � [d̄/x̄]ē∈ S̄ S̄ <: T̄

By Lemma 3.2, mtype(m, S0) = V̄→ T. Moreover, S̄ <: V̄ by transitivity of <:. Therefore, by the rule
TI-INVK, � � [d̄/x̄]e0.m([d̄/x̄]ē)∈ T.

Case TI-NEWTOP. e = new C(ē) fields(C) = T̄ f̄ �, x̄ : Ū � ē∈ S̄
S̄ <: T̄

By the induction hypothesis, we have V̄ such that � � [d̄/x̄]ē∈ V̄ and V̄ <: S̄. Moreover V̄ <: T̄, by
transitivity of <:. Therefore, by the rule TI-NEWTOP, � � new C([d̄/x̄]ē)∈ C.

The case for TI-NEWINNER is similar.

LEMMA 3.5. If mtype(m, T) = Ū→ U0 and mbody(m, T) = (x̄, e0, C1. · · · .Cn), then T <: C1. · · · .Cn

and x̄ : Ū, this : C1. · · · .Cn, Ci.this : C1. · · · .Ci
i∈1...n � e0 ∈ T0 for some T0 such that T0 <: U0.

Proof. By induction on the derivation of mbody(m, T). The base case (where m is defined in T and
T = C1. · · · .Cn) is easy since x̄ : Ū, this : C1. · · · .Cn, Ci.this : C1. · · · .Ci

i∈1...n � e∈ T0 for some
T0 such that T0 <: U0 by TI-METHOD. The case for induction step is also straightforward.

Proof of Theorem 3.1. By induction on a derivation of e → e′, with a case analysis on the reduction
rule used.

Case RI-FIELDT. e = new C0(ē).fi fields(C0) = T̄ f̄ e′ = ei

By the rule TI-FIELD, we have

� � new C0(ē)∈ T0 T = Ti

for some T0. Then, by the rule TI-NEWTOP,

� � ē∈ S̄ S̄ <: T̄ T0 = C0

In particular, � � ei ∈ Si , finishing the case since Si <: Ti .

Case RI-FIELDI. Similar to the case for RI-FIELDT.

Case RI-INVKT. e = new C0(ē).m(d̄)
mbody(m, C0) = (x̄, e0, C1. · · · .Cn)

ci =
{
new C0(ē) (i = n)
enclC1.···.Ci+1 (ci+1) (i ∈ 1 . . . n − 1)

e′ = [d̄/x̄, cn/this, ci/Ci.this i∈1...n]e0

By the rules TI-INVK and TI-NEWTOP, we have

� � new C0(ē)∈ C0 � � d̄∈ S̄ S̄ <: T̄ mtype(m, C0) = T̄→ T

By Lemma 3.5,

x̄ : T̄, this : C1. · · · .Cn, Ci.this : C1. · · · .Ci
i∈1...n � e0 ∈ S0

where S0 <: T and C0 <: C1. · · · .Cn . By Lemma 3.1,
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�, x̄ : T̄, this : C1. · · · .Cn, Ci.this : C1. · · · .Ci
i∈1...n � e0 ∈ S0.

By using the fact that C0 <: C1. · · · .Cn and Lemma 3.3 repeatedly, we have Ū such that � � ci ∈ Ui and
Ui <: C1. · · · .Ci for i ∈ 1 . . . n. Then, by Lemma 3.4,

� � [d̄/x̄, cn/this, ci/Ci.this
i∈1...n]e0 ∈ U0

for some U0 <: S0. Finally, letting T′ = U0 finishes this case.

Case RI-INVKI. Similar to the case RI-INVKT.

Cases for congruence rules (RCI-· · ·) are straightforward.

Proof of Theorem 3.2.

1. If e has new C0(ē).f (or e0.new T0.C(ē).f) as a subexpression, then, by well-typedness
of the subexpression, it’s easy to check that fields(C0) (or fields(T0.C)) is well defined and f appears
in it.

2. If e has new C0(ē).m(d̄) as a subexpression, then, it is also easy to show mbody(m, C) =
(x̄, e0, C0. · · · .Cn) and #(x̄) = #(d̄) from the fact that mtype(m, C) = D̄→ D where #(x̄) = #(D̄). Finally,
by Lemma 3.3, enclC1.···.Cn (new C0(ē)), . . . , enclC1 (· · · enclC1.···.Cn (new C0(ē)) · · ·) are well defined.
Similarly for a subexpression of the form e0.new T0.C(ē).m(d̄).

4. TRANSLATION SEMANTICS

In this section we consider the other style of semantics: translation from FJI to FJ. Every inner
class is compiled to a top-level class with one additional field holding a reference to the direct enclosing
instance; occurrences of qualified this are translated into accesses to this field. For example, the Outer
and RefinedInner classes in the previous section are compiled to the following three FJ classes.

class Outer extends Object {
Pair p;
Outer(Pair p) { super(); this.p = p; }
Outer$Inner make_inner() { return new Outer$Inner(this); }

}

class Outer$Inner extends Object {
Outer this$Outer$Inner;
Outer$Inner(Outer this$Outer$Inner) {
super(); this.this$Outer$Inner = this$Outer$Inner; }

Object snd_p() { return this.this$Outer$Inner.p.snd; }
}

class RefinedInner extends Outer$Inner {
Object c;
RefinedInner(Outer this$Outer$Inner, Object c) {
super(this$Outer$Inner); this.c = c;

}
}

The inner class Outer.Inner is compiled to the top-level class Outer$Inner; the field this$
Outer$Inner holds an Outer object, which corresponds to the direct enclosing instance Outer.
this in the original FJI program; thus, Outer.this is compiled to the field access expression
this.this$Outer$Inner.
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Compilation of types:

|C1. · · · .Cn| = C1$ · · · $Cn

Compilation of expressions:

|x|T = x

|e0.f|T = |e0|T .f

|e0.m(ē)|T = |e0|T .m( |ē|T )

|new C(ē)|T = new C( |ē|T )

|e0.new T.C(ē)|T = new |T.C| ( |ē|T , |e0|T )

|this|T = this

|Cn.this|C1.···.Cn
= this

|Ci.this|C1.···.Cn
= |Ci+1.this|C1.···.Cn

.this$C1$ · · · $Ci+1

(1 ≤ i ≤ n − 1)

Compilation of methods:

|T0 m(T̄ x̄) { return e; }|T = |T0| m( |T̄| x̄){ return |e|T ; }

FIG. 12. Compilation of expressions and methods.

We give a compilation function | · | for each syntactic category. Except for types, the compilation
functions take as their second argument the FJI class name (or, sometimes, �) where the entity being
translated is defined, written | · |T (or | · |�).

4.1. Compilation of Types, Expressions, and Methods

The compilation of types, written |T|, compilation of expressions, written |e|T, and compilation of
methods, written |M|T, are given in Fig. 12. We write |ē|T as shorthand for |e1|T , . . . , |en|T (and similarly
for |T̄|, |M̄|T, and |L̄|P).

First, every qualified class name is translated to a simple name obtained by syntactic replacement
of with $.

The compilation of expressions is fairly straightforward except for constructs relevant to inner classes.
As we saw above, a compiled inner class has one additional field, called this$ |T|, where T is the orig-
inal class name. Then, an enclosing instance e0 of e0.new T.C(ē) will become the last argument
of the compiled constructor invocation, while Ci.this in the class C1. · · · .Cn becomes an expres-
sion that follows references to the direct enclosing instance in sequence until it reaches the desired
one.

The compilation of methods is also straightforward; each type and the method body is compiled. We
use the notation |T̄| x̄ for |T1| x1, . . . , |Tn| xn .

4.2. Compilation of Constructors and Classes

Compilation of constructors, written |K|T, is given in Fig. 13. It has four cases, depending on whether
the constructor is for a top-level class or an inner class and whether its direct superclass is a top-level
class or an inner class. When the constructor is for an inner class, one more argument corresponding
to the enclosing instance is added to the argument list; the name of the constructor becomes |T.C|,
the translation of the qualified name of the class. When the direct superclass is inner (the second and
fourth cases), the argument used for the qualification of f.super(f̄) becomes the last argument of the
super() invocation.

Finally, the compilation of classes, written |L|P, is given also in Fig. 13. The constructor, inner
classes, and methods of class C defined in P are compiled with the auxiliary argument P.C. Inner
classes L̄ become top-level classes. As in constructor compilation, when the class being compiled is
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Compilation of constructors:

∣∣∣∣ C(S̄ ḡ, T̄ f̄)

{super(ḡ); this.f̄ = f̄;}

∣∣∣∣
C

= C( |S̄| ḡ, |T̄| f̄)

{super(ḡ); this.f̄ = f̄;}

∣∣∣∣ C(S̄ ḡ, S0 g0, T̄ f̄)

{g0.super(ḡ); this.f̄ = f̄;}

∣∣∣∣
C

= C( |S̄| ḡ, |S0| g0, |T̄| f̄)

{super(ḡ, g0); this.f̄ = f̄;}

∣∣∣∣ C(S̄ ḡ, T̄ f̄)

{super(ḡ); this.f̄ = f̄;}

∣∣∣∣
T.C

=
|T.C| ( |S̄| ḡ, |T̄| f̄,

|T| this$ |T.C| )
{super(ḡ); this.f̄ = f̄;

this.this$ |T.C| = this$ |T.C| ;}

∣∣∣∣ C(S̄ ḡ, S0 g0, T̄ f̄)

{g0.super(ḡ); this.f̄ = f̄;}

∣∣∣∣
T.C

=
|T.C| ( |S̄| ḡ, |S0| g0,

|T̄| f̄, |T| this$ |T.C| )
{super(ḡ, g0); this.f̄ = f̄;

this.this$ |T.C| = this$ |T.C| ;}

Compilation of classes:

|class C extends S {T̄ f̄; K L̄ M̄}|�
= class C extends |S| { |T̄| f̄; |K|C |M̄|C } |L̄|C
|class C extends S {T̄ f̄; K L̄ M̄}|T
= class |T.C| extends |S| { |T̄| f̄; |T| this$ |T.C| ; |K|T.C |M̄|T.C } |L̄|T.C

FIG. 13. Compilation of constructors and classes.

inner, its name changes to |T.C| and the field this$ |T.C|, holding an enclosing instance, is added. The
compilation of the class table, written |CT|, is achieved by compiling all top-level classes L̄ in CT (i.e.,
|L̄|�).

4.3. Properties of Translation Semantics

We develop three theorems here. First, the translation semantics preserves typing, in the sense that a
well-typed FJI program is compiled to a well-typed FJ program (Theorem 4.1). Second, we show that
the behavior of a compiled program exactly reflects the behavior of the original program in FJI: for
every step of reduction of a well-typed FJI program, the compiled program takes one or more steps and
reaches a corresponding state (Theorem 4.2) and vice versa (Theorem 4.3). In what follows, we use
subscripts FJ and FJI to show which set of rules is used.

THEOREM 4.1 (Compilation preserves typing). When � = x̄ : T̄, we write |�| for x̄ : |T̄|. If an FJI
class table CT is ok and x̄ : T̄, this : C1. · · · .Cn, Ci.this : C1. · · · .Ci

i∈1...n �FJI e∈ T with respect
to CT , then |CT| is ok and x̄ : |T̄|, this : |C1. · · · .Cn| �FJ |e|C1.···.Cn

∈ |T| with respect to |CT|.
THEOREM 4.2 (Compilation preserves execution). If � �FJI e∈ T where dom(�) includes neither

this nor C.this for any C, and e→FJIe′, then |e|�→FJ
+|e′|�.

THEOREM 4.3 (Compilation preserves termination). If � �FJI e∈ T where dom(�) includes neither
this nor C.this for any C, and |e|� →FJe′, then e→FJIe′′ and e′→FJ

∗|e′′|� for some e′′.

Unfortunately, Theorems 4.2 and 4.3 would not hold for a call-by-value version of FJI, since their
properties depend on our nondeterministic reduction strategy. An intuitive reason is as follows. In FJI,
after method invocation, C.this is directly replaced with the corresponding enclosing instance. On the
other hand, in the compiled FJ program, C.this is translated to an expression this.f1.f2. · · · .fn ,
where each fi is a mangled field name, and its evaluation may be blocked by the context in which it
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appears. Therefore, reduction steps do not commute with compilation straightforwardly. Nevertheless, it
should be possible to show correctness by using another technique, such as contextual equivalence [20],
as Glew proved a similar result in the context of object closure conversion for a call-by-value object
calculus [8].

In the rest of this section, we develop proofs of the theorems above. We begin with developing a
number of required lemmas.

LEMMA 4.1. Suppose |CT| is well defined.

1. If fieldsFJI(C) = T̄ f̄, then fieldsFJ(|C|) = ∣∣T̄∣∣ f̄.

2. If fieldsFJI(T.C) = T̄ f̄ then fieldsFJ(|T.C|) = |T̄| f̄, |T| this$ |T.C|.
Proof. Both parts are simultaneously proved by induction on the derivation of fieldsFJI(T) with an

inspection of the compilation rule for classes.

LEMMA 4.2. If the compiled FJ class table |CT| is well defined and mtypeFJI(m, T) = T̄→ U, then
mtypeFJ(m, |T|) = |T̄| → |U|.

Proof. By induction on the derivation of mtypeFJI(m,T) with an analysis of the compilation rules for
classes and methods.

LEMMA 4.3. If |CT| is well defined and mbodyFJI(m,T) = (x̄,e0,S), then mbodyFJ(m, |T|) = (x̄, |e0|S).

Proof. By induction on the derivation of mbodyFJI(m, T) with an analysis of compilation rules for
classes and methods.

LEMMA 4.4. S<:FJIT if and only if |S| <:FJ |T|.
Proof. Straightforward induction on the derivation of S <:FJI T.

LEMMA 4.5. Suppose T <:FJI C1. · · · Cn where n ≥ 2. If T = C and � �FJI new C(ē)∈ C where
dom(�) does not include this or D.this for any D, then

|new C(ē)|� .this$C1$ · · · $Cn →FJ

∣∣enclC1.···.Cn (new C(ē))
∣∣
�
.

Similarly, if T = S.C and � � e0.new S.C(ē)∈ S.C, then

|e0.new S.C(ē)|� .this$C1$ · · · $Cn →FJ

∣∣enclC1.···.Cn (e0.new S.C(ē))
∣∣
�
.

Proof. By induction on the derivation of T <:FJI C1. · · · Cn .

Case. T = C1. · · · .Cn S = C1. · · · .Cn−1 C = Cn

� �FJI e0.new S.C(ē)∈ S.C
Since |e0.new S.C(ē)|� = new |S.C| ( |ē|� , |e0|� ) and, by Lemma 4.1,

fieldsFJ(|S.C|) = |T̄| f̄, |S| this$C1$ · · · $Cn

for some T̄ and f̄,

|e0.new S.C(ē)|� .this$C1$ · · · $Cn →FJ |e0|�.

Finally, by definition, enclC1.···.Cn (e0.new S.C(ē)) = e0, finishing the case.

Case. CT(T) = class C extends C1. · · · .Cn {Ū f̄; ...}
We have two cases depending on whether T is a top-level class or not. We show the case where T = C
as a representative since the other case is similar.

Let ē = d̄, e0, c̄ such that #(c̄) = #(f̄). Using Lemma 4.1, we have

|new C(ē)|� .this$C1$ · · · $Cn →FJ |e0|� .
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By definition,

enclC1.···.Cn (new C(ē)) = enclC1.···.Cn (e0.new C1. · · · .Cn(d̄)) = e0

finishing the case.

Case. T <:FJI U U <:FJI C1. · · · .Cn

We have four subcases depending on whether T is a simple name and whether U is a simple name. We
show the case where T = C and U = D for some C and D; the other cases are similar.

Since � �FJI new C(ē)∈ C, it is easy to show that � �FJI new D(d̄)∈ D for some d̄ such that
ē = d̄, . . . . By the induction hypothesis,

|new D(d̄)|�.this$C1$ · · · $Cn →FJ

∣∣enclC1.···.Cn (new D(d̄))
∣∣
�
.

By induction on the derivation of C <:FJI D, it is easy to show that

|new C(ē)|�.this$C1$ · · · $Cn →FJ

∣∣enclC1.···.Cn (new D(d̄))
∣∣
�

and that

enclC1.···.Cn (new D(d̄)) = enclC1.···.Cn (new C(ē)),

finishing the subcase.

Proof of Theorem 4.1. We prove the theorem in three steps: first, we show |CT| is well defined;
second, it is shown that, if �, this : C1. · · · .Cn, Ci.this : C1. · · · .Ci

i∈1...n �FJI e∈ T with respect to
CT , then |�| , this : |C1. · · · .Cn| �FJ |e|C1.···.Cn

∈ |T| with respect to |CT|; and third, we show |CT|
is ok.

The first step is easy since each method body is well typed and so there are no such C.this that
C �∈ S where S is the class to which the method belongs. Note that well-definedness of |CT| implies
well-definedness of the auxiliary functions.

The second step is proved by induction on the derivation of �, this : C1. · · · .Cn, Ci .this :
C1. · · · .Ci

i∈1...n �FJI e∈ T with a case analysis on the last rule used. We show a few main cases.

Case TI-FIELD. By the assumption on the rule used, we have

e = e0.fi

�, this : C1. · · · .Cn, Ci.this : C1. · · · .Ci
i∈1...n �FJI e0 ∈ T0

fieldsFJI(T0) = T̄ f̄
T = Ti

By the induction hypothesis, |�| , this : |C1. · · · .Cn| �FJ |e0|C1.···.Cn
∈ |T0|. By Lemma 4.1,

fieldsFJ(|T0|) = . . . , |Ti | fi , . . . . Then, the rule T-FIELD finishes the case.

Case TI-NEWINNER. By the assumption on the rule used, we have

e = e0.new T0.C(ē)
�, this : C1. · · · .Cn, Ci.this : C1. · · · .Ci

i∈1...n �FJI e0 ∈ S0

S0 <:FJI T0

fieldsFJI(T0.C) = T̄ f̄
�, this : C1. · · · .Cn, Ci.this : C1. · · · .Ci

i∈1...n �FJI ē∈ S̄
S̄ <:FJI T̄
T = T0.C

We must show |�| , this : |C1. · · · .Cn| �FJ new |T0.C| ( |ē|C1.···.Cn
, |e0|C1.···.Cn

)∈ |T0.C|. By
the induction hypothesis,

|�| , this : |C1. · · · .Cn| �FJ |e0|C1.···.Cn
∈ |S0|
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and

|�| , this : |C1. · · · .Cn| �FJ |ē|C1.···Cn
∈ |S̄|.

By Lemma 4.1, fieldsFJ(|T0.C|) = |T̄| f̄′, |T0| this$ |T0.C|. Since |S0| <:FJ |T0| and |S̄| <:FJ |T̄| by
Lemma 4.4, the rule T-NEW finishes the case.

Finally, the third step is proved by showing that L OK IN P implies |P|� OK; it is proved by the
induction on the derivation of L OK IN P using the result of the second step.

Proof of Theorem 4.2. By induction on the derivation of e→FJI e′ with a case analysis on the last
rule used. We show only the cases for RI-FIELDT and RI-INVKT since the other base cases are similar to
either of them. The cases for congruence rules are straightforward.

Case RI-FIELDT. e = new C(ē).fi e′ = ei fieldsFJI(C) = T̄ f̄
By Lemma 4.1, fieldsFJ(|C|) = . . . , |Ti | fi , . . . , and thus,

|e|� = new C( |ē|� ).fi →FJ |ei |�.

Case RI-INVOKET. e = new C(ē).m(d̄)
mbodyFJI(m, C) = (x̄, e0, C1. · · · .Cn)
cn = new C(ē)
ci = enclci+1 (C1. · · · .Ci+1) (i ∈ 1 . . . n − 1)
e′ = [d̄/x̄, cn/this, ci/Ci.this i∈1...n]e0.

By Lemma 4.3, mbodyFJ(m, |C|) = (x̄, |e0|C1.···.Cn
). Thus,

|e|� = new C( |ē|� ).m(|d̄|�) →FJ [|d̄|�/x̄, new C( |ē|� )/this] |e0|C1.···.Cn
.

Since |Ci.this|C1.···.Cn
= this.this$C1$ · · · $Cn. · · · .this$C1$ · · · $Ci , by Lemma 4.5,

[|d̄|�/x̄, new C( |ē|� )/this] |Ci.this|C1.···.Cn
→FJ

∗ |ci |� .

Then, by using congruence rules,

[|d̄|�/x̄, new C( |ē|� )/this] |e0|C1.···.Cn
→FJ

∗ ∣∣[d̄/x̄, ci/Ci.this
i∈1...n]e0

∣∣
�
= ∣∣e′∣∣

�

finishing the case.

Proof of Theorem 4.3. By induction on the derivation of |e|� →FJ e′ with a case analysis on the last
rule used.

Case R-FIELD. |e|� = new C(ē).fi fieldsFJ(C) = C̄ f̄ e′ = ei

By inspecting compilation rules, e must be field access to a top-level object or an inner class object;
moreover, e is well typed. By Theorem 3.2 and Lemma 4.1, we have e→FJI ei

′ where |ei
′|� = ei ,

finishing the case.

Case R-INVK. |e|� = new C(ē).m(d̄)
mbodyFJ(m, C) = (x̄, e0)
e′ = [d̄/x̄, new C(ē)/this]e0

By inspecting compilation rules, e must be method invocation; moreover, e is well typed. By
Theorem 3.2, we have e→FJI e′′ by using RI-INVOKEI or RI-INVOKET. In either case, by Theorem 4.2,
we have |e|� →FJ

∗ ∣∣e′′∣∣
�
. Then, it is easy to check that

|e|� →FJ e′ →FJ
∗ |e′′|�

by Lemma 4.3. (Refer to the case for RI-INVOKET in the proof of Theorem 4.2.)
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Case RC-NEW-ARG. |e|� = new C( . . . ,ei, . . . ) ei →FJ ei
′

e′ = new C( . . . ,ei
′, . . . )

By inspecting compilation rules, e must be an object instantiation. We have three subcases according
to the form of e. Let n be the length of the sequence “. . . ,ei, . . .”.

Subcase. e = d0.new T0.C0( . . . ,di, . . . ) i ≤ n − 1∣∣d j

∣∣
�
= e j ( j ∈ 1 . . . n − 1) |d0|� = en

By the induction hypothesis, di →FJI di
′ for some di

′. By RCI-INNER-ARG,

e →FJI d0.new T0.C0( . . . ,di
′, . . . ).

The other subcases (where e is a top-level instantiation and where e is an inner class instantiation
and ei is the last argument) are similar.

Case RC-FIELD, RC-INVK-RECV, RC-INVK-ARG. Easy.

5. ELABORATION

In this section we formalize the elaboration of external language programs (i.e., programs in the
language the user actually sees) to FJI. In user programs, the receivers of field access or method
invocation, the enclosing instances of inner class instantiation, and the qualifications of type names
may be omitted. For example, a simple name C means an inner class T.C when it is used in the direct
enclosing class T. A basic job of elaboration is to find where a name f, m, or C is bound and to recover
its receiver information or “absolute path” form.

In the conventional scoping rules of simple block structured languages, simple names are bound to
their syntactically nearest declaration. In Java, however, they can be bound to declarations in super-
classes, or even in superclasses of enclosing classes. For example, in the class below, f in the method
m is bound to the field f of the enclosing class C unless D has a field f.

class C extends Object {
Object f; ...
class D extends Object { ...
Object m() { return f; }

}
}

Similarly, f in the method m is bound to the field f of its superclass B4 in the following classes.

class B extends Object { Object f; ... }
class C extends Object { ...
class D extends B { ...
Object m() { return f; }

}
}

In general, beginning with the class where a field or method name is used, the search algorithm looks for
the definition in superclasses; if there is no definition in any superclass, it looks in the direct enclosing
class and its superclasses, and then in the second direct enclosing class and its super classes, and so on.
Once the declaration where a name is bound is known, it is easy to construct the appropriate qualification.
In the examples above, f becomes C.this.f and D.this.f, respectively.

Simple type names obey similar elaboration rules. For example, D occurring in C is elaborated to
C.D. However, unlike field names and method names, pre-elaboration type names themselves can be
qualified. In such a case the head name is elaborated first, then the definitions of the following names,

4 Even when C has a field f—this rule, following the new specification [11], is different from the old specification [14]; also
see Section 6.
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in a manner similar to field lookup. For example, consider the following class declarations:

class A extends Object { ...
class B extends Object { ... }

}
class C extends Object { ...
class D extends A { ... }

}
class E extends C { D.B f; ... }

The type D.B of f is elaborated to A.B as follows:

1. The first name D is elaborated to C.D.

2. We check whether C.D.B makes sense; in this case, it does not, since the inner class D does
not have a declaration of B. The elaborator replaces C.D with its superclass A and elaborates A.B in the
context of C.

3. Since A is not declared in C, it denotes the top-level class A.

4. Finally, since B is declared in the top-level class A, A.B is the elaborated type for D.B in the
context of E.

Last, we describe how a constructor invocation new T(ē) is elaborated. This is slightly more involved
than the other elaboration steps, since it requires both elaborating the type and recovering an enclosing
instance (when it turns out to be instantiation of an inner class). First, the pre-elaboration type name T
is elaborated to T′. If T′ is a simple name C, then the constructor invocation does not need an enclosing
instance. On the other hand, if T′ is U.C, then we have to make up an enclosing instance D.this,
whose type is subtype of U, by checking which enclosing class is a subclass of U. Finally, among such
enclosing classes, the innermost one is chosen and new T(ē) is elaborated to D.this.new U.C(...).
The annotation U has to be recovered now to specify which inner class is instantiated, since there might
be more than one inner class C defined in classes between D and U. Consider the following classes and
the expression new A.B() inside the class D.E:

class A extends Object { ...
class B extends Object { ... }

}
class C extends A { ...
class B extends Object { ... }

}
class D extends C { ...
class E extends C { ...
Object m() { ... new A.B() ...}

}
}

First, A.B is elaborated to itself. Now, we need to find out which enclosing class (including the current
class) is a subclass of A. In this case, both D and D.E are; then, the innermost one, D.E, is chosen, and
new A.B() is elaborated to E.this.new A.B(). The qualified name A.B is important since we have
to remember that the class A.B is to be instantiated (not C.B).

In the rest of this section, we give the formal rules of elaboration. We use the metavariables X, Y, and
Z for pre-elaboration type names, which are nonempty strings obtained by concatenating simple names
by “.”. The notation P.C always denotes an (elaborated) type.

5.1. Syntax of External Language

In external language programs, pre-elaboration namesX are used where types are required; it is allowed
to write a field access f and a method invocation m(ē) without a receiver, and constructor invocation
new X(ē) of pre-elaboration type name without an enclosing instance. (In Java, when an enclosing
instance is explicit the class name must be simple.) We assume only the sanity conditions (1)–(3) from
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Section 3; (4) will be automatically satisfied when elaboration of types succeeds (see Theorem 5.1 (1))
and (5)–(7) can be checked after elaboration.

L ::= class C extends X {X̄ f̄; K L̄ M̄}

K ::= C(X̄ f̄) { super(f̄); this.f̄ = f̄; }
| C(X̄ f̄) { f.super(f̄); this.f̄ = f̄; }

M ::= X m(X̄ x̄){ return e; } method declarations

e ::= x variable or field access
| e.f field access
| m(ē) method invocation
| e.m(ē) method invocation
| new X(ē) constructor invocation
| e.new C(ē) inner class constructor

We do not deal with omitted qualifications of super constructor invocations, permitted in Java: an
explicit qualification using a constructor argument is needed.

5.2. Elaboration Rules

Elaboration is performed in two steps: (1) elaboration of types (except the ones that occur in method
bodies); and (2) elaboration of expressions. Step (2) must be performed after step (1) since elaboration
of expressions requires type names (in particular X after extends) to be elaborated.

5.2.1. Elaboration of Types

The elaboration relation for types is writtenP � X⇒ T, read “X is elaborated toT inP.” The elaboration
rules are given in Fig. 14. We write P � X ⇑, which means there is no T such that P � X⇒ T. The key
rules are ET-SIMPENCL and ET-SIMPSUP. The rule ET-SIMPENCL is used when the ambiguous name D is
defined in neither the current class P.C nor its superclasses (P � X.D ⇑); D is resolved in the context of
the direct enclosing class P. On the other hand, the rule ET-SIMPSUP is used when the ambiguous name
D is defined in a superclass (P � X.D⇒ T).

P � Object⇒ Object (ET-OBJECT)
P.C∈ dom(CT)

P � C⇒ P.C
(ET-INCT)

P.C.D /∈ dom(CT) P � D⇒ T

CT(P.C) = class C extends X {...} P � X.D ⇑
P.C � D⇒ T

(ET-SIMPENCL)

P.C.D /∈ dom(CT)
CT(P.C) = class C extends X {...} P � X.D⇒ T

P.C � D⇒ T
(ET-SIMPSUP)

P � X⇒ T T.C ∈ dom(CT)

P � X.C⇒ T.C
(ET-LONG)

P � X⇒ P′.D P′.D.C �∈ dom(CT)
CT(P′.D) = class D extends Y {...} P′ � Y.C⇒ U

P � X.C⇒ U
(ET-LONGSUP)

FIG. 14. Elaboration of types.
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Remark. A straightforward elaboration algorithm obtained by reading the rules in a bottom-up
manner might diverge. For example, consider the following class declaration.

class A extends A.B {
A() { super(); }

}

Since there is no class A.B, elaboration of A.B must fail. However, using ET-LONGSUP, it tries to find
T such that � � A.B.B⇒ T since A does not have B and A.B is specified as a superclass of A; it then
tries to find T′ such that � � A.B.B.B⇒ T′ and so on. To prevent divergence, an elaboration algorithm
should detect circularity by keeping previous inputs for recursive calls: in this example, the algorithm
will try to find T such that � � A.B⇒ T twice.

5.2.2. Elaboration of Expressions, Methods, and Classes

After elaboration of types, we can check all the sanity conditions except (5). Then, elaboration can
proceed to the next step—that is, elaboration of expressions, methods, and classes.

We need auxiliary functions to look up a field or method definition in enclosing classes and their
superclasses. The functions field-encl(f, T) and meth-encl(m, T) defined below return the simple name
of the enclosing class that has (or inherits) the declaration of the simple name f or m, when it is mentioned
in T. The function subty-encl(U, C1. · · · .Cn), used in elaboration of constructor invocations, returns the
simple name Ci of the innermost enclosing class such that C1. · · · .Ci <: U.

fields(P.C) = . . . , S f, . . .

field-encl(f, P.C) = C

f does not appear in fields(T.C)
field-encl(f, T.C) = field-encl(f, T)

mtype(m, P.C) = S̄→ S0

meth-encl(m, P.C) = C

mtype(m, T.C) is undefined
meth-encl(m, T.C) = meth-encl(m, T)

P.C <: U

subty-encl(U, P.C) = C

T.C �<: U
subty-encl(U, T.C) = subty-encl(U, T)

The elaboration relation for expressions (method bodies) T; x̄ � e⇒ e′ is read “e is elaborated to e′

in the class T when x̄ are formal arguments of the method.” The elaboration rules are given in Fig. 15.
Thanks to the auxiliary functions, most rules are straightforward. Note that the elaborated expression
is not an FJI expression yet, since the static types of the enclosing instances in inner class constructors
e0.new C(ē) are still omitted; they are recovered during typechecking.

Elaboration of methods, written T � M⇒ M′ and read “method M in class T is elaborated to M′,” just
replaces the method body since the return type and argument types are already elaborated. Elaboration of
classes, written P � L⇒ L′ read “class L declared in P is elaborated to L′,” is also straightforward; meth-
ods M̄ and inner classes L̄ are elaborated, recursively. The formal elaboration rules also appear in Fig. 15.

5.3. Properties of Elaboration

A minimal requirement for elaboration is that the guessed information is reasonable in the sense that
elaborated types are really defined in the class table and recovered receivers this or C.this really offer
the field or the method to be used. This property looks rather weak but, actually, it is all we can expect:
elaboration just provides programmers handy abbreviations to make their programs more concise and
does not have very deep “semantic” significance. In this sense, the definition itself is the only interesting
part.

THEOREM 5.1.

1. If P � X⇒ T, then T ∈ dom(CT).

2. If T; x̄ � f⇒ C.this.f, then T = P.C.S for some P and S with fields(P.C) = . . . , U f, . . .
for some U.
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Elaboration of expressions:

x ∈ x̄

T; x̄ � x⇒ x
(E-VAR)

f �∈ x̄ field-encl(f, T) = C

T; x̄ � f⇒ C.this.f
(E-FIELDSIMP)

T; x̄ � e0 ⇒ e0
′

T; x̄ � e0.f⇒ e0
′.f

(E-FIELD)

meth-encl(m, T) = C T; x̄ � ē⇒ ē′

T; x̄ � m(ē)⇒ C.this.m(ē′)
(E-INVKSIMP)

T; x̄ � e0 ⇒ e0
′ T; x̄ � ē⇒ ē′

T; x̄ � e0.m(ē)⇒ e0
′.m(ē′)

(E-INVK)

T � X⇒ C T; x̄ � ē⇒ ē′

T; x̄ � new X(ē)⇒ new C(ē′)
(E-NEWTOP)

T � X⇒ U.D subty-encl(U, T) = C T; x̄ � ē⇒ ē′

T; x̄ � new X(ē)⇒ C.this.new U.D(ē′)
(E-NEWINNER)

T; x̄ � e0 ⇒ e0
′ T; x̄ � ē⇒ ē′

T; x̄ � e0.new C(ē)⇒ e0
′.new C(ē′)

(E-NEW)

T; x̄ � this⇒ this (E-THIS)

C ∈ T

T; x̄ � C.this⇒ C.this
(E-QLTHIS)

Elaboration of methods:

T; x̄ � e⇒ e′

T � U0 m(Ū x̄){ return e; }⇒ U0 m(Ū x̄){ return e′; }
(E-METHOD)

Elaboration of classes:

P.C � L̄⇒ L̄′ P.C � M̄⇒ M̄′

P � class C extends T {T̄ f̄; K L̄ M̄ }

⇒ class C extends T {T̄ f̄; K L̄′ M̄′}

(E-CLASS)

FIG. 15. Elaboration of expressions, methods, and classes.

3. If T; x̄ � m(ē)⇒ C.this.m(ē′), then T = P.C.S for some P and S with mtype(P.C) being
well defined.

4. If T; x̄ � new X(ē)⇒ C.this.new U.D(ē′), then T = P.C.S for some S with U.D ∈
dom(CT) and P.C <:U.

Proof. Each clause is proved by induction of the derivation of the condition.
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6. FROM THE OLD INNER CLASSES SPECIFICATION TO THE SECOND EDITION
OF THE JAVA LANGUAGE SPECIFICATION

The formalization we have presented in this article is based on the new language specification [11]
(hereafter called JLS2). In this section, we note two substantial changes from the original specifi-
cation [14] (hereafter called ICS) and show some experiments with several versions of Sun’s JDK
compiler. In the course of the experiment, we have found several bugs and inconsistencies in several
versions of the compiler; among them, we show the most interesting ones related to the changes, as
most of them are trivial and already known to the developers. We think, without our effort of formal-
ization, it would have been hard to pinpoint those bugs and inconsistencies. In fact, bugs were often
found when we tried to supplement a vacuum in the documentation by observing the behavior of the
compiler.

6.1. Name Conflicts in Elaboration

The first interesting change is in the elaboration process. Although the scoping rules described in
ICS are basically the same, there is one additional rule concerning interaction between names inherited
from a superclass and ones declared in enclosing classes.

Suppose a field called f is referred to in the class C1. · · · .Cn . The elaboration looks for the declaration
of f in the class C1. · · · .Cn and its superclasses, followed by the direct enclosing class C1. · · · .Cn−1

and its superclasses, and so on. Now, suppose the algorithm above finds the definition of the field or
method in one of the (proper) superclasses of the class C1. · · · .Ci . Then, a field of the same name must
not be defined in any of its enclosing classes C1, C1.C2, . . . , C1. · · · .Ci−1. Similarly for methods and
types (i.e., member classes). For example, the Java program below

class B { Object f; }
class C { Object f;
class D extends B {
Object m() { return f; }

}
}

should be rejected according to ICS. For example, JDK compiler version 1.1.7 yields the following
compiler error:

test.java:7: Method ’m’ is inherited in inner class C. D, and hides
a method of the same name in class C. An explicit ’this’ qualifier must
be used to select the desired instance.

m();
^

The user must write C.this.f or D.this.f, specifying the enclosing instance explicitly.
Although this ambiguity rule has been abandoned in JLS2, it is still present in recent implementations

of JDK compilers (versions 1.2.2 and 1.3beta2 for linux). Moreover, old implementations (before 1.2)
that assumed the ambiguity rule seem to have one exception, which is not mentioned in ICS: it is not
considered ambiguous if the definition found in a superclass is also the syntactically nearest definition
in enclosing classes. This situation occurs when an inner class extends one of its enclosing classes. For
example, suppose E does not declare the field f in the class definition below.

class C {
Object f; ...
class D { ...
class E extends C { ...
Object m() { return f; }

}}}
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The reference to f in m is not conflicting unless D declares a field f.5 (The algorithm finds the definition
f declared in a superclass of E.)

6.2. Semantics of Qualified this

The second interesting change is the semantics of qualified this expressions. As we discussed, in
the class C1. · · · .Cn , the expression Ci.this denotes the (n − i)th direct enclosing instance. In ICS,
however, it was not made clear what happens if Ci is also a superclass of Cn . The result was some
significant variations in the interpretation of qualified this expressions. Consider the following Java
program:

class C {
void who() {
System.out.println("I’m a C object");

}
class D extends C {
void m() { C.this.who(); }
void who() {
System.out.println("I’m a C.D object");

}
}
public static void main(String[] args) {
new C().new D().m();

}
}

Surprisingly, this program prints out I′m a C.D object when compiled with JDK 1.1.7, but I′m a C
object under JDK 1.2.2. In the old JDK, the meaning of C.this is exactly the same as D.this or this
when C is a superclass of the inner class C.D; thus, C.this is bound to the receiver new C().new D ().
In JDK 1.2.2 (and later), on the other hand,C.this is always bound to the enclosing object of the receiver
regardless of superclass. This point has been clarified in favor of the latter choice (i.e., C.this �=
D.this) in JLS2 (Section 15.8.4).

7. RELATED WORK

Nested Classes in Object-Oriented Languages. As we mentioned in the introduction, the idea of
nested classes dates back to Simula [3]. In Simula, an object can be thought of as a procedure’s activation
record that can remain alive after the execution; a class is just a generator for such an activation record.
Thus, like ordinary procedures, class declarations can be arbitrarily nested.

Compared to Java, however, the allowed forms of inheritance in Simula are rather restricted: a class
whose qualified name would be P.C can extend another class P′.D if and only if either (1) both P.C
and P′.D are top-level classes (i.e., P = P′ = �) or (2) P <: P′. This rule implies that any two classes
in a subtyping relation are defined at the same depth of the nested program structure. For example, if
C1. · · · .Cn <: D1. · · · .Dm , then it must be the case that n = m and Ci <: Di for all i . This restriction seems
to stem from Simula’s implementation scheme for objects. According to the analogy between objects
and activation records, an object is given just one static link to the activation record (we could call it
an enclosing instance) of the enclosing block in which the class is defined. Thus, the direct enclosing
instance must be shared among the methods, resulting in the above restriction; on the other hand, this
scheme makes the notation of qualified super, found in Java, unnecessary.

Beta [17], a successor of Simula, also allows nested class definitions (as an instance of nested patterns,
the only abstraction mechanism in Beta, unifying classes and procedures). Their basic behavior is the
same as Java’s inner classes in the sense that each method can have its own environment derived from

5 It looks like a bug of the old compilers that this exceptional rule does not apply to resolution of method names; even if two
conflicting method definitions are in fact the same, a compiler error is yielded.
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the enclosing classes of the method definition. There are, however, two significant differences from
Java’s inner classes.

First, an enclosing instance of an inner class is a part of the type generated by the inner class. Suppose
the objects a1 and a2 are instances of the class A, which has an inner class B. In Beta, a1 and a2 are
considered to have their own distinct inner class of the name B; thus, the expressions a1.B and a2.B,
by themselves, form distinct classes (or types)—they can be considered a kind of dependent types.
Moreover, Beta dispenses with qualified super: superclasses are specified by expressions like a1.B
rather than A.B, making a1 the enclosing instance that methods in B access.

Second, inner classes in Beta can be declared virtual [16]. Usually, if a subclass declares an inner
class of the same name as its superclass’ inner class, it just hides the declaration in the super class, just
like shadowing of field declarations in Java. On the other hand, if the superclass C declares an inner
class E virtual, E can be extended and overridden in the subclass D of C. Then, a reference to E is virtual
in the sense that it depends on the run-time type of the enclosing instance which constructor is invoked.
A constructor invocation new e0.E(ē) (remember e0.E itself forms a class in Beta) instantiates an
object using E inside C when the run-time type of e0 is C while it instantiates an object of class E inside
D when that of e0 is D.

Madsen has recently described the algorithm for elaboration (he calls it “semantic analysis”) used
in the Mjølner Beta compiler [15]. The algorithm is very close to the rules presented in Section 5, in
the sense that the search order is the same as ours, although the presence of virtual classes significantly
complicates the algorithm in Beta.

Nested class declarations are also permitted in C++ [21], though their use is rather restricted: an
inside class cannot access members of the enclosing classes and, thus, there is no notion corresponding
to enclosing instances. Rather than inner classes discussed so far, they would correspond to Java’s static
nested classes. Such restricted nested classes are used mainly for hierarchical organization of classes:
nested class declarations realize a non-flat name space (qualified names can be used for classes) and,
combined with access annotations (public, private, and so on), they provide better control on the
name space.

Bruce et al. [5] used nested classes as a device to group mutually dependent classes together and
enforce on programmers the subclassing protocol that mutually dependent classes should be simulta-
neously extended. For example, if a programmer thinks that mutually dependent classes C and D should
simultaneously extended, he or she declares them as members of a (top-level) class A; the classes C and
D can be extended only by extending A and declaring subclasses of both C and D inside the subclass of
A. Their use of nested classes is also for better organization of classes, rather than for obtaining access
to enclosing classes.

Specification of Inner Classes. In the original Inner Classes Specification [14], the semantics of
inner classes is given as a translation from inner classes to top-level classes. The document also explains
how inner classes affect other language features, such as synchronization, access restriction, and binary
compatibility. However, the description is rather informal and sometimes vague, yielding different
implementations with different semantics, as we described in the previous section. The updated language
specification [11] clarifies and amends some flaws in the old one, but is still informal.

Object Closure Conversion. Recently, Glew [8] studied closure conversion in the context of a call-
by-value object calculus (without classes) and showed correctness of conversion based on contextual
equivalence. Our translation semantics can also be viewed as closure conversion of class definitions.
Since his calculus does not have classes, no semantic account of interaction between inheritance and
nested classes is given.

Microsoft’s Delegates. Microsoft has proposed delegates [18] as an alternative to inner classes. The
basic idea of delegates resembles the function pointers found in C and C++. Programmers can create
a delegate with an expression of the form e.m (without parameters) and pass it elsewhere; later, the
method m can be invoked through the delegate. We believe it would be possible to model delegates in
an extension of FJ, as we have done here for inner classes. On one hand, the formalization would be
simpler than inner classes due to the absence of interaction with inheritance. On the other hand, it seems
difficult to model the implementation scheme of delegates as a translation into a language like pure
Java.
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Other Core Calculi for Java. Several calculi [6, 7, 19, 22] have been proposed as foundations for
studying formal properties and extensions of Java; none of them treat inner classes, but we do not see
any inherent difficulty with integrating inner classes into these calculi, following the lines of the account
given here.

8. CONCLUSIONS AND FUTURE WORK

We have formalized two styles of semantics for inner classes: a direct style and a translation style,
where semantics is given by compilation to a low-level language without inner classes, following
Java’s Inner Classes Specification. We have proved that the two styles correspond, in the sense that the
translation commutes with the high-level reduction relation in the direct semantics.

Although our results have shown that inner classes in the style of Java are reasonable (in the sense
of type soundness and correctness of compilation), we feel that one particular design decision in Java
made the semantics disproportionately complicated: namely, allowing a subclass of an inner class to
be defined in another unrelated class (and introducing the corresponding qualified super constructor
invocation). As we have seen, this trick of qualified super is needed for methods of one object to be
executed under various environments (constructed by enclosing instances). However, we can abuse it
so that the same notation C.this in one scope denotes different enclosing instances. For example,
consider the inner classes A.B and A.C below

class A {
Object f;
class B { ... A.this.f ...}
class C extends B {
C(A a) { a.super(); }
... A.this.f ...

}

and an instance of A.C. Now, an instance of C is of the form a1.new C(a2); a1 is bound to A.this in
C and a2 to A.this in B. The occurrences of A.this in B and C may or may not be the same object!6 It
might be reasonable to leave out the prefixed super completely from the language and to force the rule
that a subclass of an inner class must be defined in the same scope (which may include subclasses of the
enclosing class of the superclass). Then, the semantics of FJI, in particular the definition of encl, would
be much simpler because only prefixes of new (rather than arguments) can be bound to C.this. (In Java,
a subclass may be defined in a package different from the one of the superclass; it looks like a very similar
situation in the sense that the same name may denote different things. However, there is one significant
difference that those references are resolved statically while qualified this is inherently dynamic.)

In the course of this work, we first formalized the old specification [14] as found in the older versions
of this article, retargeted to the new language specification [11], and tried to make our formalization
as close to the new one as possible. Besides deepening our own understanding of inner classes, this
work has uncovered a significant underspecification in the official specification and several bugs in the
compiler implementation (most of these are known to the developers). Despite of all the effort we made,
it is possible that our formalization might have some discrepancies. One lesson we have learned is that
it is quite challenging to formalize an informal idea, especially when they are not the ones developing
it. In particular, when the documentation the developers provide is silent about a certain aspect, all we
could do was to observe the behavior of an artifact realizing the idea (i.e., compiler). Then, it is often
hard to obtain intuitions behind the behavior.

For future work, the interaction between inner classes and access restrictions in Java is clearly worth
investigating formally. We would also hope to be able to model, in a variant of FJI, Java’s other forms
of inner classes: anonymous classes and local classes in method bodies. On one hand, we have to deal
with the complexity due to the fact that method arguments (not just fields) can occur in them as free
variables. On the other hand, they are simpler than member classes with respect to interaction with
inheritance. First, anonymous classes are inherently final and there can be no subclass of an anonymous

6 As we have mentioned, in Java proper, the invocation a.super() can be omitted; in this case the prefix a of the constructor
invocation a.new C() is automatically bound to A.this in both B and C (and shared by methods of B and C).
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class. Concerning local classes, a direct subclass of a local class is always defined in the scope where the
local class is declared. It implies that all the enclosing instances accessible from the local class are also
enclosing instances of the subclass. Thus, unlike inheritance involving member classes, all the methods
from one class can be executed under one environment consisting of the enclosing instances of that class.
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