Computation of Iwasawa Lambda Invariants for Imaginary Quadratic Fields

D. S. Dummit,* D. Ford, ${ }^{\dagger}$ H. Kisilevsky, ${ }^{\dagger}$ and J. W. Sands ${ }^{\ddagger}$
Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05405
Communicated by W. Sinnott

Received October 1, 1989; revised February 6, 1990

Abstract

A method for computing the Iwasawa lambda invariants of an imaginary quadratic field is developed and used to construct a table of these invariants for discriminants up to 1,000 and primes up to 20,000 . 01991 Academic Press, Inc.

Introduction

Iwasawa theory originated in the study of class numbers in the basic $\mathbb{Z}_{p}-$ extension of a number field K, and this case still occupies a central place in the theory. After fixing a prime number p, begin with \mathbb{Q}_{∞}, the Galois extension of the rational numbers \mathbb{Q} having Galois group isomorphic to the additive group of the p-adic integers \mathbb{Z}_{p}. Then let K_{n} denote the unique field having degree p^{n} over K in $K \cdot \mathbb{Q}_{\infty}$. Iwasawa [11] proved that the exact power of p dividing the class number $h\left(K_{n}\right)$ is given by $\mu p^{n}+\lambda n+v$, for large n. The integer constants $\mu=\mu_{p}, \lambda=\lambda_{p}$, and $v=v_{p}$ are the Iwasawa invariants for K and p. The simplest nontrivial example occurs when K is a quadratic field. Then $\mu=0$ [4] and when K is real, it is believed that $\lambda=0$. Hence imaginary quadratic fields should provide a basis for the understanding of lambda invariants. However, even in this key situation, the values of lambda invariants have remained a mystery.

In this paper we describe a method of computation and provide a sizeable table of Iwasawa lambda invariants for imaginary quadratic fields. Our point of view is to consider λ_{p} as p varies and the base field K remains fixed. With our method (and also our access to extensive computer time), we are able to obtain λ_{p} for primes much larger than have been considered

[^0]previously. For small primes, our results are seen to agree with those of Gold [7] and Ernvall-Metsänkylä [15]. The computations make use of p-adic L-functions, but are greatly accelerated by implementing a strictly algebraic criterion for triviality of Gold [6]. In implementing this criterion, we also describe a technique for obtaining generators of certain principal ideals in imaginary quadratic fields.

Our table of primes having a nontrivial lambda invariant is complete for discriminants up to 1,000 and primes up to $10,000,000$. The actual value of the lambda invariant is computed for primes up to 20,000 .
We thank Tauno Metsänkylä for his comments and Stephen J. Cavrak of the University of Vermont Academic Computing Center for his help with Pascal compilers.

I. Power Series for Leopoldt-Kubota P-Adic L-Functions

We first adapt the method of Ferrero and Greenberg [3] to compute the coefficients in the Iwasawa power series for a Leopoldt-Kubota p-adic L-function. In [3], the first coefficient was computed this way, and modifications of this approach also appear in [18, 15].

Fix an odd prime p and an embedding of the complex numbers \mathbb{C} in the completion \mathbb{C}_{p} of an algebraic closure of the p-adic field \mathbb{Q}_{p}. Let ω be the Teichmüller character modulo p. A nontrivial primitive Dirichlet character of the first kind with conductor $d \neq p$ may be written as $\psi \omega^{r+1}$, where ψ is a primitive Dirichlet character of conductor $d_{0} \neq 1$ prime to p, and $r<p-1$ is a nonnegative integer. Let $\mathbb{Q}_{p}(\psi)$ denote the field obtained by adjoining all the values of ψ to \mathbb{Q}_{p}, and denote its ring of integers by \mathcal{O}_{ψ}. Note that $\mathbb{O}_{\psi \omega^{r+1}}=\mathcal{O}_{\psi}$, since $\mathbb{Q}_{p}(\omega)=\mathbb{Q}_{p}$. If ρ is a (possibly trivial) primitive character of the second kind, then we may fix $n \geqslant 0$ so that $\rho^{p^{n}}=1$. Observe that the character $\psi \omega^{r+1} \rho$ is primitive with conductor dividing $d_{0} p^{n+1}$. Set $u=\exp _{p}(p)=1+p+p^{2} / 2!+\cdots$ in \mathbb{Z}_{p}. View ρ as a character on \mathbb{Z}_{p} and put $\zeta_{\rho}=\rho(u)$, so that $\zeta_{\rho}^{p^{n}}=1$.

Under these assumptions [16], the p-adic L-function $L_{p}\left(s, \psi \omega^{r+1}\right)$ is associated with a power series

$$
G\left(T, \psi \omega^{r+1}\right)=\sum_{m=0}^{\infty} a_{m} T^{m}
$$

having coefficients in \mathcal{U}_{ψ}, such that

$$
L_{p}\left(s, \psi \omega^{r+1} \rho\right)=G\left(\zeta_{\rho}^{-1} u^{s}-1, \psi \omega^{r+1}\right) .
$$

The polynomial $\omega_{n}(T)=(1+T)^{p^{n}}-1$ satisfies

$$
\omega_{n} \equiv 0 \quad\left(\bmod \left(T^{p}, p^{n}\right)\right) \quad \text { and } \quad \omega_{n} \equiv 0 \quad\left(\bmod \left(T^{p^{2}}, p^{n-1}\right)\right) .
$$

The fact that ω_{n} is distinguished allows one to write

$$
G\left(T, \psi \omega^{r+1}\right)=F_{n}(T)+\omega_{n}(T) H_{n}(T)
$$

where

$$
F_{n}(T)=\sum_{k=0}^{p^{n}-1} b_{k}(1+T)^{k}
$$

is a polynomial of degree less than p^{n} with coefficients b_{k} in \mathcal{O}_{ψ}. From the congruence

$$
\begin{aligned}
\sum_{m=0}^{\infty} a_{m} T^{m} & =G\left(T, \psi \omega^{r+1}\right) \equiv F_{n}(T) \\
& =\sum_{k=0}^{p^{n}-1} b_{k}(1+T)^{k}=\sum_{k=0}^{p^{n}-1} b_{k}\left(\sum_{m=0}^{k}\binom{k}{m} T^{m}\right) \\
& =\sum_{m=0}^{p^{n}-1}\left(\sum_{k=m}^{p^{n}-1} b_{k}\binom{k}{m}\right) T^{m} \quad\left(\bmod \omega_{n}(T)\right),
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& a_{m} \equiv \sum_{k=m}^{p^{n}-1} b_{k}\binom{k}{m} \quad\left(\bmod p^{n}\right) \quad(\text { when } m<p) \\
& a_{m} \equiv \sum_{k=m}^{p^{n}-1} b_{k}\binom{k}{m} \quad\left(\bmod p^{n-1}\right) \quad\left(\text { when } m<p^{2}\right)
\end{aligned}
$$

Substitution of $T=\zeta_{p}^{-1}-1$ and $s=0$ in the above formulas is valid. Combined with the interpolation property for p-adic L-functions and the evaluation of a Dirichlet L-function at zero via generalized Bernoulli numbers [18, Chaps. 4, 5], this yields

$$
\begin{aligned}
\sum_{k=0}^{p^{n}-1} b_{k} \zeta_{\rho}^{-k} & =F_{n}\left(\zeta_{\rho}^{-1}-1\right)=G\left(\zeta_{\rho}^{-1}-1, \psi \omega^{r+1}\right) \\
& =L_{p}\left(0, \psi \omega^{r+1} \rho\right)=\left(1-\left(\psi \omega^{r} \rho\right)(p)\right) L\left(0, \psi \omega^{r} \rho\right) \\
& =\frac{-1}{d_{0} p^{n+1}} \sum_{i=1,(i, p)=1}^{d_{0} p^{n+1}} i \psi \omega^{r} \rho(i) \\
& =\frac{-1}{d_{0} p^{n+1}} \sum_{i=1,(i, p)=1}^{p^{n+1}} \sum_{j=0}^{d_{0}-1}\left(i+j p^{n+1}\right) \psi\left(i+j p^{n+1}\right) \omega^{r} \rho(i) \\
& =\frac{-1}{d_{0} p^{n+1}} \sum_{i=1,(i, p)=1}^{p^{n+1}} \sum_{j=0}^{d_{0}-1} j p^{n+1} \psi\left(i+j p^{n+1}\right) \omega^{r} \rho(i) \\
& =\frac{-1}{d_{0}} \sum_{i=1,(i, p)=1}^{p^{n+1}} \sum_{j=0}^{d_{0}-1} j \psi \omega^{r}\left(i+j p^{n+1}\right) \rho(i) .
\end{aligned}
$$

We have made the assumption that ψ is primitive with conductor $d_{0} \neq 1$ precisely so that the sum $\sum_{j=0}^{d_{0}-1} i \psi\left(i+j p^{n+1}\right) \omega^{r} \rho(i)$ will vanish here.

For $(i, p)=1$ define $\langle i\rangle=i \omega^{-1}(i)$. Then $\log _{p}(i)=\log _{p}(\langle i\rangle)$, where the latter is defined by the usual p-adic power series. Also define $L(i)$ by $0 \geqslant$ $L(i)>-p^{n}, L(i) \equiv \log _{p}(i) / p\left(\bmod p^{n}\right)$.
(1.1) Lemma. If $L(i)=-k$ then $\rho(i)=\zeta_{\rho}^{-k}$.

Proof. $L(i)=-k \Rightarrow \log _{p}(i) \equiv-k p \quad\left(\bmod p^{n+1}\right)$

$$
\begin{aligned}
& \Rightarrow\langle i\rangle \equiv \exp (-k p)=\exp (p)^{-k}=u^{-k} \quad\left(\bmod p^{n+1}\right) \\
& \Rightarrow \rho(i)=\rho(\langle i\rangle)=\rho\left(u^{-k}\right)=\rho(u)^{-k}=\zeta_{\rho}^{-k}
\end{aligned}
$$

The lemma allows us to rewrite the sum we have arrived at, and obtain
$\sum_{k=0}^{p^{n}-1} b_{k} \zeta_{\rho}^{-k}=\frac{-1}{d_{0}} \sum_{k=0}^{p^{n}-1}\left(\sum_{i \leqslant i \leqslant p^{n+1},(i, p)=1, L(i)=-k} \sum_{j=0}^{d_{0}-1} j \psi \omega^{r}\left(i+j p^{n+1}\right)\right) \zeta_{\rho}^{-k}$.
This equation holds for each of the p^{n} distinct characters ρ of order dividing p^{n}, hence it holds whenever ζ_{ρ} is a p^{n} th root of unity. Thus we have a system of equations for the b_{k}. The coefficients form a Vandermonde matrix with nonzero determinant, and we conclude that

$$
b_{k}=\frac{-1}{d_{0}} \sum_{1 \leqslant i \leqslant p^{n+1},(i, p)=1, L(i)=-k} \sum_{j=0}^{d_{0}-1} j \psi \omega^{r}\left(i+j p^{n+1}\right) .
$$

Substituting this expression for b_{k} into the congruences for a_{m} results in the following. When $m>k$, we let $\binom{k}{m}=0$.
(1.2) Theorem.

$$
\begin{array}{rlr}
a_{m} \equiv & \frac{-1}{d_{0}} \sum_{i=1,(i, p)=1}^{p^{n+1}}\binom{-L(i)}{m} \\
& \times \sum_{j=0}^{d_{0}-1} j \psi \omega^{r}\left(i+j p^{n+1}\right) \quad\left(\bmod p^{n}\right)(\text { for } m<p) \\
a_{m} \equiv & \frac{-1}{d_{0}} \sum_{i=1,(i, p)=1}^{p^{n+1}}\binom{-L(i)}{m} \\
& \times \sum_{j=0}^{d_{0}-1} j \psi \omega^{r}\left(i+j p^{n+1}\right) \quad\left(\bmod p^{n-1}\right)\left(\text { for } m<p^{2}\right)
\end{array}
$$

II. The P-Adic Logarithm

We now compute $\log _{p}(i)\left(\bmod p^{3}\right)$.
Fix i with $(i, p)=1$, and let $\langle i\rangle=1+j p$. Then $i^{p-1}=\langle i\rangle^{p \cdots 1} \equiv 1-j p$ $\left(\bmod p^{2}\right)$. Define l by $i^{p-1}=1-j p+l p^{2}$. Thus

$$
i^{p-1}=\langle i\rangle^{p-1}=(1+j p)^{p-1}=\left[1+\left(1-i^{p-1}+l p^{2}\right)\right]^{p-1}
$$

and

$$
i^{p-1} \equiv 1+(p-1)\left(1-i^{p-1}\right)-l p^{2}+\left(1-i^{p-1}\right)^{2} \quad\left(\bmod p^{3}\right)
$$

We conclude that

$$
\begin{aligned}
l p^{2} & \equiv\left(1-i^{p-1}\right)\left(1-i^{p-1}+p\right) \\
j p & \equiv\left(1-i^{p-1}\right)\left(2-i^{p-1}+p\right) \quad\left(\bmod p^{3}\right)
\end{aligned}
$$

In the last expression, note that $2-i^{p-1}+p \equiv 1(\bmod p)$. So

$$
\begin{aligned}
\log _{p}(i) & =\log _{p}(\langle i\rangle)=\log _{p}(1+j p) \equiv j p-\frac{(j p)^{2}}{2} \\
& \equiv\left(1-i^{p-1}\right)\left(2-i^{p-1}+p\right)-\frac{\left(1-i^{p-1}\right)^{2}}{2} \\
& =\left(1-i^{p-1}\right)\left(2-i^{p-1}+p-\frac{1}{2}\left(1-i^{p-1}\right)\right) \quad\left(\bmod p^{3}\right) .
\end{aligned}
$$

The computation is completed by combining terms. We replace the fraction $\frac{1}{2}$ by $\left(1-p^{2}\right) / 2$ to maintain integrality for computations; this suffices since $1-i^{p-1} \equiv 0(\bmod p)$.
(2.1) Proposition. $\log _{p}(i) \equiv\left(\left(1-p^{2}\right) / 2\right)\left(1-i^{p-1}\right)\left(3-i^{p-1}+2 p\right)$ $\left(\bmod p^{3}\right)$.

III. The Iwasawa Lambda Invariant of a Power Series

Suppose K_{P} is a finite algebraic extension of \mathbb{Q}_{p} with ring of integers \mathcal{O}, and let π be a uniformizing parameter for \mathcal{O}. A nonzero power series $H(T)$ with coefficients in \mathcal{O} can be written in the form $\pi^{\mu} \sum_{m=0}^{\infty} c_{m} T^{m}$, with c_{m}
in \mathcal{O} for each m and $c_{m} \neq 0(\bmod \pi)$ for some m. Then $\mu=\mu_{p}(H(T))$ is the Iwasawa μ-invariant of the power series. The Iwasawa λ-invariant $\lambda_{p}(H(T))$ of $H(T)$ is the smallest m such that $c_{m} \not \equiv 0(\bmod \pi)$, i.e., such that c_{m} is a p-unit.

When $\psi \omega^{r+1}$ is odd (so $\psi \omega^{r}$ is even), one finds that $G\left(T, \psi \omega^{r+1}\right)=0$. From now on, we assume that $\psi \omega^{r+1}$ is even. In this case, Ferrero and Washington [4] have shown that $\mu_{p}\left(G\left(T, \psi \omega^{r+1}\right)\right)=0$. We are interested in the invariant $\lambda_{p}\left(G\left(T, \psi \omega^{r+1}\right)\right)$, also referred to as the λ-invariant of $L_{\rho}\left(s, \psi \omega^{r+1}\right)$. Slightly modified definitions apply when one allows $d_{0}=1$. As usual, we extend the definition of the binomial coefficient $\binom{a}{m}$ to all $a \in \mathbb{Z}_{p}$ by $\binom{a}{m}=(a(a-1) \cdots(a-m+1) / m!)$.
(3.1) Proposition. If less than p^{2}, the Iwasawa λ-invariant of $L_{p}\left(s, \psi \omega^{r+1}\right)$ is the smallest value of m such that the expression

$$
\begin{aligned}
& \sum_{l=1,(l, p)=1}^{p^{2}} \sum_{k=0}^{p-1}\binom{\left(\frac{p^{2}-1}{2}\right)\left(\frac{1-l^{p-2}\left(l-k p^{2}\right)}{p}\right)\left(3-l^{p-1}+2 p\right)}{m} \\
& \quad \times \sum_{j=0}^{d_{0}-1} j \psi \omega^{r}\left(l+k p^{2}+j p^{3}\right)
\end{aligned}
$$

is not congruent to $0(\bmod \pi)$.

Proof. Let $n=2$ in Theorem 1.2. From Proposition 2.1, we have

$$
-L(i) \equiv-\frac{\log _{p}(i)}{p} \equiv\left(\frac{p^{2}-1}{2}\right)\left(\frac{1-i^{p-1}}{p}\right)\left(3-i^{p-1}+2 p\right) \quad\left(\bmod p^{2}\right)
$$

Write each i uniquely as $i=l+k p^{2}$, with l and k in the ranges indicated and observe that $-L\left(l+k p^{2}\right) \equiv\left(\left(p^{2}-1\right) / 2\right)\left(\left(1-l^{p-2}\left(l-k p^{2}\right)\right) / p\right)$ $\left(3-l^{p-1}+2 p\right)\left(\bmod p^{2}\right)$. Substitute this into the congruence of Theorem (1.2) for $m<p^{2}$, noting that the binomial coefficient is then unchanged modulo p. The result is that the expression in the statement of this proposition is congruent to $-d_{0} a_{m}(\bmod p)$ when $m<p^{2}$. But $-d_{0}$ is a p-unit.

In our computations for imaginary quadratic fields, we have always found $m<p^{2}$. Indeed, usually $m<p$, so that the following proposition suffices.
(3.2) Proposition. If less than p, the Iwasawa i-invariant of $L_{p}\left(s, \psi \omega^{r+1}\right)$ is the smallest value of m such that the expression

$$
\sum_{l=1}^{(p-1 / 2} \sum_{k=0}^{p-1}\left(\frac{l^{p-2}(l-k p)-1}{p}\right) \sum_{j=0}^{m d_{0}-1} j \psi \omega^{r}\left(l+k p+j p^{2}\right)
$$

is not congruent to $0(\bmod \pi)$.
Proof. This time we set $n=1$ in Theorem (1.2). When $m<p$, we can write $m!\left(\begin{array}{c}-L_{m}^{(i)}\end{array}\right)=(-L(i))^{m}+\sum_{t=0}^{m-1} c_{t}(m)\binom{-L(i)}{t}$ with p-integral coefficients $c_{t}(m)$. Thus if $a_{t} \equiv 0(\bmod p)$ for $0 \leqslant t<m$, we can replace $m!(\underset{m}{-L(i)})$ by $(-L(i))^{m}$ in the computation of $m!a_{m}(\bmod p)$. Now use $-L(i) \equiv$ $\left(i^{p-1}-1\right) / p(\bmod p)$. Write i uniquely as $i=l+k p$, and observe that $-L(l+k p) \equiv\left(\left(l^{p-2}(l-k p)-1\right) / p\right)(\bmod p)$. Replacing l by $p-l, k$ by $p-1-k$, and j by $d-1-j$ and performing the sum over j makes no change $(\bmod p)$ in the terms to be summed over l and k, due to the fact that $\psi \omega^{r}$ is odd and ψ is nontrivial. Hence twice the sum in the statement of the proposition is congruent to $-d_{0} m!a_{m}(\bmod p)$, when $m<p$. The result follows.

IV. The Iwasawa Lambda Invariant of a Number Field

As in the introduction, let \mathbb{Q}_{∞} be the unique Galois extension of \mathbb{Q} with Galois group isomorphic to \mathbb{Z}_{p}, let K be an algebraic number field (finite extension of \mathbb{Q}), and let K_{n} be the unique extension having degree p^{n} over K in $K \cdot \mathbb{Q}_{\infty}$. The Iwasawa invariants $\mu=\mu_{p}, \lambda=\lambda_{p}$, and $v=\nu_{p}$ of K are characterized by the property that $\mu p^{n}+\lambda n+v$ gives the exact power of p dividing the class number $h\left(K_{n}\right)$ for large n. A theorem of Iwasawa immediately identifies cases where $\mu=0=\lambda$.
(4.1) Theorem. Suppose p does not divide $h(K)$ and L / K is a finite Galois p-extension, with at most one prime of K ramified in L. Then p does not divide $h(L)$.

Proof. [18, p. 185]. Iwasawa's original proof [10] when L / K is cyclic also suffices for our applications.
(4.2) Corollary. If only one prime of K divides p, and p does not divide $h(K)$, then $\mu_{p}=0=\lambda_{p}$ in K.

Proof. Since p is the only prime of \mathbb{Q} which ramifies in \mathbb{Q}_{∞}, primes dividing p are the only ones which can ramify in K_{n} / K. (This is in fact true
of any \mathbb{Z}_{p}-extension.) Thus the theorem applies and p does not divide $h\left(K_{n}\right)$. This implies that $\mu_{p}=0=\lambda_{p}$.

If K is a CM field with maximal real subfield K^{+}, we let $h^{+}(K)=h\left(K^{+}\right)$ and $h^{-}(K)=h(K) / h^{+}(K)$, which is an integer. Then each K_{n} is also CM and so we can define h_{n}^{+}and h_{n}^{-}similarly. Iwasawa's theorem [11] then states that the power of p dividing h_{n}^{+}is given by $\mu^{+} p^{n}+\lambda^{+} n+v^{+}$, while that dividing h_{n}^{-}is given by $\mu p^{n}+\lambda^{-} n+v^{-}$for large n. So $\mu=\mu^{+}+\mu$ and $\lambda=\lambda^{+}+\hat{\lambda}^{-}$. It is conjectured that $\mu^{+}=\mu^{-}=\mu=0$ [11] and that $\lambda^{+}=0$ [8].

Ferrero and Washington [4] investigated μ-invariants of LeopoldtKubota p-adic L-functions and proved that $\mu_{p}(K)=0$ when K is an imaginary abelian field. Similarly, there is a connection between $\lambda_{p}(K)$ and the λ-invariants of Leopoldt-Kubota p-adic L-functions. We make the simplifying assumption that the conductor of K is not divisible by p^{2}, so that all associated Dirichlet characters are of the first kind.
(4.3) Proposition. $\lambda_{p}^{-}(K)=\sum_{\text {odd } \chi \neq \omega^{-1}} \lambda\left(L_{p}(s, \chi \omega)\right)$.

The sum runs over all odd primitive Dirichlet characters associated with K, with the exception of ω^{-1} in the case where ω^{-1} is an associated character.

Proof. The proof is based on the analytic class number formula.

V. Imaginary Quadratic Fields and the Criterion of Gold

Now let $K=\mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic field of discriminant $-d$, and let χ be the associated nontrivial quadratic Dirichlet character of conductor d. Thus $\chi(i)=(-d / i)$ is given by the Jacobi symbol.
(5.1) Proposition. $\lambda_{p}(K)=\lambda_{p}^{-}(K)=\lambda\left(L_{p}(s, \chi \omega)\right)$.

Proof. Now $K^{+}=\mathbb{Q}$, so $\lambda_{p}^{+}(K)=0$ by Corollary (4.2). Thus $\lambda_{p}(K)=$ $\lambda_{p}^{-}(K)$. The second equality is a special case of Proposition (4.3).

The following theorem of Gold greatly facilitates the computation of lambda invariants of imaginary quadratic fields.
(5.2) THEOREM (Gold [6]). Assume that $\chi(p)=1$, so that p splits in K, $(p)=\mathscr{P} \overline{\mathscr{P}}$. Then $\lambda_{p}(K) \geqslant 1$. Suppose furthermore that $\mathscr{P}^{r}=(\pi)$ is principal
for some integer r not divisible by p. Then $\lambda_{p}(K)>1$ if and only if $\pi^{p, 1} \equiv 1$ $\left(\bmod \overline{\mathscr{P}}^{2}\right)$.
(5.3) Remark. A generalization of this theorem to arbitrary CM fields K follows from a result of Federer-Gross-Sinnott [1]. A corollary (for which more direct proofs and stronger statements are available) is that $\lambda_{p}(K)>0$ if p divides $h(K)$.

In the case of $p=2$, Kida [12] and Ferrero [2] independently found a simple formula for $\lambda_{2}(K)$ when K is imaginary quadratic. Let $D>3$ be a square-free odd integer, and for any positive integer M, let $(M)_{2}$ denote the largest factor of M which is a power of 2 . Then

$$
\lambda_{2}(\mathbb{Q}(\sqrt{-D}))=\lambda_{2}(\mathbb{Q}(\sqrt{-2 D}))=-1+\sum_{\| D}\left(\frac{l^{2}-1}{8}\right)_{2}
$$

where the sum is over all prime divisors l of D. In the remaining cases of $D=1,2$, or 3 , observe that $\lambda_{2}=0$ by (4.1). For the sake of completeness, we will also include the values of $\lambda_{2}(K)$ in our table.

We now prove a proposition to be used in the implementation of Gold's criterion, after briefly recalling the relation between quadratic forms of discriminant $-d$ and ideals in $K=\mathbb{Q}(\sqrt{-d})$.

For any (fractional) ideal \mathscr{A} of K with \mathbb{Z}-basis $\mathscr{A}=[\alpha, \beta]$ (assumed ordered; i.e. $\operatorname{Im}(\alpha / \beta)>0)$ there is an associated norm form

$$
Q(x, y)=a x^{2}+b x y+c y^{2}=\frac{\mathbb{N}(\alpha x+\beta y)}{\mathbb{N} \mathscr{A}}
$$

The form $Q(x, y)$ has integer coefficients and is a positive definite quadratic form of discriminant $b^{2}-4 a c=-d$. Any change of basis for \mathscr{A} by an element of $S L_{2}(\mathbb{Z})$ gives a quadratic form $S L_{2}(\mathbb{Z})$-equivalent to $Q(x, y)$. Any ideal $\gamma \mathscr{A}$ principally equivalent to \mathscr{A} gives the same collection of quadratic forms since the norm form for $[\alpha, \beta]$ is the same quadratic form as the norm form for $[\gamma \alpha, \gamma \beta]$.

Conversely, to the positive definite quadratic form $Q(x, y)=a x^{2}+b x y+$ $c y^{2}$ of discriminant $b^{2}-4 a c=-d$ we can associate an ideal

$$
\mathscr{A}=\left[a, \frac{b-\sqrt{-d}}{2}\right]
$$

of norm a. Then the quadratic form associated to \mathscr{A} with respect to this basis is $Q(x, y)$.

The association

$$
\begin{equation*}
Q(x, y)=a x^{2}+b x y+c y^{2} \leftrightarrow \mathscr{A}=\left[a, \frac{b-\sqrt{-d}}{2}\right] \tag{1}
\end{equation*}
$$

associates to the quadratic form $Q(x, y)$ a specific basis for a particular ideal whose associated norm form is $Q(x, y)$. We now see how these ideals are related under an $S L_{2}(\mathbb{Z})$ transformation of the quadratic form.

Let

$$
A=\left(\begin{array}{cc}
a & b / 2 \tag{2}\\
b / 2 & c
\end{array}\right)
$$

so that

$$
Q(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right) A\binom{x}{y}
$$

Let $P \in S L_{2}(\mathbb{Z})$ and suppose

$$
\binom{x}{y}=P\binom{x^{\prime}}{y^{\prime}}
$$

Then

$$
Q(x, y)=a x^{2}+b x y+c y^{2}=a^{\prime} x^{\prime 2}+b^{\prime} x^{\prime} y^{\prime}+c y^{\prime 2}=Q^{\prime}\left(x^{\prime}, y^{\prime}\right)
$$

where

$$
Q^{\prime}\left(x^{\prime}, y^{\prime}\right)=\left(\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right) A^{\prime}\binom{x^{\prime}}{y^{\prime}}
$$

with

$$
A^{\prime}=\left(\begin{array}{cc}
a^{\prime} & b^{\prime} / 2 \tag{3}\\
b^{\prime} / 2 & c^{\prime}
\end{array}\right)=P^{t} A P
$$

(P^{t} the transpose of P).
The association in (1) defines an ideal (even with a chosen basis) to each of the $\left(S L_{2}(\mathbb{Z})\right.$-equivalent $)$ forms $Q(x, y)$ and $Q^{\prime}\left(x^{\prime}, y^{\prime}\right)$. Since these ideals have the same associated norm forms, the ideals are principally equivalent. The following result in particular specifically identifies the relation between these ideals.
(5.4) Proposition. Suppose $P \in S L_{2}(\mathbb{Z})$ and A and A^{\prime} are defined by (2) and (3) above. Then for any integers x_{0}, y_{0} and $x_{0}^{\prime}, y_{0}^{\prime}$ related $b y\binom{x_{0}}{y_{0}}=P\binom{x_{0}}{y_{0}}$ we have

$$
\begin{aligned}
& \left(x_{0} a+y_{0} \frac{b+\sqrt{-d}}{2}\right)\left[1, \frac{b-\sqrt{-d}}{2 a}\right] \\
& \quad=\left(x_{0}^{\prime} a^{\prime}+y_{0}^{\prime} \frac{b^{\prime}+\sqrt{-d}}{2}\right)\left[1, \frac{b^{\prime}-\sqrt{-d}}{2 a^{\prime}}\right]
\end{aligned}
$$

as fractional ideals of k. More precisely, if

$$
\begin{aligned}
& \omega_{1}=x_{0} a+y_{0} \frac{b+\sqrt{-d}}{2} \\
& \omega_{2}=\left(x_{0} a+y_{0} \frac{b+\sqrt{-d}}{2}\right) \frac{b-\sqrt{-d}}{2 a}=x_{0} \frac{b-\sqrt{-d}}{2}+y_{0} c
\end{aligned}
$$

are the basis for the first ideal above and similarly for $\omega_{1}^{\prime}, \omega_{2}^{\prime}$, then

$$
\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}=P^{\mathrm{t}}\binom{\omega_{1}}{\omega_{2}} .
$$

Proof. Note that

$$
\begin{aligned}
\binom{\omega_{1}}{\omega_{2}} & =\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)\binom{x_{0}}{y_{0}}+\frac{\sqrt{-d}}{2}\binom{y_{0}}{-x_{0}} \\
& =A\binom{x_{0}}{y_{0}}+\frac{\sqrt{-d}}{2}\binom{y_{0}}{-x_{0}}
\end{aligned}
$$

and similarly for $\omega_{1}^{\prime}, \omega_{2}^{\prime}$. Then

$$
\begin{aligned}
\binom{\omega_{1}^{\prime}}{\omega_{2}^{\prime}} & =A^{\prime}\binom{x_{0}^{\prime}}{y_{0}^{\prime}}+\frac{\sqrt{-d}}{2}\binom{y_{0}^{\prime}}{-x_{0}^{\prime}} \\
& =A^{\prime} P^{-1}\binom{x_{0}}{y_{0}}+\frac{\sqrt{-d}}{2} P^{\mathrm{t}}\binom{y_{0}}{-x_{0}} \\
& =P^{\mathrm{t}} A\binom{x_{0}}{y_{0}}+\frac{\sqrt{-d}}{2} P^{\mathrm{t}}\binom{y_{0}}{-x_{0}} \\
& =P^{\mathrm{t}}\left[A\binom{x_{0}}{y_{0}}+\frac{\sqrt{-d}}{2}\binom{y_{0}}{-x_{0}}\right] \\
& =P^{\mathrm{t}}\binom{\omega_{1}}{\omega_{2}} .
\end{aligned}
$$

Vi. Computational Methods

The computation of $\lambda_{p}(K)$ for $K=\mathbb{Q}(\sqrt{-d})$ proceeds as follows. Again let χ be the nontrivial character associated with K, that is, the odd quadratic Dirichlet character of conductor d. If $(p, h(K))=1$ and $\chi(p) \neq 1$, then $\lambda_{p}(K)=0$ by Corollary (4.2). If $(p, h(K))=1$ and $\chi(p)=1$, then $\lambda_{p}(K) \geqslant 1$ and Gold's criterion (with $r=h(K)$) quickly determines whether $\lambda_{p}=1$. In the remaining cases (empirically very few), the exact value of $\lambda_{p}(K)=$ $\lambda\left(L_{p}(s, \chi \omega)\right)$ is determined by means of Propositions (3.1) and (3.2), usually only requiring the consideration of a single value of m. Note that the conductor d of K is not divisible by p^{2}, since K is imaginary quadratic. Also we may assume that $d \neq p$ since otherwise we would have $K=$ $\mathbb{Q}(\sqrt{-p})$ and $h(K)<p$; this is the case where $\lambda_{p}(K)=0$. Thus $d_{0}>1$ and the hypotheses of (3.1) and (3.2) are satisfied. If Proposition (3.2) indicates that $\lambda_{p}(K) \geqslant p$, then Proposition (3.1) is employed, beginning with $m=p$.

We now describe our algorithm in more detail. See [13] for a discussion of the facts which we state without proof. All main programs were run on a VAX 8550 computer at the Computer Centre of Concordia University, Montreal. Programs for the special cases of p dividing the class number or the norm of a reduced ideal (defined below), and of $\lambda_{p} \geqslant p$ were run on a VAX 8600 at the Academic Computing Center of the University of Vermont, as well as a check of all programs for $p<10,000$ and $d<500$.

Precomputation

(1) Given d, first find all reduced positive definite quadratic forms $a x^{2}+b x y+c y^{2}$ with nonnegative coefficients and discriminant $b^{2}-4 a c=$ $-d$. This is a finite search since all the coefficients are less than $\sqrt{d / 3}$. Such a quadratic form corresponds to the ideal written in terms of its ordered integral basis as $\mathscr{A}=[a,(b-\sqrt{-d}) / 2]$. The ideal \mathscr{A} has norm a, which is the minimum norm for integral ideals in the ideal class of \mathscr{A}, by virtue of the form being reduced. We also say that such an ideal is reduced. Given an ideal class of $K=\mathbb{Q}(\sqrt{-d})$, there is a unique form on our list corresponding to this class or its inverse (conjugate). Hence the class number $h(K)$ is found by counting ambiguous forms (those corresponding to an ideal class which is its own inverse) once and all others twice.
(2) Raise each representative ideal $\mathscr{A}=[a,(b-\sqrt{-d}) / 2]$ to the $h(K)$ power by the method of Hellegouarch [9]. Specifically, when $(a, d)=1$, first use Newton's method to solve for b^{\prime} such that $\left(b^{\prime}\right)^{2} \equiv-d$ $\left(\bmod 4 a^{h(K)}\right)$ and $b^{\prime} \equiv b(\bmod 2 a)$. Then $\mathscr{A}^{h(K)}=\left[a^{k(K)},\left(b^{\prime}-\sqrt{-d}\right) / 2\right]$. It is easy to reduce to the case of $(a, d)=1$ by first removing the ramified prime factors from \mathscr{A}, and using the fact that their squares are principal
ideals, generated by rational primes. This solves the problem when $h(K)$ is even. But when $h(K)$ is odd, there is only one ramified prime, and it is principal. Thus it will never occur in the factorization of a reduced ideal.
(3) Determine a generator $\gamma=(A+B \sqrt{-d}) / 2$ for the resulting principal ideal $\mathscr{A}^{h(K)}$ as follows. Again we may assume that the ramified prime factors have been removed from \mathscr{A} as above. The principal ideal $\mathscr{A}^{h(K)}=$ $\left[a^{h(K)},\left(b^{\prime}-\sqrt{-d}\right) / 2\right]$ corresponds to the quadratic form $Q(x, y)=$ $a^{h(K)} x^{2}+b^{\prime} x y+c^{\prime} y^{2}$; therefore this quadratic form reduces to the quadratic form representing the principal class; i.e.,

$$
\begin{cases}x^{\prime 2}+\frac{d}{4} y^{\prime 2} & \text { if } d \equiv 0 \bmod 4 \\ x^{\prime 2}+x^{\prime} y^{\prime}+\frac{1+d}{4} y^{\prime 2} & \text { if } d \equiv 3 \bmod 4\end{cases}
$$

Find the transformation $P \in S L_{2}(\mathbb{Z})$ reducing $Q(x, y)$ to the principal class [13]. Then

$$
P^{\mathrm{t}}\left(\begin{array}{ll}
a^{h(K)} & b^{\prime} / 2 \\
b^{\prime} / 2 & c^{\prime}
\end{array}\right) P= \begin{cases}\left(\begin{array}{cc}
1 & 0 \\
0 & d / 4
\end{array}\right) & \text { if } d \equiv 0 \bmod 4 \\
\left(\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & (1+d) / 4
\end{array}\right) & \text { if } d \equiv 3 \bmod 4 .\end{cases}
$$

Define the integers r, s by

$$
P^{-1}\binom{1}{0}=\binom{r}{s}
$$

Then by Proposition (5.4) we have

$$
\left(a^{h(K)}\right)\left[1, \frac{b^{\prime}-\sqrt{-d}}{2 a^{h(K)}}\right]=(r+s \bar{\omega})[1, \omega]
$$

where

$$
\omega= \begin{cases}\frac{-\sqrt{-d}}{2} & \text { if } d \equiv 0 \bmod 4 \\ \frac{1-\sqrt{-d}}{2} & \text { if } d \equiv 3 \bmod 4\end{cases}
$$

defines an integral basis for the ring of integers of K. It follows that

$$
\mathscr{A}^{h(K)}=(r+s \bar{\omega})
$$

as ideals; i.e., we have determined a principal generator for $\mathscr{A}^{h(K)}$.
The software for this precomputation was written in the ALGEB language (see [5]), and was performed for all $d<1,000$. The maximum coefficient among the generators of the principal ideals was 2345980631280281637826 . This precomputation required $1 \mathrm{~min}, 58 \mathrm{sec}$ of CPU time to complete.

Applying the Criterion of Gold

Having completed the precomputation, begin to apply the criterion of Gold (5.2) to those primes p which split in K and do not divide $h(K)$.
(1) Find $g>0$ such that $g^{2} \equiv-d(\bmod 4 p)$ by the algorithm of Shanks [17]. The form $\left(\left(g^{2}+d\right) / 4 p\right) x^{2}+g x y+p y^{2}$ has discriminant $-d$ and represents p when $(x, y)=(0,1)$.
(2) Reduce this form by the standard procedure [13] to obtain a reduced form $a x^{2}+b x y+c y^{2}$, and also modify (x, y) correspondingly at each step to obtain (X, Y) so that $a X^{2}+b X Y+c Y^{2}=p$. The reduced form appears on the list derived in our precomputation and corresponds to some ideal $\mathscr{A}=[a,(b-\sqrt{-d}) / 2]$ with norm a. Obtain the generator $\gamma=(A+B \sqrt{-d}) / 2$ for $\mathscr{A}^{h(K)}$ from the list. The element $\delta=a X+[(b-\sqrt{-d}) / 2] Y$ is in \mathscr{A} and has norm pa. Thus $(\delta)=\mathscr{P} \mathscr{A}$, where \mathscr{P} is one of the primes above p in K (and \mathscr{A} is a representative ideal of the class of $\overline{\mathscr{P}})$. Set $r=h(K)$ in (5.2), and note that p does not divide r, by assumption. Then the element $\pi=\delta^{h(K)} / \gamma$ generates $\mathscr{P}^{h(K)}$, as required.
(3) When $\mathscr{A} \not \subset \overline{\mathscr{P}}$, the criteria $\pi^{p-1} \equiv 1\left(\bmod \overline{\mathscr{P}}^{2}\right)$ for $\lambda_{p}(K)>1$ of (5.2) may be rewritten as $\gamma^{p-1} \equiv\left(\delta^{p-1}\right)^{h(K)}\left(\bmod \overline{\mathscr{P}}^{2}\right)$. This reduces to a congruence between rational integers $\left(\bmod p^{2}\right)$, as follows.

Since $\delta^{2} \equiv \delta^{2}+\bar{\delta}^{2}\left(\bmod \overline{\mathscr{P}}^{2}\right)$, the right hand side being a rational integer, one has

$$
\delta^{p-1} \equiv\left(-d Y^{2}\right)^{(p-31 / 2}\left(-d Y^{2}-a p\right) \quad\left(\bmod \overline{\mathscr{P}}^{2}\right)
$$

The fact that $\bar{\delta}^{2} \in \overline{\mathscr{P}}^{2}$ also shows that

$$
(2 \mathrm{a} X+b Y) Y \sqrt{-d} \equiv\left(d Y^{2}-2 a p\right) \quad\left(\bmod \overline{\mathscr{P}}^{2}\right)
$$

Hence

$$
[2(2 a X+b Y) Y] \gamma \equiv(2 a X+b Y) Y A+\left(d Y^{2}-2 a p\right) B \quad\left(\bmod \overline{\mathscr{P}}^{2}\right)
$$

Upon multiplication by $(2 a X+b Y) Y$ (which is not divisible by p since δ is not), the criterion becomes

$$
\begin{aligned}
{[(2 a X} & \left.+b Y) Y A+\left(d Y^{2}-2 a p\right) B\right]^{p} \quad \\
\equiv & {[2(2 a X+b Y) Y]^{p-1} } \\
& \times\left[\left(-d Y^{2}\right)^{(p-3 / 2}\left(-d Y^{2}-a p\right)\right]^{h(K)} \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

Determine whether $\lambda_{p}(K)>1$ by checking this congruence.
If $\mathscr{A} \subset \overline{\mathscr{P}}$ then in fact $\mathscr{A}=\overline{\mathscr{P}}$, because \mathscr{A} is the integral ideal of smallest norm in the ideal class of $\overline{\mathscr{P}}$. Hence $p=a$ and the criterion in this case is simply $A^{p-1} \equiv 1\left(\bmod p^{2}\right)$. Determine whether $i_{p}(K)>1$ by checking this congruence.

The software for this step was written in PASCAL, with assembler routines for arithmetic $\bmod p$ and arithmetic $\bmod p^{2}$. To do all $d<1,000$ and $p<10^{7}$ required $149 \mathrm{hr}, 30 \mathrm{~min}$ of CPU time.

Computation of Iwasawa Coefficients Modulo p

Once it has been determined that $\lambda_{p}(K) \geqslant 1$ because p divides $h(K)$, or that $\lambda_{p}(K) \geqslant 2$ by the criterion of Gold, proceed with the computation of $\lambda_{p}(K)$ based on (3.2) and (3.1) as follows. First tabulate the values of $\chi(i)=(-d / i)$ for $1 \leqslant i \leqslant d-1$ by repeated use of reduction and quadratic reciprocity. Then evaluate the expression in (3.2) modulo p, beginning with $m=1$ when p divides $h(K)$ and with $m=2$ when the criterion of Gold has already been applied. Repeated use of a procedure to multiply modulo p^{2} ensures that all integers remain less than p^{2}. For each value of $l \leqslant(p-1) / 2$, compute $l^{(p-2)}$ by repeated squaring modulo p^{2}. For each value of $k \leqslant(p-1)$, obtain $\left(\left(l^{p-2}(l-k p)-1\right) / p\right)^{m}$ modulo p. Finally, compute $i=$ $l+k p+j p^{2}$ modulo d, and obtain $\chi(i)$ by referring to the tabulated values. Compute the sums over j, k, and l modulo p. If the result is nonzero modulo p, then $\lambda_{p}(K)=m$. Otherwise increase m and begin the computation again; this is rarely necessary, especially with larger primes, as the tables show. Eventually either $\lambda_{p}(K)$ is determined or $m=p-1$ is reached. In the latter case, begin computing the expression in (3.1) with $m=p$ in much the same way. This has only been required for a few cases where $p=3$, and has always succeeded in determining $\lambda_{3}(K)$.

The software for this step was written in PASCAL, with assembler routines for arithmetic $\bmod p$, arithmetic $\bmod p^{2}$, and character value sums. For $d<1,000$ and $p<20,000$ this step required $516 \mathrm{hr}, 48 \mathrm{~min}$ of CPU time.

VII. Heuristics

In a fixed imaginary quadratic field K, we have seen that $\lambda_{p}=0$ for any prime p which is inert in K and does not divide the class number h_{K}. Also since $\lambda_{p} \geqslant 1$ for every prime which splits in K, it follows that the density of prime numbers for which $\lambda_{p}=0$ is one half, as is the density of primes for which $\lambda_{p} \geqslant 1$.

Again let χ be the quadratic Dirichlet character associated with K and

$$
G(T, \chi \omega)=\sum_{m=0}^{\infty} a_{m} T^{m}
$$

be the corresponding Iwasawa power series. Then $\lambda_{p}>n$ if and only if a_{m} is divisible by p for all $m \leqslant n$. For a prime p which splits in K, we have $a_{0}=0$ and $a_{1} \neq 0$ by [3]. If one assumes that the coefficients a_{m} are uniformly distributed modulo p, then the probability that $\lambda_{p}>1$ is just the probability that p divides a_{1}, namely $1 / p$. Since the sum $\sum 1 / p$ diverges when taken over all primes p which split in K, it follows from the Borel-Cantelli lemma that "with probability 1 ," there are an infinite number of primes p for which $\lambda_{p}>1$. Indeed, one would expect the cardinality of $\left\{p: \lambda_{p}>1, p<x\right\}$ to be asymptotic to $c \log (\log (x))$ for some $c>0$. On the other hand the probability that p divides both a_{1} and a_{2} is $1 / p^{2}$ under this assumption, and as $\sum 1 / p^{2}$ converges, it follows that the expected number of p such that $\lambda_{p}>2$ is finite.

VIII. Table

For each $d<1,000$, Table I lists all primes p for which $\lambda_{p}>1$ in the imaginary quadratic field of discriminant $-d$. When $p<20,000$, the computed value is $\lambda_{p}=2$ unless a larger computed value appears in parentheses. When a prime $p>20,000$ appears, it is always followed by an asterisk; this is to denote that $\lambda_{p}>1$ but the exact value of λ_{p} has not been computed. In these cases it is highly probable that $\lambda_{p}=2$. The first number in parentheses in each row is the value of λ_{2}, determined from the formula of Kida and Ferrero.

For primes which are not listed, it is easy to determine whether $\lambda_{p}=1$ or $\lambda_{p}=0$ from the class number h_{K}, also given in the table, and the Jacobi symbol ($-d / p$), which can be computed rapidly by repeated reduction and quadratic reciprocity. Specifically, as described earlier, $\lambda_{p}=0$ when $\left(p, h_{K}\right)=1$ and $(-d / p) \neq 1$; otherwise $\lambda_{p}>0$.

TABLE I
Complete Table of All $\lambda_{p}>1, p<10,000,000$ in Imaginary Quadratic Fields \mid DISC $\mid=d<1,000$

TABLE I-Continued

TABLE I-Continued

TABLE I-Continued

D	H	$\mathrm{P}=2$	ODD PRIMES		
643	3	(0)	307		
644	16	(3)	223		
647	23	(1)	2383	197009*	
651	8	(10)) 5	11.	16451
655	12	(1)	$301751 *$		
6よう	11	(0)	3 (3)) 13	
660	8	(2)	19	181	
663	15	(5)			
654	10	(0)	5(3)		
667	4	(2)	547	$395111 *$	$973283 *$
671	30	(1)			
679	18	(9)	5393		
680	12	(4)	24071		
683	5	(0)	3(3)		
687	12	(2)	541* 49	9355417*	
691	5	(0)			
692	14	(0)	3	661	
695	24	(1)			
696	12	(1)	7829		
699	10	(2)			
703	14	(1)	29		
707	6	(2)	71	24623*	
708	4	(1) 2	2552009 *		
712	8	(1)			
715	4	(2)	633161*		
719	31	(3)			
723	4	(4)	11(3)	58027*	
724	10	(0)	761		
727	13	(1)	1051		
728	12	(2)	11	41	
731	12	(4)	1031		
739	5	(0)	5		
740	16	(1)	112939*		
743	21	(1)	3	71(3)) 263
744	12	(8)	3		
751	15	(3)	3	13	347(3)
755	12	(2)			
759	24	(3)	5	7	
760	4	(1)			
763	4	(2)	167		
757	22	(1)	37		
771	6	(64)	5	2741	333857 *
772	4	(15)	1032	274871*	
776	20	(7)	7(3)	839	8543
779	10	(2)			
787	5	(0)	107		
788	10	(0)	$31 \quad 2$	225697*	
791	32		$098237 *$		
795	4	(2)	33131	$1531331 *$	
799	16	(7)	5 (3)	139	
803	10	(2)	5	3613	
804	12	(1) 3	325607* 4	477977 *	
807	14	(1)	167	1831	
808	6	(0)	127		
811	7	(0)	11		
815	30	(1)	3 (3)	103	5813
820	8	(2)	163	317	
823	9	(1)			
824	20	(1)	56113* 41	124357 *	
827	7	(0)	3(3)	19	450301 *
831	28	(1)	5	7	11
835	6	(2)			
836	20	(1)	13	1987	
839	33	(1)	23		
840	8	(3)			
843	6	(2)	3(3)	421	13757
851	10	(2)	173		

TABLE I-Continued

D	H	$\mathrm{P}=2$	ODD PRIMES			
352	8	(2)	5779	371343*		
856	6	(0)	3(4)) 2213		
859	7	(0)	5	7	61	16573
863	21	(7)	3	± 7		
868	8	(9)	773			
371	22	(1)				
872	10	(0)	3	401		
879	22	(1)	5			
883	3	(0)	79	91757*		
884	16	(4)	598	8574767*		
887	29	(1)	29	457	4079	
888	12	(1)	17	271753*		
895	16	(1)				
899	14	(8)	3	190669 *		
903	16	(3)	17	311		
904	8	(3)				
907	3	(0)	3(3)) 19	1229	
911	31	(3)	5			
915	8	(2)	11777			
916	10	(0)	9839	$596611 *$		
919	19	(1)	23 (3)			
920	20	(2)	3	5	1277	$305497 *$
923	10	(2)				
932	12	(1)	44131*			
935	28	(5)	3(3)			
939	8	(2)	367	192013*		
943	16	(3)	173			
947	5	(0)	41			
948	12	(4)	17	113	127	
951	26	(1)	509	797	1549	
952	8	(5)	37			
955	4	(16)	167			
959	36	(3)				
964	12	(3)	5(3)	61	103	
967	11.	(1)	139	1291		
971	15	(0)	3	3361		
979	8	(2)	7			
983	27	(1)				
984	12	(2)				
987	8	(6)				
991	17	(7)				
995	8	(2)	3			
996	12	(1)	3			

Note. $\lambda_{p}=2$ unless otherwise indicated in parentheses. p^{*} denotes $p>20,000$ for which $\lambda_{p}>1$ and probably equals 2 (but this is unconfirmed).

References

1. L. J. Federer and B. H. Gross, (Appendix by W. Sinnott), Regulators and Iwasawa modules, Invent. Math. 62 (1981), 443-457.
2. B. Ferrero, The cyclotomic \mathbb{Z}_{2}-extension of imaginary quadratic fields, Amer. J. Math. 102, No. 3 (1980), 447-459.
3. B. Ferrero and R. Greenberg, On the behaviour of p-adic L-functions at $s=0$, Invent. Math. 50 (1978), 91-102.
4. B. Ferrero and L. Washington, The Iwasawa invariant μ_{ρ} vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395.
5. D. Ford, "On the Computation of the Maximal Order in a Dedekind Domain," Ph.D. Dissertation, Ohio State University, 1978.
6. R. Gold, The nontriviality of certain \mathbb{Z}_{l}-extensions, J. Number Theory 6 (1974), 369-373.
7. R. Gold, Examples of Iwasawa invariants, II, Acta Arith. 26 (1975), 233-240.
8. R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
9. Y. Hellegouarch, Algorithme pour calculer les puissances successives d'une classe d'idéaux dans uns corps quadratique. Application aux courbes elliptiques, C. R. Acad. Sci. Paris Sér. I 305 (1987), 573-576.
10. K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
11. K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183-226.
12. Y. Kida, On cyclotomic \mathbb{Z}_{2}-extensions of imaginary quadratic fields, Tôhoku Math. J. 31 (1979), 91-96.
13. H. W. Lenstra, Jr., On the calculation of class numbers and regulators of quadratic fields, in "London Math. Soc. Lecture Note Ser.," Vol. 56, pp. 123-150, Cambridge Univ. Press, Cambridge, 1982.
14. H. W. Leopoldt, Eine p-adische Theorie der Zetawerte. II. Die p-adische Γ-Transformation, J. Reine Angew. Math. 274/275 (1975), 224-239.
15. R. Ernvall and T. Metsänkylä, A method for computing the Iwasawa λ-invariant, Math. Comp. 49, No. 179 (1987), 281-294.
16. K. Ribet, "Fonctions L p-adiques et Théorie d'Iwasawa (Notes de P. Satgé d'après un cours de K. Ribet)," Publ. Math. d'Orsay 79.01, Département de Mathématique, Bâtiment 425, Université de Paris-Sud, 91405 Orsay, France, 1979.
17. D. Shanks, Five number theoretic algorithms, in "Proceedings of the Second Manitoba Conference on Numerical Mathematics (1972)," pp. 51-70.
18. L. C. Washington, "Introduction to Cyclotomic Fields," Springer-Verlag, New York, 1982.

[^0]: * Research partially supported by NSF Vermont EPSCoR Grant RII-8610679.
 ${ }^{\dagger}$ Research partially supported by grants from NSERC and FCAR.
 \ddagger Research partially supported by NSF Vermont EPSCoR Grant RII-8610679 and a University of Vermont Faculty Summer Research Fellowship.

