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Abstract

Sets of linear inequalities are an expressive reasoning tool for approximating the reachable states of a
program. However, the most precise way to join two states is to calculate the convex hull of the two
polyhedra that are represented by the inequality sets, an operation that is exponential in the dimension
of the polyhedra. We investigate how similarities in the two input polyhedra can be exploited to improve
the performance of this costly operation. In particular, we discuss how common equalities and certain
inequalities can be omitted from the calculation without affecting the result. We expose a maximum of
common equalities and inequalities by converting the polyhedra into a normal form and give experimental
evidence of the merit of our method.
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1 Introduction

Numeric invariants in programs are important for optimization and verification. In

this context, one of the most interesting abstract domains to infer these invariants

is that of convex polyhedra (polyhedra for short) which is able to infer linear re-

lationships between variables [5]. Linear relationships make it possible to express

symbolic bounds that are sufficient to prove, for example, the absence of buffer over-

flows in C programs, even when the terminating zero character is not fixed [14,13].

Furthermore, it is possible to express input/output relationships of a function [7].

However, the domain of convex polyhedra suffers from the poor scalability of its

join operation. The most precise join is the convex hull of the two polyhedra whose

result can be exponential in the size of the input. While an exponential output

is rather uncommon, the bottleneck is the exponential intermediate representation
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x1 +x3 −x4 +x7 = −1
4x2 +x3 −x4 = 4

x5 = 0

x6 +4x7 = 0

x3 −x4 −x8 ≤ 8

−x3 +x4 +x8 ≤ −4
x8 ≤ 1

−x8 ≤ 0

x7 ≤ 1

−x7 ≤ 0

︸ ︷︷ ︸
equalities

partition 2

{
partition 1

⎧⎪⎨
⎪⎩

Fig. 1. Normalized form of a set of constraints

that is employed to calculate the convex hull [15]: Given two n-dimensional polyhe-

dra as input, the double description method calculates a set of generators (vertices,

rays, and lines) from the input constraints that is usually exponential in n. Simi-

larly, calculating the convex hull via projection needs n+1 Fourier-Motzkin variable

elimination steps, incurring a quadratic growth of inequalities in each step. Most

of these inequalities are redundant and must be removed. As the output is often of

manageable size anyway, we propose to omit constraints that are common to the

two input polyhedra, which can reduce the size of the intermediate representation

considerably.

We find a maximum of common constraints by storing a polyhedron in a normal

form [10] which is obtained by substituting each equality that holds in a polyhedron

in all remaining constraints, leading to system such as the one in Fig. 1. It is well

known that equalities that are common to two polyhedra can be omitted when

calculating their join [4]. We show that omitting common equalities yields indeed

a speedup. This is contrary to the observation in [8] who only identify and remove

common equalities on the exponential intermediate representation. We also show

that sets of common inequalities that do not share variables with other inequalities

can be omitted. Consider joining the normalized polyhedron in Fig. 1 with one

where only the inequalities on x7 are different: Firstly, the common equality x1 +

x3− x4 + x7 = −1 is omitted, thereby disentangling the variable x7 from x3, x4, x8.

Secondly, the common set of inequalities denoted as “partition 1” shares no variables

with “partition 2” and can thus be omitted, reducing the polyhedral join to a single

variable.

In summary, our work makes the following three contributions: It proves that

common equalities and stripes (constraints of the form a ·x = [l, u]) can be omitted;

it proves that common, non-overlapping inequality sets can be omitted; it gives

experimental evidence of the effectiveness of this factoring.

After introducing the normal form, Sect. 3 defines the convex hull using pro-

jection which is used in Sect. 4 to prove the factorings correct. The performance

improvements are presented in Sect. 5 before Sect. 6 concludes.

A. Simon / Electronic Notes in Theoretical Computer Science 267 (2010) 127–138128



x

x  �1

x
 �

8

x +
x  �

3

2
x
 +

x
  �

2
1

5

2

1

1 2 5 8
x

5

2

1

1 2 5 81

2

1

x x2

2

1
     2

  

1
     2

  

2x 
-3

x 
 �

1

-2
x 

+3x 
 �

-1

1   
   

  2
  

1   
   

 2
  

1

2x 
-3

x 
 �

1

-2
x 

+3x 
 �

-1

1   
   

  2
  

1   
   

 2
  

Fig. 2. The same convex polyhedron may have several representations

2 A Normal Form for Polyhedra

In order to identify common constraints in the input of the join, we first define a

normal form for a polyhedron when represented as a set of equalities and inequalities.

With respect to the notation, we write a constraint as a·x�c ∈ I where � ∈ {≤,=}
and [[a · x� c]] ∈ P ⊆ Q|x| denotes the set of points that satisfy the constraint. We

lift [[·]] to sets with [[I]] =
⋂{[[ι]] | ι ∈ I}. Finally, we use Polyn to denote the set of

all polyhedra P ∈ Polyn over n variables. Let � : Polyn × Polyn → Polyn denote

the join of two polyhedra of n dimensions.

Figure 2 shows two sets of inequalities that represent the same polyhedron. Al-

though P � P = P , the join of the two depicted polyhedra has to be calculated

explicitly since it is not clear from the inequality representation that the two poly-

hedra are, in fact, equal. Note that both inequality sets are non-redundant, that is,

none of the inequalities can be omitted without changing the polyhedron. Thus, in

order to make the representation of the two polyhedra canonical, it is necessary to

transform the inequality set.

The first step to a normal form for polyhedra is to express constraints (equali-

ties and inequalities) in a canonical way. We therefore assume that the coefficients

a ∈ Zn and the constant c ∈ Z are in their lowest form. However, the inequalities in

Fig. 2 are already canonical. The ambivalent representation is still possible because

P is embedded in the affine space [[{2x1 = 3x2 +1}]] which can be delimited by dif-

ferent inequalities. We eliminate the equality from the constraint set by substituting
3x2+1

2 for each occurrence of x1 and appropriately scaling the inequalities, yielding

{1 ≤ x2 ≤ 5} in the example. We say that x1 is factored out in P . Repeated factor-

ing of the smallest variable amongst the equalities eventually yields a polyhedron

P ∈ Polym that is fully dimensional, i.e. there exists m linearly independent points

c1, . . . cm ∈ P . The resulting system consists of a set of equalities whose matrix is

in triangular form, as shown in Fig. 1. Indeed, Lassez et al. [10] proved that the

transformation above leads to a normal form. In order to calculate the join of two

polyhedra with different equality set, each equality a ·x = c that is only present in

one polyhedron is converted to two opposing inequalities a ·x ≤ c and −a ·x ≤ −c
before the join is calculated on the inequality sets.

Substituting all equalities that hold in a polyhedron P ∈ Polyn requires finding

all equalities first. Many equalities can be found by identifying pairs of inequalities

of the form a · x ≤ c and −a · x ≤ −c. These form naturally an equality and
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can be removed cheaply. A system such as {x + y ≤ 0,−x + y ≤ 0,−y ≤ 0} has

implicit equalities which can be detected using Simplex. In general, given a set of

inequalities I, Simplex can be used to test if an inequality a · x ≤ c ∈ I also holds

as an equality: Whenever minimizing a ·x in P yields as minimum c, a ·x = c holds

in P and can be substituted. The task of testing all inequalities can be refined by

appropriate implementation techniques [12].

The next section introduces an implementation of the join operation on poly-

hedra, namely the calculation of the convex hull of two polyhedra using Fourier-

Motzkin elimination. We introduce this method here since it provides us with a

way to argue about common constraints in the two input systems.

3 Calculating the Convex Hull via Projection

This section briefly reviews the principle of calculating the convex hull of two polyhe-

dra using Fourier-Motzkin projection [3] which has been proposed as an alternative

to the classic double-description method that is used in current implementations

[2]. It forms the basis for factoring out common constraints.

Consider the calculation of P12 = P1 � P2 which can be defined as taking a convex

combination of each point x1 ∈ P1 with each point x2 ∈ P2:

P12 = cl({x ∈ Qn | x = (1− λ)x1 + λx2 ∧ 0 ≤ λ ≤ 1 ∧ x1 ∈ P1 ∧ x2 ∈ P2})

Here, the function cl denotes the topological closure of the result which is nec-

essary since the convex combination of closed but infinite spaces may not be closed.

See [14] for an example.

Suppose now that Pi = [[Aix ≤ ci]] for i = 1, 2 where Aix ≤ ci is the matrix

that represents the set of non-redundant inequalities defining Pi. We substitute this

definition to obtain the result in terms of the inequality systems:

P12 = cl({x ∈ Qn | x = (1− λ)x1 + λx2 ∧ 0 ≤ λ ≤ 1 ∧A1x1 ≤ c1 ∧A2x2 ≤ c2})

Substituting z := (1− λ)x1 and y := λx2 removes the multiplication, yielding:

P12 = cl({x ∈ Qn | x = z + y ∧ 0 ≤ λ ≤ 1 ∧A1
z

1− λ
≤ c1 ∧A2

y

λ
≤ c2})

Since 1− λ and λ are positive, we can multiply the inequality systems by these

factors without changing the ≤-relation. However, this step adds new solutions for

λ = 1 and λ = 0 for which the division rendered the effect of the inequality systems

in the previous expression undefined. Indeed, the resulting system contains only

non-strict inequalities and is therefore topologically closed. Thus, we may omit the

closure operation, giving:

P12 = {x ∈ Qn | x = z + y ∧ 0 ≤ λ ≤ 1 ∧A1z ≤ (1− λ)c1 ∧A2y ≤ λc2}
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Now simplify by setting z = x− y and by bringing the variable λ to the left:

P12 = {x ∈ Qn | 0 ≤ λ ≤ 1 ∧A1x−A1y + c1λ ≤ c1 ∧A2y − c2λ ≤ 0}

Thus, the points x ∈ Qn satisfied by the join [[A1x ≤ c1]]� [[A2x ≤ c2]] are those

that satisfy the following matrix for some y ∈ Qn and λ ∈ Q:⎛
⎜⎝

A1 −A1 c1

0 A2 −c2
0 · · · 0 0 · · · 0 −1
0 · · · 0 0 · · · 0 1

⎞
⎟⎠

(
x

y

λ

)
≤

⎛
⎜⎝

c1

0

0

1

⎞
⎟⎠

In order to calculate a set of inequalities over x, the variables y and λ are pro-

jected out which constitutes the idea of calculating the convex hull via projection.

Besides giving a constructive way to calculate the convex hull, the above charac-

terisation furthermore exhibits some interesting properties. Eliminating v ∈ {y, λ}
using Fourier-Motzkin elimination will calculate positive combinations of rows of

the matrix such that the coefficient for v are zero. Thus, once all variables y, λ are

eliminated, each inequality ι in the result is a positive linear combination of the

rows of the matrix such that the terms over y and λ add up to zero. Thus, each ι is

a positive linear combination of the inequalities A1x ≤ c1 plus some constant that

is due to the −1 and 1 entries.

Some interesting properties can be derived from this representation of the convex

hull. For instance, consider the fact that an inequality a · x ≤ c that is present in

both input polyhedra entails the convex hull (i.e. P1 � P2 ⊆ [[a · x ≤ c]]). This can

be shown directly by considering the following system where A′i and c′i denote the

input systems without a · x ≤ c:⎛
⎜⎜⎜⎜⎜⎝

(
a

A′
1

) (
−a
−A′

1

) (
c

c′1

)

0

(
a

A′
2

) (
−c
−c′2

)

0 · · · 0 0 · · · 0 −1
0 · · · 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

(
x

y

λ

)
≤

⎛
⎜⎜⎜⎜⎜⎝

(
c

c′1

)
(

0

0

)

0

1

⎞
⎟⎟⎟⎟⎟⎠

Given the system above, it is easy to see that the first row of the top system can

be added to the first row of the middle system, leading to a · x ≤ c in the output

system. Note that this inequality might be redundant.

In the next section, we shall use the above characterisation of the convex hull to

deduce that certain inequalities can be omitted without affecting the result. Since

the above representation is derived from the definition of the convex hull, the results

below apply equally to the double description method.

4 Factoring Out Common Constraints

This section illustrates that certain common inequalities in the input of the join

can be omitted by arguing based on the matrix characterisation of the convex hull

calculation from the previous section.
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4.1 Omitting Common Equalities and Stripes

By transforming a polyhedron into the normal form as described in Sect. 2, the

affine space that the polyhedron is embedded in is made explicit in the set of its

equalities. Furthermore, since the left-hand sides of the equality set is brought into

diagonal form, it is easy to identify equalities that are common to two polyhedra.

Given m common inequalities in two polyhedra P1, P2 ∈ Polyn, it is possible to

restrict the calculation of their convex hull to the (n − m)-dimensional subspace

and to add the omitted common equalities back to the result without altering the

outcome [4, p. 84]. The correctness of this approach can be shown by assuming

that both polyhedra are normalized and contain the two opposing inequalities that

correspond to the equality 〈a1, . . . an〉 ·x = c where a1 �= 0, leading to the following

system: ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝ a1 a′

−a1 −a′

0 A′
1

⎞
⎟⎠
⎛
⎜⎝ −a1 −a′

a1 a′

0 −A′
1

⎞
⎟⎠

⎛
⎜⎝ c

−c
c′1

⎞
⎟⎠

0

⎛
⎜⎝ a1 a′

−a1 −a′

0 A′
2

⎞
⎟⎠
⎛
⎜⎝ −c

c

−c′2

⎞
⎟⎠

0 · · · 0 0 · · · 0 −1
0 · · · 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
x

y

λ

)
≤

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎝ c

−c
c′1

⎞
⎟⎠

0

0

1

⎞
⎟⎟⎟⎟⎠

Here, a′ = 〈a2, . . . an〉 denotes the coefficients of the equality constraint without

a1 and A′1, A′2, c′1, c′2 denote the remaining coefficients of the input polyhedra. As

before, the convex hull is defined by the inequalities that result from projecting out

the variables y, λ, i.e., the middle column. In particular, eliminating y1 can only

combine the first and second lines of each sub-system. As a result, the coefficients

over y′ = 〈y2, . . . yn〉 and λ cancel, yielding the following matrix:⎛
⎜⎜⎜⎜⎜⎝

(
a1 a′

−a1 −a′

) (
0

0

) (
0

0

)

0 A′
1 −A′

1 c′1
0 A′

2 −c′2
0 · · · 0 0 · · · 0 −1
0 · · · 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

(
x

y′

λ

)
≤

⎛
⎜⎜⎜⎜⎜⎝

(
c

−c

)

c′1
0

0

1

⎞
⎟⎟⎟⎟⎟⎠

Besides illustrating that x1 in the final system is defined by the two opposing

inequalities of the input polyhedra, the above system also shows that the elimination

of the remaining variables y′, λ cannot combine any other inequality with the two

opposing inequalities since their coefficients over y′ and λ are zero. Imbert showed

that the result of Fourier-Motzkin projection is independent of the sequence in which

variables are eliminated [9]. Thus, choosing to eliminate y1 first does not affect the

generality of the observation above. Hence, an equality can be omitted from the

convex hull calculation without affecting the result. This observation lifts naturally

to several equalities.

An interesting generalisation of the result above is that it is equally possible

to omit a dimension that is defined by two opposing inequalities whose constants

are not equal; a so-called stripe. For example, if both input polyhedra contain
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5 ≤ x1 + x2 ≤ 10 and no other inequality in the input polyhedra mentions x1, the

two opposing inequalities x1 + x2 ≤ 10 and −x1 − x2 ≤ −5 will trigger the same

operations as the opposing inequality constraint 10 ≤ x1 + x2 ≤ 10. By removing

the upper bound completely, it follows that a single inequality a · x ≤ c that is

common to the two input polyhedra can also be omitted if it contains a variable

not present in any other inequality.

How can factoring out equalities and stripes improve performance? Suppose that

common equalities in the two input polyhedra are not removed but that polyhedra

are nevertheless normalised, such that the smallest variable in each equality does

not occur in any other constraint. By using a projection algorithm that chooses the

smallest variable first, common equalities or stripes vanish before any other variables

are projected out. Hence, equalities and stripes incur only a minor administrative

overhead. In order to assess the benefits for the double-description method, let Vi

denote the set of vertices of the polyhedron Pi = [[Aix ≤ ci]], i = 1, 2. Let x1 =

a′ · 〈x2, . . . xn〉+ c hold in Pi from which it follows that v1 = a′ · 〈v2, . . . vn〉+ c holds

for each vertex 〈v1, . . . vn〉 ∈ Vi, i = 1, 2. Omitting the equality from the convex

hull calculation will generate the vertices V ′i = {〈v2, . . . vn〉 | 〈v1, . . . vn〉 ∈ Vi}.
In particular, note that |V ′i | = |Vi| and, thus, factoring out the common equality

constraint does not decrease the number of vertices. Since the running time of

the double description method is dominated by the (often exponential) number of

vertices in the generator representation, factoring out a common equality over n

dimensions will only reduce the execution time by 1/n. However, when storing

polyhedra in normal form, identifying common equalities is cheap and likely to be

worth the constant reduction.

A more promising approach for speeding up the convex hull calculation is the

omission of common inequalities which is the topic of the next section.

4.2 Omitting Groups of Inequalities

The domain of convex polyhedra may relate any number of variables and thereby

create states with very complex linear relationships. In the context of program

analysis, linear relationships usually arise from the analysis of loops. Once a loop is

analysed, any linear invariant that holds after the loop is passed on to the analysis

of the next loop. Calculating the loop invariant of the next loop therefore operates

on inequalities from the previous loop invariant and inequalities that stem from the

analysis of the current loop. As a result, the inequalities inferred in the first loop

may slow down the convex hull calculations in the second loop. It would therefore

be beneficial to factor out sets of inequalities Axa ≤ c that do not change and

whose variables do not overlap with inequalities Bixb ≤ ci, i = 1, 2 that do change.

The convex hull of such a system can be derived by projecting out y = 〈ya|yb〉 and
λ from the following matrix:
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⎛
⎜⎜⎜⎜⎜⎝

(
A 0

0 B1

) (
−A 0

0 −B1

) (
c

c1

)

0

(
A 0

0 B2

) (
−c
−c2

)

0 · · · 0 0 · · · 0 −1
0 · · · 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

xa

xb

ya

yb

λ

⎞
⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎜⎜⎝

(
c

c1

)
(

0

0

)

0

1

⎞
⎟⎟⎟⎟⎟⎠

Projecting out ya will combine the inequalities Axa − Aya + cλ ≤ c with

Aya − cλ ≤ 0 while ignoring inequalities with non-zero entries over yb. Similarly,

projecting out the remaining variables yb will not affect the result of projecting out

ya since all these inequalities have zero coefficients over yb. Thus, the convex hull

calculation can be separated into two problems:

⎛
⎜⎝

A −A c

0 A −c
0 · · · 0 0 · · · 0 −1
0 · · · 0 0 · · · 0 1

⎞
⎟⎠

(
xa

ya

λ

)
≤

⎛
⎜⎝

c

0

0

1

⎞
⎟⎠ and

⎛
⎜⎝

B1 −B1 c1

0 B2 −c2
0 · · · 0 0 · · · 0 −1
0 · · · 0 0 · · · 0 1

⎞
⎟⎠

(
xb

yb

λ

)
≤

⎛
⎜⎝

c1

0

0

1

⎞
⎟⎠

Since P �P = P , projecting out ya, λ from the left system will yield only exactly

the system Ax ≤ c and besides that only redundant inequalities. Avoiding the

calculation of this system is beneficial since the redundant inequalities generated

during projection have to be removed by running a linear program to test each

inequality. Furthermore, the overhead of handling these inequalities while projecting

out yb is avoided. With respect to the double description method, the situation is

exacerbated: Suppose that calculating the vertices of the systems Axa ≤ c and

Bixb ≤ ci, i = 1, 2 results in the vertices V A and V B
i , i = 1, 2, respectively.

Thus, when identifying the system Axa ≤ c as being equal in both polyhedra, the

number of vertices required to calculate the output constraints is |V B
1 | + |V B

2 |. In

contrast, generating vertices for each argument including those for Axa ≤ c results

in V AB
i = {〈vA|vBi 〉 | vA ∈ V A ∧ vB ∈ V B

i } and, hence, the whole frame contains

|V AB
1 | + |V AB

2 | = |V A|(|V B
1 | + |V B

2 |) vertices. Thus, the generator representation

of the system Axa ≤ c only needs to consist of two or more vertices to make the

omission of the common inequalities worthwhile.

Slightly orthogonal to omitting common constraints is the observation that a set

of inequalities Axa ≤ c that only occurs in one polyhedron can be omitted, provided

that it does not share any variables with other inequalities. For simplicity of the

argument, suppose that this inequality set is present in the second polyhedron. In

this case, the matrix takes on the following form:⎛
⎜⎜⎜⎝

0 B1 0 −B1 c1

0

(
A 0

0 B2

) (
−c
−c2

)

0 · · · 0 0 · · · 0 −1
0 · · · 0 0 · · · 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

xa

xb

ya

yb

λ

⎞
⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎝

c1(
0

0

)

0

1

⎞
⎟⎟⎟⎠

Projecting out ya removes all coefficients of A without combining any rows

containing variables of yb. Thus, Axa ≤ c has no effect on the final outcome and
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can therefore be omitted from the convex hull calculation. In case Axa ≤ c is not

omitted from the system, the overhead of calculating the convex hull via projection is

equivalent to projecting out all variables from Axa ≤ c which results in tautologous

inequalities which are all discarded. The overhead in the double-description method

is to compute the vertices for Axa ≤ c, B2xb ≤ c2 rather than for B2xb ≤ c2 which

is similar to the case of common inequality sets. Hence, omitting Axa ≤ c is always

worthwhile.

The ability to exploit the benefits of a cheaper convex hull hinges on how quickly

the above inequality sets can be found. Identifying sets of inequalities that do not

share variables with other inequalities can be performed in near-linear time by using

a union-find data structure [6]: For each inequality ι in either polyhedron, force all

variables that occur in ι with non-zero coefficient to be in the same equivalence class.

In a second, linear pass, partition the inequalities in each polyhedron according to

the equivalence classes. Equivalence classes that have no inequalities associated with

them in at least one of the polyhedra can be discarded. For all other equivalence

classes, the inequalities of each polyhedron are sorted using some total order on

variable indices and coefficients. Equality of two inequality sets can now be detected

in linear time. Each equal set can be directly moved to the result set. The remaining

inequalities are passed on to the convex hull algorithm.

Given an efficient preprocessing of inequalities, the next section empirically as-

sesses the benefits of this preprocessing to the calculation of the convex hull.

5 Experimental Evaluation

We assess the impact of the proposed factoring by calculating the convex hull via

the double-description method and via the projection method on two benchmarks

suites. In particular, we generate one C++ and one Haskell program that calculates

all convex hulls in each benchmark. The C++ program calls the Parma Polyhe-

dra Library (PPL) [2], version 0.10, in order to calculate the convex hull via the

double description method. The result is converted back into a minimal constraint

representation. The Haskell program calculates the convex hull via the projection

method as described in Sect. 3. The times reported do not include the parsing nor

the translation into normal form. We do not report the time for normalization as we

assume that the detection of equalities is done during the meet operation (i.e. when

inequalities from conditionals of the program are added). In particular, when the

meet operation performs a minimization of the constraint set, detecting equalities

can be done on-the-fly [12].

The conversion from and to the constraint representation may seem unfair on

the double-description method since no conversion has to take place if one or both

inputs are already in generator form. However, as every loop body normally includes

some form of linear test which requires the constraint representation, the double

description method converts back and forth between the two representations at

least once for every join point and, hence, we deem the assumption that the input

and output are in constraint form to be realistic.

A. Simon / Electronic Notes in Theoretical Computer Science 267 (2010) 127–138 135



Benchmark: “PerfectClub”
factoring double-descr. double-descr.† projection dims ineqs

none 1.68s 100% 2.51s 100% 5.24s 100% 8.60 100% 10.45 100%

asym 1.42s 85% 2.18s 87% 4.94s 92% 7.25 84% 9.45 90%

equalities 1.06s 63% 1.50s 60% 4.63s 88% 5.63 65% 6.66 64%

inequalities 0.93s 55% 1.35s 54% 3.72s 71% 4.53 53% 5.48 52%

stripes 0.91s 54% 1.33s 53% 3.72s 71% 4.49 52% 5.43 52%

Benchmark: “Spec 95”

factoring double-descr. double-descr.† projection dims ineqs

none 1.01s 100% 1.37s 100% 5.31s 100% 9.12 100% 10.21 100%

asym 0.82s 81% 1.12s 82% 4.99s 94% 7.41 81% 9.04 89%

equalities 0.67s 66% 0.84s 61% 4.84s 91% 6.02 66% 6.68 65%

inequalities 0.54s 53% 0.71s 52% 3.98s 75% 4.40 48% 5.06 50%

stripes 0.53s 52% 0.70s 51% 3.94s 74% 4.36 48% 5.00 49%

†: each equality was passed to the library as a pair of opposing inequalities

Table 1
Running times of different factorings. The times were measured using single-threaded programs running

on a 2.4 GHz Core 2 Duo computer under Fedora Linux.

The two benchmark suites were taken from the PIPS project [1] which analyses

the relationships between loop indices in order to determine how a Fortran loop

can be parallelized or vectorized automatically. While the measurements can only

hint at how the factorings would speed up the convex hull calculation rather than

the full analyser, the benchmarks are nevertheless representative as they present

real program invariants from a wide variety of programs. The “PerfectClub” suite

consists of 3867 convex hull problems (“inputs” for short) while the “Spec 95”

suite consists of 2415 inputs. Of these, 4 and 10 samples were omitted from our

benchmark since the projection method failed to terminate within 3 seconds due to

the exact linear programming algorithm in the GLPK LP toolkit [11] entering an

infinite loop. The remaining inputs require 4.28s (“PerfectClub”) and 2.32s (“Spec

95”) to be calculated using the double-description method. However, the benchmark

suites contain 144 inputs which are empty after normalisation. Furthermore, when

omitting asymmetric inequalities, that is, those that contain variables present only

in one argument, the number of empty inputs rises to 715 in total. One possible

explanation is that variables are added in the body of a loop so that the calculation

of the convex hull at the loop head joins edges on which the set of live variables

is different. When omitting empty constraint sets and asymmetric inequalities, the

double-description method takes only 1.68s and 1.01s (row “none” in the “double-

descr.” column of Table 1). While this seems to be a strong argument in favor

of normalization, some of these speed-ups could be obtained by identifying (and

removing) dead program variables at the loop-head. These constraint sets represent

the reference input to the convex hull algorithms.

The row labelled “asym” in Table 1 shows the running times when omitting

inequalities that contain variables not present in the other system. The remaining

rows show the running times when omitting more and more common constraints.

We found that the Parma Polyhedra Library does not automatically combine op-
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Fig. 3. Dimensions in the input without asymmetric inequalities vs. dimensions after factoring out common
constraints. The area of each point is proportional to the number of samples. Not shown are 2.3% of all
samples with dimensions between 26 and 88.

posing inequalities to equalities, thereby probably generating twice as many vertices

than a single equality would, for each equality. Inserting equalities as equality con-

straints resulted in a speedup of about 24% . While the gain of omitting common

equalities is now smaller (from 1.42s to 1.06s for “PerfectClub” and from 0.82s to

0.67s for “Spec 95”), it is still significant which stands in contrast to Halbwachs et

al. [8] who observed no significant speedup when identifying equalities on the gener-

ator representation, that is, after converting the constraint system to the (possibly

exponential) double description method. The prediction that factoring out equali-

ties is insignificant for the projection method is confirmed by an improvement of less

than 7% for “PerfectClub” (from 4.94s to 4.63s) and 4% for “Spec 95” (from 4.99s

to 4.84s). Omitting common inequality sets is worthwhile for both algorithms, al-

though the double description method benefits more. The reason for this difference

could lie in the exponential growth of the vertex set in the double description method

whereas the projection method merely has to remove the additional redundancies

generated from projecting out the common inequalities. Overall, the proposed fac-

torings speed up the convex hull algorithms by up to 50%. The columns “dims”

and “ineqs” show the average number of variables and inequalities, respectively, in

the inputs.

Observe that all considered convex hull problems do not lead to an exponential

blow up in either the projection or double-description method since these calcula-

tions were aborted by a timeout in the original analyser. This leads to a surprisingly

linear correlation between the number of inequalities and dimensions on the one

hand and the running time on the other hand.

Figure 3 depicts how many variables were factored between column “asym” and

“stripes” for both benchmarks together. It shows that most convex hull calcula-

tions are performed on low-dimensional polyhedra. Furthermore, it seems that the

effectiveness of factoring is widely varying.
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6 Conclusion

We proposed to store polyhedra in normal form which allows us to identify com-

mon constraints that can be omitted during a join operation. We demonstrated

that omitting these common constraints can speed up the join operation. Future

work should address if and how other operations may benefit from the normalized

presentation. For instance, widening reduces to an intersection of the constraint

sets if the sets of equalities of the two normalized input polyhedra are identical [4].

The author wishes to thank Duong Nguyen Que for making the benchmark

suite available; also Liqian Chen and Antoine Miné for useful discussions and Enea

Zaffanella for his insightful comments on an earlier version of the paper.
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