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A b s t r a c t - - I n  this paper, a variant of Gaussian Elimination (GE) called Successive Gaussian Elim- 
ination (SGE) algorithm for parallel solution of linear equations is presented. Unlike the conventional 
GE algorithm, the SGE algorithm does not have a separate back substitution phase, which requires 
O(N) steps using O(N) processors or O (log 2 N) steps using O (N 3) processors, for solving a system 
of linear algebraic equations. It replaces the back substitution phase by only one step division and 
possesses numerical stability through partial pivoting. Further, in this paper, the SGE algorithm 
is shown to produce the diagonal form in the same amount of parallel time required for producing 
triangular form using the conventional parallel GE algorithm. Finally, the effectiveness of the SGE 
algorithm is demonstrated by studying its performance on a hypercube multiprocessor system. 

K e y w o r d s - - L i n e a r  equations, Triangulation, Back substitution, Gaussian elimination, Numerical 
stability, Pivoting, Task system, Scheduling, Multiprocessor system. 

1. I N T R O D U C T I O N  

The problem of solving a set of linear algebraic equations A x  = b (where A is a known N x N 
matrix, x and b are unknown and known N vectors, respectively) is one of the central problems 
in computational mathematics and computer science. Efficient numerical methods for solving 
this problem on uniprocessor systems have been developed, and many reliable and high quality 
codes are available for different cases of linear systems. Recent advances in VLSI and networking 
technology have led to widespread interest in the use of multiprocessor systems for solving many  

practical problems. Bertsekas and Tsitsiklis [1], Heller [2], Lakshmivarahan and Dhall [3], and 
Sameh and Kuck [4], describe the current s tate of art  in parallel numerical algebra. In this paper,  
we present a new algorithm called Successive Gaussian Elimination (SGE) for solving dense 
system of linear algebraic equations on multiprocessor systems. Most importantly,  the algorithm 
permits  partial  pivoting to improve numerical stability. The SGE algorithm is essentially a variant 
of the Gaussian Elimination (GE) algorithm and does not require a separate back substi tut ion 
phase to find the complete solution vector. I t  may be noted tha t  the back substi tution phase 
requires O(N) steps using O(N) processors or O(log 2 N)  steps using O ( N  3) processors [2,4]. 

The rest of the paper  is organized as follows. In the next section, we first define the problem 

and then discuss the relevant work. Section 3 presents the SGE algorithm for the problem. 
In Section 4, the memory  requirements and error analysis of the SGE algorithm are described. 
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Section 5 describes, in detail, a method for scheduling the computational tasks in the algorithm 
onto the processors for efficient implementation on a multiprocessor system. Section 6 presents the 
performance evaluation of the SGE algorithm. Finally, in Section 7, we present our conclusions. 

2. P R O B L E M  D E F I N I T I O N  A N D  R E L A T E D  W O R K  

The problem in solving a set of linear algebraic equations is to find the vector x in the equation 
A x  = b, where A is an N × N matrix, x is an unknown N vector, and b is a known N vector. 

The solution of A x  = b can be obtained by using classical methods such as GE, Ganss- 
Jordan (G J), Cramer's rule (CR), and LU decomposition [1-12]. The solution process of A x  = b 

by these methods (except GJ and CR algorithms) essentially consists of triangulation phase 
followed by back substitution phase. Therefore, the total time taken for solving the problem on a 
multiprocessor system is the sum of parallel times taken for triangulation and back substitution 
phases. Further, the classical methods require pivoting to assure numerical stability. 

Most of the existing algorithms available in the literature for parallel solution of linear equations 
consider only the computational intensive triangulation phase assuming that efficient algorithms 
exist for the simple back substitution phase. However, it is important to note that both the phases 
using different efficient algorithms may not optimally be implemented on any given multiprocessor 
system as these algorithms were developed for different multiprocessor configurations. 

Recently, two back substitution free algorithms based on GJ and CR are discussed in [10,12]. 
The parallel CR algorithm [12], which does not support pivoting, is applicable only for diagonally 
dominant systems while the parallel GJ algorithm [10] permits the partial pivoting in which the 
maximum element is found among the subdiagonal elements of the pivot column and the pivot 
column element (instead of finding the maximum element in the entire pivot column). 

In this paper, we present a back substitution-free SGE algorithm, which supports partial 
pivoting, to produce the diagonal form in O(N 2) steps using O ( N )  processors against the same 
number of steps required for producing the triangular form in the existing methods. 

3. S U C C E S S I V E  G A U S S I A N  E L I M I N A T I O N  ( S G E )  A L G O R I T H M  

It is clear while solving A x  = b that the value of x~ depends on the value of xk (k = 1, 2 , . . . ,  N 
and k ¢ i) indicating (N - 1) th level dependency. It is obvious, in the GE method, the value of 
xi (i --- 1, 2 , . . . ,  N) is found by eliminating its dependency on xk for (k < i) in the triangulation 
phase and xk for (k > i) in the back substitution phase. 

In the SGE algorithm, the dependencies of all the unknowns are reduced to half at every stage 
and finally to zero in log 2 N stages (i.e., N linear independent equations at Stage 1 are replaced 
by two sets of N / 2  linear independent equations at Stage 2, by four sets of N / 4  linear independent 
equations at Stage 3, etc.) which is accomplished by using the concept of forward (left to right) 
and backward (right to left) eliminations. 

In this section, we explain how to obtain the diagonal form of coefficient matrix A in the 
equation A x  = b. For better exposition, we assume that N = 2 ~, where c~ is an integer and later, 
we relax this assumption. The proposed algorithm consists of the following steps. 

STEP 1. We form two matrices namely A0 and A1 identical to the coefficient matrix A and find 
the maximum element in the pivot column of A0 and A1, and exchange the pivot row with the 
row in which maximum element is found. 

STEP 2. Using the GE method (subtracting fractions of pivot row elements from nonpivot 
elements), we triangulate A0 in the forward direction to eliminate the subdiagonal elements in the 
pivot columns (note that partial pivoting is carried out before each column is being eliminated) 
1,2, 3 , . . . ,  N / 2  (by taking a11, a 2 2 , . . .  ,aN/2,N/2 as pivot elements) to reduce its order to N / 2  
(ignoring the eliminated columns and the corresponding rows). Concurrently, we triangulate A1 
in the backward direction to eliminate the superdiagonal elements in the pivot columns (again 
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note that partial pivoting is carried out before any column is being eliminated) N, N - 1, 
N - 2 , . . . ,  N/2  + 1 (by taking a N N  , a g - l , g - 1 , . . . ,  aN/2+I,N/2+I as pivot elements) to reduce 
the order of A1 also to N/2 (again ignoring the eliminated columns and the corresponding rows). 
With this, modified A0 may be treated as a new coefficient matrix (we call it reduced A0) with 
columns and rows N / 2 +  1, N/2+2,  . . . .  N and, similarly, modified A1 as a new coefficient matrix 
(we call it reduced A1) with columns and rows 1, 2 , . . . ,  N/2. 

STEP 3. We duplicate the reduced matrices A0 to form A00 and A01 , and A1 to form Alo 
and An (each of these duplicated matrices will be of the same order, i.e., N/2).  We now (note 
that partial pivoting is carried out before each column being eliminated) triangulate A00 and A10 
in the forward direction, and A01 and An in the backward direction through N/4  pivot columns 
using GE, thus reducing the order of each of these matrices to half of their original size, i.e., N/4. 
Note that the above four matrices are reduced in parallel. 

STEP 4. We continue this process of halving the size of submatrices (using partial pivoting at 
each step) and doubling the number of submatrices for log 2 N times so that we end up with N 
submatrices each of order 1. These N submatrices represent the diagonal form of the coefficient 
matrix A in the equation Ax = b. To obtain an idea about the nature of computations during each 
step of the SGE algorithm, we give procedures for forward elimination and backward elimination 
below by taking the order of the matrix as m. 

PROCEDURE forward-elimination; 

BEGIN 

FOR k : 1 TO m/2 DO 
BEGIN 

find q such that 

laq,kl = max of (la+,kl, lak+1,kl,-.., la,+,,+,,,,:l) 
exchange row k and row q 
FOR q = (k + 1) T0 .m DO 

aq,k  = a q , k / a k , k  
F O R j = ( k + I )  T0mD0 

F O R i : ( k + I )  T0mD0 

a i d  = a i d  --  a i , k  * a k , j  
END (* of for loop with index k *) 

END(* of procedure forward-elimination *) 

PROCEDURE backward-elimination; 

BEGIN 

FOR k = m DOWNT0 (m/2 + I) DO 
BEGIN 

find q such that 

la+,kl = ma~ of (lak,kl, la~-1,kl,.-., lal,kl) 
exchange row k and row q 
FOR q = (k - i) D0WNT0 1 DO 

aq, k = a q , k / a k ,  k 
FOR j : (k - 1) DOWNT0 1 D0 

FOR i = (k - I) D0WNTO 1 DO 

a i , j  = a i , j  -- ai ,k  * a k , j  
END (* of for loop with index k *) 

END(* of procedure backward-elimination *) 

T*k__k+l 

*i T~-k+l 

Z9:7-0 
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Figure 1. Solving a 4 x 4 system using the SGE algorithm. 

The idea of forward elimination (left to right) and backward elimination (right to left) is 
demonstrated in Figure 1 for solving a 4 x 4 system. For N = 8, we have shown the algorithm 
progression for producing the diagonal form in the form of a binary tree in Figure 2. Figure 3 
shows the algorithm progression for producing the diagonal form for N = 11, where N ¢ 2 ~ 
(a  is an integer). 

4. M E M O R Y  R E Q U I R E M E N T S  A N D  E R R O R  ANALYSIS 
OF THE SGE A L G O R I T H M  

In this section, we discuss the memory space required by the SGE algorithm and its error 
analysis in comparison with the GE algorithm. 

4.1. M e m o r y  R e q u i r e m e n t s  

We now show that  the SGE algorithm requires only twice the memory required by the GE 
algorithm in the actual implementation. Initially, we start  with two N × (N + 1) matrices which 
we refer to as forward matrix (in which b vector is appended as (N + 1) th column) and back- 
ward matrix (in which b vector is appended as 0 th column) for storing the matrix A and the 
b vector. The upper triangular part of the different submatrices housed in the forward matr ix 
and the lower triangular part of different submatrices housed in the backward matr ix become 
free as the algorithm progresses and may be used for storing the duplicated versions of the re- 
duced matrices/submatrices (duplication of reduced matrices is essential for avoiding the back 
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Figure 2. Algorithm progression for N = 8 to produce the diagonal form. 
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Figure 3. Algorithm progression for N = 11. 
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substitution phase in the SGE algorithm) generated during the progression of the algorithm. At 
the end of log 2 N stages, either all the submatrices (each of size 1 x 2) in the forward matrix 
are copied into the backward matrix or vice versa for the division step to be carried out in 
parallel to produce the complete solution vector. For the sake of convenience, it is assumed that 
the desired columns in the submatrices housed in the forward matrix and the desired columns 
in the submatrices housed in the backward matrix are eliminated in the forward and backward 
directions, respectively. Further, we wish to point out that the duplication/copying of submatrices 
does not require extra time in the actual implementation. With this effective reuse of matrix 
positions, it is possible to restrict the memory requirements of the new algorithm to twice the 
memory required by the GE algorithm. In Figures 4 and 5, we demonstrate the reuse of memory 
allocated for the forward matrix and the backward matrix for a system of four linear equations 
(The above described SGE algorithm consists of only two stages for a system of four equations). 

b-vector 
, /  

Matrix A of size 4x4 

(FORWARD MATRIX) (BACKWARD MATRIX) 

Figure 4. Copying of matrices at the beginning of Stage-1 for N = 4. 

Reduced b-vector during 
backward elimination 

(FORWARD MATRIX) 

2 x 2 system 

\ 

/ (BACKWARD MATRIX) 

2 x 2 system 

Reduced b-vector during 
forward elimination 

Figure 5. Copying of submatrices at the beginning of Stage-2 for N = 4. 

4.2. Error Analysis 

There are three different methods of error analysis namely, forward error analysis, backward 
error analysis, and experimental error analysis. We use the elegant backward error analysis (in 
which computed solution is checked for its closeness to the solution of the original problem) for 
computing the error bounds in both the GE and SGE algorithms. In the following discussion, we 
assume that the computations are carried out on a machine with t bits precision for representing 
the mantissa part of a floating point number. 
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We now give the expressions for the error bounds in the GE and SGE algorithms, and show 
that  the SGE algorithm has less round-off errors than that  of the GE algorithm by using standard 
floating point computation model for error estimation, namely 

fl (a op b) = (a op b)(1 + e), 

where fl (a op b) represents the computer version of a floating point operation, 

a and b are floating point numbers, 
op denotes the actual floating point operation, and 
e represents the error in computation. 

¢ _< 0.5 f~(1-0 for rounded arithmetic (f~ is the base). 
Consider a system of linear algebraic equations A x  -- b, and let xt be the true solution and xc 

be the computed solution. Let E be the error matrix due to finite digit computed solution. If 
the computations are exact, then 

A x t  = b or xt  -- A - l b ,  

otherwise, (A  + E)xc  = b or xc = (A + E ) - l b .  
Assuming that  (A + E) is nonsingular and II(A + E)- l l l  < 1, then the relative error in solving 

A x  = b as per error estimation theorem [7] is given by 

[Ixc - xtl[ _ I[( A + E)  - l b -  A - l b l l  < IIA-1EII or IIEIIK(A)/IIAII 

IIx~ll IIA-lblt - 1 - IIA-~Ell {1 - (IIEII K(A)/IIAII)}' 

where K ( A )  is the standard condition number given by I[A-I[I IIAII. 
It is well-known that  the GE algorithm consists of the triangulation phase followed by the 

back substitution phase. Accordingly, the error matrix E is the sum of two matrices, namely the 
triangulation error matrix (F) and the back substitution error matrix (B), i.e., E = F + B. The 
relative error in the GE algorithm is therefore given by 

Ilxc- x~ll < [IA-I(F+ B)[I 
Ilxtll - 1 -  IIA-I(F+B)II 

or  
IIF + BIIK(A)/IIA[I 

{1 - (IIF + BII K(A) / I IA t l ) }"  

In the SGE algorithm, we have only the triangulation phase, therefore, the error matrix consists 
of only the triangulation error matrix (F), i.e., E -- F.  The relative error in the SGE algorithm 
is therefore given by 

Nxc- xttl < IIA-1FII or IIF]IK(A)/IIAII 
IIx~ll - 1 - IIA -1FII {1 - (IIFII K(A) / I IAII )}"  

As the round-off errors enter a computation in an additive manner and F _< (F  + B), we can 
easily conclude that  the relative error in the SGE algorithm is less than or equal to the relative 
error in the GE algorithm. 

5. S C H E D U L I N G  O F  C O M P U T A T I O N A L  T A S K S  
I N  T H E  S G E  A L G O R I T H M  

One of the key issues in multiprocessing is the distribution of parallel tasks among the various 
processors in a multiprocessor system to minimize the execution time of the tasks. In this sec- 
tion, we provide an efficient scheduling scheme for assigning the computational tasks in the SGE 
algorithm to the processors in a multiprocessor system assuming negligible inter-task communi- 
cations. 



46 K. N, BALASUBRAMANYA MUB.THY AND C. SIVA RAM MUK'THY 

From the binary tree representation of the solution process (as shown in Figure 2 for N = 8), 
we make the following observations. 

C a) There are a(= log 2 N) stages with 2 8-1 submatrices at any stage s each of order 2 ~-8+1. 
Each submatrix is duplicated and reduced to half its size through forward and backward 
eliminations. From hereafter, we call these submatrices as matrix nodes. 

(b) There are a matrix nodes along any path from the root matrix node to a leaf matrix node 
(including the root matrix node at Stage 1 and excluding the leaf matrix node at Stage 
ol + 1). 

As there are no standard task sizes (since task size varies from a program segment to an arith- 
metic operation and is mostly decided on the structure of the multiprocessor used for executing 
the task system without violating the precedence constraints), in our model, we assume a task 
to represent either a set of comparisons and divisions in the pivot column or a set of update 
operations (subtraction and multiplication) in a nonpivot column (as marked in the forward and 
backward elimination procedures). The computational tasks, along with their precedence con- 
straints in the algorithm, may be represented as a task system. Further, we assume that each 
of the basic operations namely, comparison, division, multiplication, addition, and subtraction 
takes one unit of time. Instead of considering the task system of the entire algorithm, we examine 
the task system of only one matrix node and its scheduling onto processors. This is because the 
task system and scheduling of tasks among the processors are essentially of the same nature for 
all the matrix nodes. 

Let rn be the order of a matrix node which is duplicated and reduced to the order m/2 by 
eliminating m/2 pivot columns using GE in the forward direction on one copy and in the backward 
direction on the other copy. We denote the task system of forward elimination as (Jm, <) and 
backward elimination as (J~n, <*), where Jm and Jm represent the set of tasks in forward and 
backward eliminations, respectively. 

< and <* indicate the precedence relations among the computational tasks in forward and 
backward eliminations, respectively. 

The above-mentioned task systems are described by the following expressions. 

Forward  e l iminat ion task  sys tem is (J, <). 

Jm= I I < k < ~  and k<_j<m 

< =  , J I i < k < ~  and k + l < _ j < m  

Backward  e l iminat ion task sys tem is (J*, <*). 

Jm = _ k + l l m > k > - ~ + l  and k > j > l  

<,= {(T.k ,j ) m } k m-k+l 'Tm-k+l [ m > k > ~ + l  and k - l > j > _ l  

.j .j m 2) and k 1 >  1} 

We define the following task sequences for the purpose of scheduling. 

For forward el imination:  

11 = T,', TL TL . . .  """'/' ,-,-,,-,,/, ,-r,,,,/,+i 
' "~mla-l '  ~m12 ' ~m12 I 
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For  b a c k w a r d  e l i m i n a t i o n :  
{T~ T~m-1, q'*m-1 q.*m/2+l T*m/2+l *m/2} t * =  m, ~2 , ' " ' ~ m / 2 - 1  ' m/2 'T=/2 

tj {TlJ ,  T~ j, T ~ J l q  m i n ( 2  ) }  * = . . . ,  = , m - j - 1  , j = m - 2 , m - 3 , . . . 1 .  

Let us assume that  m processors are available, i.e., Pl, P2, . . . ,Pm,  and we allocate m / 2  proces- 
sors, (i.e., Pro~2+1, Pro~2+2,... ;Pro) to forward elimination and the remaining m / 2  processors 
(i.e., Pl, P 2 , . . .  ,Pm/2) to backward elimination task systems. The allocation of task sequences to 
the processors is as follows. 
W h e n  m is e v e n  

Pm/2+l executes tl  

pk executestk_m/2+l and tk, k = m , m - 1 , . . . , m / 2 + 2 ,  

Pro~2 executes t~  

Pk executes t~+m/2_ 1 and t~, k = 1 , 2 , 3 , . . . m / 2  - 1; 

W h e n  m is odd:  
Pm/2+l executes tl  

Pk executes tk-m/2 and tk, k = m, m - 1 , . . . ,  m / 2  + 3, 

Pro~2 executes t m 

Pk executes t*k+m/2_ 1 and t~, k = 1, 2, 3 , . . .  m / 2  - 1; 

Pm/2+2 executes tin/2+ 2 and t* m--2"  

The value of m is N, N/2,  N / 4 , . . . ,  2 at Stages 1, 2, 3 . . . .  , log 2 N, respectively. The scheduling 
of all the tasks in the algorithm onto N processors in the given multiprocessor system is obtained 
as follows. 

At Stage 1, we have one matrix node of order N and, therefore, N/2  processors are allocated 
to forward elimination tasks and the remaining N/2  to backward elimination tasks. At Stage 2, 
we have two matrix nodes of order N /2  each and N / 4  processors are allocated to each of the 
forward elimination task systems of the two matrix nodes and another N / 4  processors to each of 
the backward elimination task systems of the two matrix nodes. For the remaining stages, the 
same strategy is extended. 

For N = 8, the task system and its schedule on eight processors are shown in Figures 6 and 7, 
respectively. The time taken on a uniprocessor system for producing the diagonal form using GJ 
algorithm (with each basic operation taking one unit of time) is known to be 2N 3 + O(N2). 

The time taken on a multiprocessor system with N processors, for producing the diagonal 
form of the coefficient matrix A of order N by using the SGE algorithm, can be obtained by 
counting the number of basic operations/time units along the longest path in the task graph of 
the algorithm. The longest path in the task graph is {T~, T 2, T2, . .  g -1  ., T•_I, T~_ x } (see Figure 6 
for N -- 8). 

Time taken on a multiprocessor system with N processors for producing the diagonal form of 
a matrix of order N is given by 

N-1 
2(N - k) (for pivot column) + 2(Y - k) (for nonpivot column) = 2N 2 + O(N) .  

K=I 

At this point, it is worth noting that  the time taken on a multiprocessor for producing the 
triangular form using the conventional GE algorithm is also equal to 2N 2 + O(N) .  

Thus, the speedup of the SGE algorithm is defined as the ratio of the time taken on a uniproces- 
sor to produce diagonal form using GJ algorithm and the time taken on a multiprocessor to 
produce diagonal form using SGE algorithm and is given by 

N 3 + O ( N  2) ~ N 
2N 2 + O ( N )  - 2" 
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Figure 8. Performance of the algorithms for N -- 4. 

6. P E R F O R M A N C E  E V A L U A T I O N  OF T H E  S Q E  A L G O R I T H M  

T h e  schedul ing scheme descr ibed  above assumes t h a t  N processors  ave avai lable  on the  given 

mul t ip rocessor  sys tem for solving a sys tem of N l inear  equat ions .  Fur the r ,  i t  does no t  t ake  the  

i n t e r t a sk  ( in terprocessor)  communica t ion  t imes  into account .  Now using an  efficient schedul ing 
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Figure  9. Pe r fo rmance  of the  a lgo r i thms  for N = 8. 

algorithm, for assigning the tasks of a precedence-constrained task graph onto the processors of a 
multiprocessor system with arbitrary topology considering nonnegligible intertask communication 
times, we evaluate the performance of the SGE algorithm. The scheduling algorithm [13] follows 
the basic list scheduling theory. It is designed to exploit the schedule holes in both the processor 
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Figure 10. Performance of the algorithms for N ---- 16. 

a n d  t h e  l ink  schedules .  F u r t h e r ,  t h e  schedu l ing  a l g o r i t h m  [13] p r o d u c e s  con ten t ion - f r ee  schedules .  

I n t e r e s t e d  readers  are  referred to  [13] for the  de ta i l s  of the  s chedu l ing  a lgo r i t hm.  
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In order to evaluate the performance of the SGE algorithm, we conducted the following exper- 
iments on a network of SUN workstations. 

(1) We generated task graphs for both GE and SGE algorithms for various problem sizes, 
and scheduled them onto a hypercube multiprocessor system using the scheduling algo- 
rithm [13]. We assumed that each floating point arithmetic operation (E) takes one unit 
of time and the transfer of a floating point number between two adjacent processors (C) 
takes 5, 2, 1, 1/2, and 1/5 units of time for the purpose of generating the task schedules. 

(2) We implemented the task schedules obtained above on a network of SUN workstations 
using P4 (Portable Programs for Parallel Processors) software for verifying the correctness 
of the algorithms. P4, developed at Argonne National Laboratory, is a library of macros 
and subroutines for programming a variety of parallel machines including a network of 
workstations. 

The speedup of a parallel algorithm is measured as the ratio of the completion time of a task 
graph of the sequential GE algorithm on one processor and the completion time of the task 
graph of the parallel algorithm on a hypercube multiprocessor system. We have presented the 
results obtained with the two algorithms as plots of speedup versus dimension of the hypercube 
for different values of (E : C, N) in Figures 8-10. From these graphs, we can clearly see that 
the speedup obtained by using the SGE algorithm is always greater than the speedup of the GE 
algorithm when the number of processors is greater than the number of equations in the system. 
This increase in speedup is due to the fact that the SGE algorithm has higher degree of inherent 
parallelism and the intertask communication becomes more localized as the algorithm progresses 
(see Figure 6 for N = 8). 

7. C O N C L U S I O N S  

We have presented a new parallel algorithm called Successive Gaussian Elimination (SGE) for 
the solution of linear equations. 

The main features of the SGE algorithm are: 

(a) It produces diagonal form in O(N 2) time steps using O(N)  processors against the same 
number of time steps and processors required for producing the triangular form in the 
existing methods. 

(b) The back substitution phase, which takes O ( Y )  steps using O(N)  processors or O (log 2 N) 
steps using O(N 3) processors [2,4], is completely replaced by one step division in the SGE 
algorithm. 

(c) The algorithm supports partial pivoting to improve numerical stability. 
(d) The SGE algorithm permits pivot column tasks to be executed in parallel with nonpivot 

column tasks. Our scheduling strategy cleverly exploits this parallelism in the algorithm 
using minimum number of processors. 

(e) In the SGE algorithm, all xi (i = 1, 2 , . . . ,  N) are found simultaneously, unlike in the 
conventional GE algorithm in which xi (i = N, N - 1 , . . . ,  2) is used for finding xj  (j  = 
1, 2 , . . . ,  i - 1). Hence, the SGE algorithm is expected to have better numerical stability 
characteristics than the conventional GE algorithm. 
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