## Note

# Degree sequence and supereulerian graphs 

Suohai Fan ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b,* }}$, Yehong Shao ${ }^{\text {c }}$, Taoye Zhang ${ }^{\text {d }}$, Ju Zhou ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, Jinan University Guangzhou 510632, PR China<br>${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States<br>${ }^{\text {c }}$ Arts and Science, Ohio University Southern, Ironton, OH 45638, United States<br>${ }^{\mathrm{d}}$ Department of Mathematics, Penn State Worthington Scranton, Dunmore, PA 18512, United States

Received 29 January 2007; received in revised form 5 November 2007; accepted 7 November 2007
Available online 20 February 2008


#### Abstract

A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphic if there is a simple graph $G$ with degree sequence $d$, and such a graph $G$ is called a realization of $d$. A graphic sequence $d$ is line-hamiltonian if $d$ has a realization $G$ such that $L(G)$ is hamiltonian, and is supereulerian if $d$ has a realization $G$ with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ has a supereulerian realization if and only if $d_{n} \geq 2$ and that $d$ is line-hamiltonian if and only if either $d_{1}=n-1$, or $\sum_{d_{i}=1} d_{i} \leq \sum_{d_{j} \geq 2}\left(d_{j}-2\right)$.


(c) 2007 Elsevier B.V. All rights reserved.

Keywords: Degree sequence; Collapsible graphs; Hamiltonian line graphs; Supereulerian graphs

## 1. Introduction

We consider finite graphs in this note. Undefined terms can be found in [1]. Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. A vertex $v \in V(G)$ is called a pendent vertex if $d(v)=1$. Let $D_{1}(G)$ denote the set of all pendent vertices of $G$. An edge $e \in E(G)$ is called a pendent edge if one of its endpoints is a pendent vertex. If $v \in V(G)$, then $N_{G}(v)=\{u: u v \in E(G)\}$; and if $T \subseteq V(G)$, then $N_{G}(T)=\{u \in V(G) \backslash T: u v \in E(G)$ and $v \in T\}$. When the graph $G$ is understood in the context, we may drop the subscript $G$.

A circuit is a connected 2 -regular graph. A cycle is a graph such that the degree of each vertex is even. A cycle $C$ of $G$ is a spanning eulerian subgraph of $G$ if $C$ is connected and spanning. A graph $G$ is supereulerian if $G$ contains a spanning eulerian subgraph.

If $G$ has vertices $v_{1}, v_{2}, \ldots, v_{n}$, the sequence $\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{n}\right)\right)$ is called a degree sequence of $G$. A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is nonincreasing if $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$. A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphic if there is a simple graph $G$ with degree sequence $d$. Furthermore, such a simple graph $G$ is called a realization of $d$. Let $\mathcal{G}$ denote the set of all graphic degree sequences. A sequence $d \in \mathcal{G}$ is line-hamiltonian if $d$ has a realization $G$ such that $L(G)$ is hamiltonian.

[^0]The sequence $S$ is called a bipartite graphic sequence if there is a bipartite graph $G$ with bipartition $\{X, Y\}$ such that $\left\{d\left(x_{1}\right), \ldots, d\left(x_{m}\right)\right\}=\left\{s_{1}, \ldots, s_{m}\right\}$, and $\left\{d\left(y_{1}\right), \ldots, d\left(y_{n}\right)\right\}=\left\{t_{1}, \ldots, t_{n}\right\}$ where $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=y_{1}, \ldots, y_{n}$ and $d(v)$ is the degree of a vertex $v$; the graph $G$ is called a realization of $S$. In [9], Luo et al. proved the following theorem.

Theorem 1.1 (Luo, Zang, and Zhang [9]). Every bipartite graphic sequence with the minimum degree $\delta \geq 2$ has a realization that admits a nowhere-zero 4-flow.

In this paper, the following result is obtained.
Theorem 1.2. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathcal{G}$ be a nonincreasing sequence. Then $d$ has a supereulerian realization if and only if either $n=1$ and $d_{1}=0$, or $n \geq 3$ and $d_{n} \geq 2$.

In [7], Jaeger proved the following result.
Theorem 1.3 (Jaeger [7]). Every supereulerian graph admits a nowhere-zero 4-flow.
Theorem 1.2, together with 1.3, implies a result analogous to Theorem 1.1.
Theorem 1.4 (Luo, Zang, and Zhang [9]). Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathcal{G}$ be a nonincreasing sequence. Then $d$ has $a$ realization that admits a nowhere-zero 4 -flow if and only if $d_{n} \geq 2$.

The following characterization on line-hamiltonian graphic sequences is also obtained.
Theorem 1.5. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathcal{G}$ be a nonincreasing sequence with $n \geq 3$. The following are equivalent.
(i) $d$ is line-hamiltonian.
(ii) either $d_{1}=n-1$, or

$$
\begin{equation*}
\sum_{d_{i}=1} d_{i} \leq \sum_{d_{j} \geq 2}\left(d_{j}-2\right) . \tag{1}
\end{equation*}
$$

(iii) $d$ has a realization $G$ such that $G-D_{1}(G)$ is supereulerian.

## 2. Collapsible sequences

Let $X \subseteq E(G)$. The contraction $G / X$ is the graph obtained from $G$ by identifying the endpoints of each edge in $X$ and then deleting the resulting loops. Note that multiple edges may arise.

Let $O(G)$ denote the set of vertices of odd degree in $G$. A graph $G$ is collapsible if for any subset $R \subseteq V(G)$ with $|R| \equiv 0(\bmod 2), G$ has a connected spanning subgraph $H_{R}$ such that $O\left(H_{R}\right)=R$. A sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is collapsible if $d$ has a simple collapsible realization.

Theorem 2.1. Let $G$ be a connected graph. Each of the following holds.
(i) (Catlin, Corollary of Lemma 3, [2]) If $H$ is a collapsible subgraph of $G$, then $G$ is collapsible if and only if $G / H$ is collapsible.
(ii) (Catlin, Corollary 1, [2]) If $G$ contains a spanning tree $T$ such that each edge of $T$ is contained in a collapsible subgraph of $G$, then $G$ is collapsible.
(iii) (Caltin, Theorem 7, [2]) $C_{2}, K_{3}$ (circuits of 2 or 3 edges) are collapsible.
(iv) (Caltin, Theorem 2, [2]) If $G$ is collapsible, then $G$ is supereulerian.

Theorem 2.1(ii) and (iii) imply Corollary 2.2(i); Theorem 2.1(i) and (iii) imply Corollary 2.2(ii).
Corollary 2.2. (i) If every edge of a spanning tree of $G$ lies in a $K_{3}$, then $G$ is collapsible.
(ii) If $G-v$ is collapsible and if $v$ has degree at least 2 in $G$, then $G$ is collapsible.

Corollary 2.3. If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing graphic sequence with $d_{1}=n-1$ and $d_{n} \geq 2$, then every realization of $d$ is collapsible.


Fig. 1. G.
Proof. Let $G$ be a realization of $d$ with $N\left(v_{1}\right)=\left\{v_{2}, \ldots, v_{n}\right\}$ and let $T$ be the spanning tree with $E(T)=\left\{v_{1} v_{k}: 2 \leq\right.$ $k \leq n\}$. Since $d_{n} \geq 2$ and $N\left(v_{1}\right)=\left\{v_{2}, \ldots, v_{n}\right\}$, for any $v_{i} \in\left\{v_{k}: 2 \leq k \leq n\right\}$, there is $v_{j} \in\left\{v_{k}: 2 \leq k \leq n\right\} \backslash\left\{v_{i}\right\}$ such that $v_{i} v_{j} \in E(G)$. It follows that every edge of $T$ lies in a $K_{3}$, and so by Corollary 2.2(i), $G$ is collapsible.

Lemma 2.4. If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing graphic sequence with $d_{3}=\cdots=d_{n}=3$, then $d$ is collapsible.
Proof. Let $v_{1}, v_{2}$ be two vertices and let

$$
S= \begin{cases}\left\{s_{1}, s_{2}, \ldots, s_{d_{2}}\right\} & \text { if } d_{2} \text { is even } \\ \left\{s_{1}, s_{2}, \ldots, s_{d_{2}-1}\right\} & \text { if } d_{2} \text { is odd }\end{cases}
$$

be a set of vertices other than $\left\{v_{1}, v_{2}\right\}$ and let $T=\left\{t_{1}, t_{2}, \ldots, t_{d_{1}-d_{2}}\right\}$ be a set of $d_{1}-d_{2}$ vertices not in $S \cup\left\{v_{1}, v_{2}\right\}$. Let $H$ denote the graph obtained from $\left\{v_{1}, v_{2}\right\} \cup S \cup T$ by joining $v_{2}$ to each vertex of $S$ and joining $v_{1}$ to each vertex of $S \cup T$ (if $d_{2}$ is odd, then we also join $v_{1}$ and $v_{2}$ ). Note that $d_{H}\left(v_{1}\right)=d_{2}+d_{1}-d_{2}=d_{1}, d_{H}\left(v_{2}\right)=d_{2}, d_{H}(s)=2$ for $s \in S$ and $d_{H}(t)=1$ for $t \in T$.
Case $1 d_{1}-d_{2} \geq 3$. Let $C=t_{1} t_{2} \cdots t_{d_{2}-d_{1}} t_{1}$ be a circuit passing through all vertices of $T$ and let $H^{\prime}=H \cup E(C)$. As $|S|$ is even, we join all vertices of $S$ in pairs (i.e., $s_{1} s_{2}, s_{3} s_{4}, \ldots$ ) in $H^{\prime}$ and denote the resulting graph by $H^{\prime \prime}$. Note that $d_{H^{\prime \prime}}\left(v_{1}\right)=d_{1}, d_{H^{\prime \prime}}\left(v_{2}\right)=d_{2}$ and $d_{H^{\prime \prime}}(v)=3$ for $v \in S \cup T$.

Also note that

$$
\left|V\left(H^{\prime \prime}\right)\right|= \begin{cases}2+d_{1} & \text { if } d_{2} \text { is even } \\ 1+d_{1} & \text { if } d_{2} \text { is odd. }\end{cases}
$$

Let $m=n-\left|V\left(H^{\prime \prime}\right)\right|$. Then

$$
m= \begin{cases}n-\left(2+d_{1}\right) & \text { if } d_{2} \text { is even } \\ n-\left(1+d_{1}\right) & \text { if } d_{2} \text { is odd }\end{cases}
$$

is even as $n$ and $d_{1}$ have the same parity if $d_{2}$ is even while $n$ and $d_{1}$ have different parity if $d_{2}$ is odd. By the construction of $H^{\prime \prime}, H^{\prime \prime}$ contains a triangle $v_{1} s_{1} s_{2}$. We subdivide $v_{1} s_{1}$ and $v_{1} s_{2} \frac{m}{2}$ times, respectively, and let $x_{1}, x_{2}, \ldots, x_{\frac{m}{2}}$ and $y_{1}, y_{2}, \ldots, y_{\frac{m}{2}}$ be the new vertices resulted in subdividing $v_{1} s_{1}$ and $v_{1} s_{2}$, respectively. Then for $1 \leq j \leq \frac{m}{2}$, we join $x_{j} y_{j}$ and denote the resulting graph by $G$ (see Fig. 1). Hence, by the construction of $G, G$ is a realization of $d$.
Case $2 d_{1}-d_{2}=2$. Let $G$ be the construction as in Case 1 except that we join $t_{1}$ to $s_{1}, t_{1}$ to $t_{2}, t_{2}$ to $s_{2}$, and delete $s_{1} s_{2}$.
Case $3 d_{1}-d_{2}=1$. Let $G$ be the construction as in Case 1 except that we join $t_{1}$ to both $s_{1}$ and $s_{2}$, and delete $s_{1} s_{2}$.
By Theorem 2.1(iii), $K_{3}$ is collapsible. If we contract $v_{1} x_{1} y_{1}$, then we get a triangle $v_{1} x_{2} y_{2}$ in the contraction, and if we contract $v_{1} x_{2} y_{2}$, then we get a triangle $v_{1} x_{3} y_{3}$ in the contraction. Repeat this process by contracting a triangle $v_{1} x_{i} y_{i}$ for each $i$ with $1 \leq i \leq \frac{m}{2}$ in the subsequent contraction. In Case 2 and Case 3, this process results in a graph in which each edge lies in a triangle. In Case 1 , this process eventually results in a triangle $v_{1} s_{1} s_{2}$. After contracting $v_{1} t_{1} t_{2}$ we obtained a graph in which each edge lies in a triangle. Since 2-circuit is collapsible, the contraction of a maximally collapsible graph will result in a simple graph. By Corollary 2.2 (i) and (ii), $G$ is collapsible in each case.

Theorem 2.5 (Havel [6], Hakimi [4]). Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing sequence. Then $d$ is graphic if and only if $d^{\prime}=\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}\right)$ is graphic.

Theorem 2.6 (Kleitman and Wang [8]). Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing sequence. Then $d$ is graphic if and only if $d^{\prime}=\left(d_{1}-1, \ldots, d_{d_{k}}-1, d_{d_{k}+1}, \ldots, d_{k-1}, d_{k+1}, \ldots, d_{n}\right)$ is graphic.

Lemma 2.7. If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing sequence with $n \geq 4$ and $d_{n}=3$, then $d$ is graphic if and only if $d^{\prime}=\left(d_{1}-1, d_{2}-1, d_{3}-1, d_{4}, \ldots, d_{n-1}\right)$ is graphic.
Proof. Theorem 2.6 implies Lemma 2.7 by letting $k=n$ and $d_{k}=3$.
Theorem 2.8. If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing graphic sequence with $n \geq 4$ and $d_{n} \geq 3$, then $d$ has a collapsible realization.
Proof. We argue by induction on $n$. If $n=4$, then the assumption that $d_{n} \geq 3$ forces that the only realization of $d$ is $K_{4}$, and by Theorem 2.1(i), (iii), $K_{4}$ is collapsible.

Next we assume that $n \geq 5$. If $d_{n} \geq 4$, then $d_{2}-1 \geq d_{3}-1 \geq \cdots \geq d_{d_{1}+1}-1 \geq 3$ and $d_{d_{1}+2} \geq \cdots \geq d_{n} \geq 3$. By Theorem 2.5 and the induction hypothesis, $\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}\right)$ has a collapsible realization $H$. Assume that $V(H)=\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ such that $v_{2}, v_{3}, \ldots, v_{d_{1}+1}$ have degrees $d_{2}-1, d_{3}-1, \ldots, d_{d_{1}+1}-1$ in $H$, respectively, and such that $v_{d_{1}+2}, \ldots, v_{n}$ have degrees $d_{d_{1}+2}, \ldots, d_{n}$ in $H$, respectively. Then obtain a realization $H^{\prime}$ of $d$ from $H$ by adding a new vertex $v_{1}$ and joining $v_{1}$ to $v_{2}, v_{3}, \ldots, v_{d_{1}+1}$, respectively. By Corollary 2.2(ii) $H^{\prime}$ is collapsible.

Therefore, we may assume that $d_{n}=3$. If $d_{3}=3$, then by Lemma $2.4,\left(d_{1}, d_{2}, 3, \ldots, 3\right)$ is collapsible. Hence we assume further that $d_{3} \geq 4$.

In this case, $d_{1}-1 \geq d_{2}-1 \geq d_{3}-1 \geq 3$ and $d_{4} \geq \cdots \geq d_{n}=3$. By Lemma 2.7, $\left(d_{1}-1, d_{2}-1, d_{3}-\right.$ $\left.1, d_{4}, \ldots, d_{n-1}\right)$ is graphic. By the induction hypothesis, $\left(d_{1}-1, d_{2}-1, d_{3}-1, d_{4}, \ldots, d_{n-1}\right)$ has a collapsible realization $K$ with $V(K)=\left\{u_{1}, u_{2}, \ldots, u_{n-1}\right\}$ such that $u_{1}, u_{2}, u_{3}$ have degrees $d_{1}-1, d_{2}-1, d_{3}-1$ in $K$, respectively, and such that $u_{4}, u_{5}, \ldots, u_{n-1}$ have degrees $d_{4}, \ldots, d_{n-1}$ in $K$, respectively. We obtain a realization $K^{\prime}$ of $d$ from $K$ by adding a new vertex $u_{n}$ and joining $u_{n}$ to $u_{1}, u_{2}, u_{3}$, respectively. By Corollary 2.2 (ii) $K^{\prime}$ is collapsible.

## 3. Supereulerian sequence and Hamiltonian line graph

Let $X$ and $Y$ be two sets. Then $X \Delta Y=(X \cup Y)-(X \cap Y)$ denotes the symmetric difference of $X$ and $Y$. We start with the following observation (Lemma 3.1) and a few other lemmas. Throughout this section, we assume that $n \geq 3$.

Lemma 3.1 (Edmonds [3]). If $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a nonincreasing graphic sequence with $d_{n} \geq 2$, then there exists a 2-edge-connected realization of $d$.

Lemma 3.2. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing sequence with $d_{1} \leq n-2$ and $d_{n}=2$. Then $d$ is graphic if and only if either of the following holds.
(i) $d^{\prime}=\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)$ is graphic, or
(ii) $d^{\prime \prime}=\left(d_{1}, d_{2}, \ldots, d_{i}-1, \ldots, d_{j}-1, \ldots, d_{n-1}\right)$ is graphic for some $d_{i} \geq 3$ and $d_{j} \geq 3$, or
(iii) both $d_{n-1}=d_{n}=2$, and for some $j$ with $1 \leq j<n-1$ and with $d_{j} \geq 4, d^{\prime \prime \prime}=\left(d_{1}, d_{2}, \ldots, d_{j-1}, d_{j}-\right.$ $\left.2, d_{j+1}, \ldots, d_{n-2}\right)$ is graphic, or
(iv) $n=3$ and $d=(2,2,2)$.

Proof. Suppose that $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphic. Then there exists a 2 -edge-connected realization $G$ of $d$ with $d\left(v_{i}\right)=d_{i}$ for $1 \leq i \leq n$. Suppose that $N\left(v_{n}\right)=\left\{v_{i}, v_{j}\right\}$. If $v_{i} v_{j} \notin E(G)$, then $G-v_{n}+\left\{v_{i} v_{j}\right\}$ is a realization of ( $d_{1}, d_{2}, \ldots, d_{n-1}$ ), and so (i) holds. Thus we assume that $v_{i} v_{j} \in E(G)$.

If both $v_{i}, v_{j}$ have degree at least 3 in $G$, then $d^{\prime \prime}$ is graphic and so (ii) must hold. Thus we may assume further that $v_{i}$ has degree 2. If $v_{j}$ also has degree 2 in $G$, then $n=3$ and (iv) must hold. Therefore, we may assume that $v_{j}$ has degree at least 3 , and so $v_{j}$ is a cut-vertex of $G$. Since $G$ is 2 -edge-connected and since $v_{j}$ is a cut-vertex, $d_{j}=d\left(v_{j}\right) \geq 4$. In this case, $d^{\prime \prime \prime}$ is the degree sequence of $G-\left\{v_{n}, v_{i}\right\}$, and so $d^{\prime \prime \prime}$ is graphic. The sufficiency can be proved by reversing the arguments above.
Proof of Theorem 1.2. If a nonincreasing graphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ has a supereulerian realization, then we must have $d_{n} \geq 2$ as every supereulerian graph is 2-edge-connected.

We argue by induction on $n$ to prove the sufficiency. If $n=3$, then since $d_{n} \geq 2, K_{3}$, a supereulerian graph, is the only realization of $d$.

Suppose that $n \geq 4$ and that the theorem holds for all such graphic sequences with fewer than $n$ entries. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathcal{G}$ be a nonincreasing sequence with $d_{n} \geq 2$. If $d_{n} \geq 3$, then by Theorem $2.8, d$ has a collapsible realization $G$. By Theorem 2.1(vi), $G$ is supereulerian. If $d_{1}=d_{2}=\cdots=d_{n}=2$, then $C_{n}$ is a supereulerian realization of $d$.

In the following, we assume that $d_{1}>d_{n}=2$. If $d_{1}=n-1$, then by Corollary $2.3, d$ has a realization $G$ such that $G$ is collapsible. By Theorem 2.1(iv), $G$ is supereulerian. Thus $d$ in this case must be supereulerian.

Thus we may assume that $2<d_{1} \leq n-2$. By Lemma 3.2, one of the conclusions of Lemma 3.2 (except Lemma 3.2(iv)) must hold.

If Lemma 3.2(i) holds, then $d^{\prime}=\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)$ is graphic. By induction, there is a supereulerian realization $G^{\prime}$ of $d^{\prime}$. Let $C^{\prime}$ be a spanning eulerian subgraph of $G^{\prime}$ and $e=u v$ be an edge of $C^{\prime}$. Then by subdividing $e$ of $G^{\prime}$ into $u v_{n}, v_{n} v$, we obtain a supereulerian realization of $d$ as $d_{n}=2$.

If Lemma 3.2(ii) holds, then for some $i, j, d^{\prime \prime}=\left(d_{1}, d_{2}, \ldots, d_{i}-1, \ldots, d_{j}-1, \ldots, d_{n-1}\right)$ is graphic, with $d_{i} \geq 3$ and $d_{j} \geq 3$. By induction, there is a supereulerian realization $G^{\prime \prime}$ of $d^{\prime \prime}$. Let $C^{\prime \prime}$ be a spanning eulerian subgraph of $G^{\prime \prime}$. If $v_{i} v_{j} \in E\left(G^{\prime \prime}\right)$, then let $C_{1}=v_{i} v_{j} v_{n}$ and so $G=G^{\prime \prime}+\left\{v_{i} v_{n}, v_{j} v_{n}\right\}$ is a supereulerian realization of $d$. If $v_{i} v_{j} \notin E\left(G^{\prime \prime}\right)$, then we can get a realization $G$ of $d$ from $G^{\prime \prime}+\left\{v_{i} v_{j}\right\}$ by subdividing an edge $e=u v$ of $C^{\prime}$ into $u v_{n}$ and $v_{n} v$.

If Lemma 3.2(iii) holds, then both $d_{n-1}=d_{n}=2$, and for some $j$ with $1 \leq j<n-1$ and with $d_{i} \geq 4$, $d^{\prime \prime \prime}=\left(d_{1}, d_{2}, \ldots, d_{j-1}, d_{j}-2, d_{j+1}, \ldots, d_{n-2}\right)$ is graphic. By induction, there is a supereulerian realization $G^{\prime \prime \prime}$ of $d^{\prime \prime \prime}$. Let $C^{\prime \prime \prime}$ be a spanning eulerian subgraph of $G^{\prime \prime \prime}$. Obtain $G$ from $G^{\prime \prime \prime}$ by adding two new vertices $v_{n-1}$ and $v_{n}$ and three new edges $v_{j} v_{n}, v_{n} v_{n-1}, v_{n-1} v_{j}$. Then $G$ is a realization of $d$, and $E\left(C^{\prime \prime \prime}\right) \cup\left\{v_{j} v_{n}, v_{n} v_{n-1}, v_{n-1} v_{j}\right\}$ is a spanning eulerian subgraph of $G$.
In order to prove Theorem 1.5, we need the following result which shows the relationship between hamiltonian circuits in the line graph $L(G)$ and eulerian subgraph in $G$. A subgraph $H$ of $G$ is dominating if $E(G-V(H))=\emptyset$.

Theorem 3.3 (Harary and Nash-Williams, [5]). Let $|E(G)| \geq 3$. Then $L(G)$ is hamiltonian if and only if $G$ has a dominating eulerian subgraph.
Proof of Theorem 1.5. (i) $\Rightarrow$ (ii). Let $G$ be a realization of $d$ such that $L(G)$ is hamiltonian. By Theorem 3.3, $G$ has a dominating eulerian subgraph $H$. If $d_{1}=n-1$, then we are done. Suppose that $d_{1} \leq n-2$. Then $|V(H)| \geq 2$. For any $v_{i}$ with $d\left(v_{i}\right)=1, v_{i}$ must be adjacent to a vertex $v_{j}$ in $H$ and so $d_{G-E(H)}\left(v_{j}\right)$ is no less than the number of degree 1 vertices adjacent to $v_{j}$. Furthermore, since $H$ is eulerian and nontrivial, $d_{H}\left(v_{j}\right) \geq 2$ and so (1) must hold.
(ii) $\Rightarrow$ (iii) Suppose $d \in \mathcal{G}$ is a nonincreasing sequence such that $d_{n} \geq 1$ and $\sum_{d_{i}=1} d_{i} \leq \sum_{d_{j} \geq 2}\left(d_{j}-2\right)$. If $d_{n} \geq 2$, then by Theorem 1.2, $d$ has a supereulerian realization. So we assume that $d_{n}=1$.
Claim 3.4. Any realization of $d$ contains a nontrivial circuit.
Suppose that there exists a realization $G$ of $d$ such that $G$ is a tree. We may assume that $d_{i} \geq 2$ for $1 \leq i \leq k$ and $d_{j}=1$ for $k+1 \leq j \leq n$. Then

$$
\sum_{i=1}^{k} d_{i}+(n-k)=\sum_{i=1}^{k} d_{i}+\sum_{i=k+1}^{n} d_{i}=\sum_{i=1}^{n} d_{i}=2|E(G)|=2(n-1)
$$

and so

$$
\sum_{i=1}^{k}\left(d_{i}-2\right)+(n-k)=2(n-1)-2 k
$$

Hence

$$
\sum_{d_{j} \geq 2}\left(d_{j}-2\right)=\sum_{i=1}^{k}\left(d_{i}-2\right)=2(n-1)-2 k-(n-k)=n-k-2<n-k=\sum_{d_{i}=1} d_{i}
$$

contrary to (1). This completes the proof of the claim.
Thus we assume that $G$ is a realization of $d$ containing a nontrivial circuit $C$.

Claim 3.5. There is a realization $G$ of $d$ such that $\delta\left(G-D_{1}(G)\right) \geq 2$.
As $G$ contains a nontrivial circuit $C, G-D_{1}(G)$ is not empty. Let $S=N\left(D_{1}(G)\right)$. It suffices to show that for each $s \in S, N_{G-D_{1}(G)}(s) \geq 2$. Suppose, to the contrary, that there is $s \in S$ such that $N_{G-D_{1}(G)}(s)=1$. Choose $G$ to be a graph such that $P(G)=\left\{s: s \in S\right.$ with $d_{G}(s)=d_{t} \geq 2$ such that $\left.N_{G-D_{1}(G)}(s)=1\right\}$ is as small as possible. Let $x \in P(G)$. Then $x \notin C$. Choose $e \in E(C)$ and we subdivide $e$ and let $v_{e}$ denote the subdivision vertex. And we delete $d_{t}-1$ pendent edges of $x$, add $d_{t}-2$ pendent edges to $v_{e}$ and denote the resulting graph $G_{x}$. (Note that if $d_{t}-2=0$, then we subdivide $e$ without adding any pendent edges.) Let $N_{1}(x)$ be the set of pendent vertices adjacent to $x$. So $d_{G_{x}}\left(v_{e}\right)=2+d_{t}-2=d_{t}$ and $\left|D_{1}\left(G_{x}\right)\right|=\left|\left(D_{1}(G)-N_{1}(x)\right) \cup\{x\}\right|+d_{t}-2=\left|D_{1}(G)\right|-\left(d_{t}-1\right)+1+d_{t}-2=\left|D_{1}(G)\right|$ but $\left|P\left(G_{x}\right)\right|<|P(G)|$, contradicting the choice of $G$.
(iii) $\Rightarrow$ (i) If $G$ is a realization of $d$ such that $G-D_{1}(G)$ is supereulerian, then by Theorem 3.3, $L(G)$ is hamiltonian.

## References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[2] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-45.
[3] J. Edmonds, Existence of $k$-edge connected ordinary graphs with prescribed degree, J. Res. Nat. Bur. Stand., Ser. B 68 (1964) 7374.
[4] S.L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl. Math. 10 (1962) $496-506$.
[5] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-709.
[6] V. Havel, A remark on the existence of finite graphs (Czech.), Časopis Pěst. Mat. 80 (1955) 477-480.
[7] F. Jaeger, On interval hypergraphs and nowhere-zero flow in graphs, Research Report of Mathematics Application and Information, Universite Scientifique et Medicale et Institut National Polytechnique de Grenoble, No. 126, Juillet, 1978.
[8] D.J. Kleitman, D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, Discrete Math. 6 (1973) 7988.
[9] R. Luo, W.A. Zang, C.-Q. Zhang, Nowhere-zero 4-flows, simultaneous edge-colorings, and critical partial latin squares, Combinatorica 24 (4) (2004) 641-657.


[^0]:    * Corresponding author.

    E-mail address: hjlai@math.wvu.edu (H.-J. Lai).

