

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 6626-6631

www.elsevier.com/locate/disc

Note

Degree sequence and supereulerian graphs

Suohai Fan^a, Hong-Jian Lai^{b,*}, Yehong Shao^c, Taoye Zhang^d, Ju Zhou^b

^a Department of Mathematics, Jinan University Guangzhou 510632, PR China

^b Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

^c Arts and Science, Ohio University Southern, Ironton, OH 45638, United States

^d Department of Mathematics, Penn State Worthington Scranton, Dunmore, PA 18512, United States

Received 29 January 2007; received in revised form 5 November 2007; accepted 7 November 2007 Available online 20 February 2008

Abstract

A sequence $d = (d_1, d_2, \dots, d_n)$ is graphic if there is a simple graph G with degree sequence d, and such a graph G is called a realization of d. A graphic sequence d is line-hamiltonian if d has a realization G such that L(G) is hamiltonian, and is superculerian if d has a realization G with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic sequence $d = (d_1, d_2, \dots, d_n)$ has a superculerian realization if and only if $d_n \ge 2$ and that d is line-hamiltonian if and only if either $d_1 = n - 1$, or $\sum_{d_i=1} d_i \le \sum_{d_i \ge 2} (d_j - 2)$.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Degree sequence; Collapsible graphs; Hamiltonian line graphs; Supereulerian graphs

1. Introduction

We consider finite graphs in this note. Undefined terms can be found in [1]. Let G be a graph with vertex set V(G)and edge set E(G). A vertex $v \in V(G)$ is called a *pendent vertex* if d(v) = 1. Let $D_1(G)$ denote the set of all pendent vertices of G. An edge $e \in E(G)$ is called a *pendent edge* if one of its endpoints is a pendent vertex. If $v \in V(G)$, then $N_G(v) = \{u : uv \in E(G)\}$; and if $T \subseteq V(G)$, then $N_G(T) = \{u \in V(G) \setminus T : uv \in E(G) \text{ and } v \in T\}$. When the graph G is understood in the context, we may drop the subscript G.

A circuit is a connected 2-regular graph. A cycle is a graph such that the degree of each vertex is even. A cycle C of G is a spanning eulerian subgraph of G if C is connected and spanning. A graph G is supereulerian if G contains a spanning eulerian subgraph.

If G has vertices v_1, v_2, \ldots, v_n , the sequence $(d(v_1), d(v_2), \ldots, d(v_n))$ is called a *degree sequence* of G. A sequence $d = (d_1, d_2, \ldots, d_n)$ is nonincreasing if $d_1 \ge d_2 \ge \cdots \ge d_n$. A sequence $d = (d_1, d_2, \ldots, d_n)$ is graphic if there is a simple graph G with degree sequence d. Furthermore, such a simple graph G is called a *realization* of d. Let \mathcal{G} denote the set of all graphic degree sequences. A sequence $d \in \mathcal{G}$ is *line-hamiltonian* if d has a realization G such that L(G) is hamiltonian.

* Corresponding author.

E-mail address: hjlai@math.wvu.edu (H.-J. Lai).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter (© 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.11.008

The sequence S is called a bipartite graphic sequence if there is a bipartite graph G with bipartition $\{X, Y\}$ such that $\{d(x_1), \ldots, d(x_m)\} = \{s_1, \ldots, s_m\}$, and $\{d(y_1), \ldots, d(y_n)\} = \{t_1, \ldots, t_n\}$ where $X = \{x_1, \ldots, x_m\}$ and $Y = y_1, \ldots, y_n$ and d(v) is the degree of a vertex v; the graph G is called a realization of S. In [9], Luo et al. proved the following theorem.

Theorem 1.1 (Luo, Zang, and Zhang [9]). Every bipartite graphic sequence with the minimum degree $\delta \ge 2$ has a realization that admits a nowhere-zero 4-flow.

In this paper, the following result is obtained.

Theorem 1.2. Let $d = (d_1, d_2, ..., d_n) \in \mathcal{G}$ be a nonincreasing sequence. Then d has a supereulerian realization if and only if either n = 1 and $d_1 = 0$, or $n \ge 3$ and $d_n \ge 2$.

In [7], Jaeger proved the following result.

Theorem 1.3 (Jaeger [7]). Every supereulerian graph admits a nowhere-zero 4-flow.

Theorem 1.2, together with 1.3, implies a result analogous to Theorem 1.1.

Theorem 1.4 (Luo, Zang, and Zhang [9]). Let $d = (d_1, d_2, ..., d_n) \in \mathcal{G}$ be a nonincreasing sequence. Then d has a realization that admits a nowhere-zero 4-flow if and only if $d_n \ge 2$.

The following characterization on line-hamiltonian graphic sequences is also obtained.

Theorem 1.5. Let $d = (d_1, d_2, \ldots, d_n) \in \mathcal{G}$ be a nonincreasing sequence with $n \ge 3$. The following are equivalent.

- (i) d is line-hamiltonian.
- (ii) *either* $d_1 = n 1$, *or*

$$\sum_{d_i=1} d_i \le \sum_{d_j \ge 2} (d_j - 2).$$
(1)

(iii) d has a realization G such that $G - D_1(G)$ is supereulerian.

2. Collapsible sequences

Let $X \subseteq E(G)$. The *contraction* G/X is the graph obtained from G by identifying the endpoints of each edge in X and then deleting the resulting loops. Note that multiple edges may arise.

Let O(G) denote the set of vertices of odd degree in G. A graph G is *collapsible* if for any subset $R \subseteq V(G)$ with $|R| \equiv 0 \pmod{2}$, G has a connected spanning subgraph H_R such that $O(H_R) = R$. A sequence $d = (d_1, d_2, \dots, d_n)$ is *collapsible* if d has a simple collapsible realization.

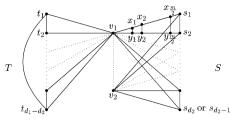
Theorem 2.1. Let G be a connected graph. Each of the following holds.

- (i) (Catlin, Corollary of Lemma 3, [2]) If H is a collapsible subgraph of G, then G is collapsible if and only if G/H is collapsible.
- (ii) (*Catlin, Corollary* 1, [2]) *If G contains a spanning tree T such that each edge of T is contained in a collapsible subgraph of G, then G is collapsible.*
- (iii) (Caltin, Theorem 7, [2]) C₂, K₃ (circuits of 2 or 3 edges) are collapsible.
- (iv) (Caltin, Theorem 2, [2]) If G is collapsible, then G is supereulerian.

Theorem 2.1(ii) and (iii) imply Corollary 2.2(i); Theorem 2.1(i) and (iii) imply Corollary 2.2(ii).

Corollary 2.2. (i) If every edge of a spanning tree of G lies in a K_3 , then G is collapsible. (ii) If G - v is collapsible and if v has degree at least 2 in G, then G is collapsible.

Corollary 2.3. If $d = (d_1, d_2, ..., d_n)$ is a nonincreasing graphic sequence with $d_1 = n - 1$ and $d_n \ge 2$, then every realization of d is collapsible.



Proof. Let *G* be a realization of *d* with $N(v_1) = \{v_2, \ldots, v_n\}$ and let *T* be the spanning tree with $E(T) = \{v_1v_k : 2 \le k \le n\}$. Since $d_n \ge 2$ and $N(v_1) = \{v_2, \ldots, v_n\}$, for any $v_i \in \{v_k : 2 \le k \le n\}$, there is $v_j \in \{v_k : 2 \le k \le n\} \setminus \{v_i\}$ such that $v_iv_j \in E(G)$. It follows that every edge of *T* lies in a K_3 , and so by Corollary 2.2(i), *G* is collapsible. \Box

Lemma 2.4. If $d = (d_1, d_2, ..., d_n)$ is a nonincreasing graphic sequence with $d_3 = \cdots = d_n = 3$, then d is collapsible.

Proof. Let v_1, v_2 be two vertices and let

 $S = \begin{cases} \{s_1, s_2, \dots, s_{d_2}\} & \text{if } d_2 \text{ is even} \\ \{s_1, s_2, \dots, s_{d_2-1}\} & \text{if } d_2 \text{ is odd} \end{cases}$

be a set of vertices other than $\{v_1, v_2\}$ and let $T = \{t_1, t_2, \dots, t_{d_1-d_2}\}$ be a set of $d_1 - d_2$ vertices not in $S \cup \{v_1, v_2\}$. Let H denote the graph obtained from $\{v_1, v_2\} \cup S \cup T$ by joining v_2 to each vertex of S and joining v_1 to each vertex of $S \cup T$ (if d_2 is odd, then we also join v_1 and v_2). Note that $d_H(v_1) = d_2 + d_1 - d_2 = d_1$, $d_H(v_2) = d_2$, $d_H(s) = 2$ for $s \in S$ and $d_H(t) = 1$ for $t \in T$.

Case 1 $d_1 - d_2 \ge 3$. Let $C = t_1 t_2 \cdots t_{d_2-d_1} t_1$ be a circuit passing through all vertices of T and let $H' = H \cup E(C)$. As |S| is even, we join all vertices of S in pairs (i.e., $s_1 s_2, s_3 s_4, \ldots$) in H' and denote the resulting graph by H''. Note that $d_{H''}(v_1) = d_1, d_{H''}(v_2) = d_2$ and $d_{H''}(v) = 3$ for $v \in S \cup T$.

Also note that

$$|V(H'')| = \begin{cases} 2+d_1 & \text{if } d_2 \text{ is even} \\ 1+d_1 & \text{if } d_2 \text{ is odd.} \end{cases}$$

Let m = n - |V(H'')|. Then

$$m = \begin{cases} n - (2 + d_1) & \text{if } d_2 \text{ is even} \\ n - (1 + d_1) & \text{if } d_2 \text{ is odd} \end{cases}$$

is even as *n* and d_1 have the same parity if d_2 is even while *n* and d_1 have different parity if d_2 is odd. By the construction of H'', H'' contains a triangle $v_1s_1s_2$. We subdivide v_1s_1 and $v_1s_2 \frac{m}{2}$ times, respectively, and let $x_1, x_2, \ldots, x_{\frac{m}{2}}$ and $y_1, y_2, \ldots, y_{\frac{m}{2}}$ be the new vertices resulted in subdividing v_1s_1 and v_1s_2 , respectively. Then for $1 \le j \le \frac{m}{2}$, we join $x_j y_j$ and denote the resulting graph by *G* (see Fig. 1). Hence, by the construction of *G*, *G* is a realization of *d*.

Case 2 $d_1 - d_2 = 2$. Let G be the construction as in Case 1 except that we join t_1 to s_1 , t_1 to t_2 , t_2 to s_2 , and delete s_1s_2 .

Case 3 $d_1 - d_2 = 1$. Let G be the construction as in Case 1 except that we join t_1 to both s_1 and s_2 , and delete s_1s_2 .

By Theorem 2.1(iii), K_3 is collapsible. If we contract $v_1x_1y_1$, then we get a triangle $v_1x_2y_2$ in the contraction, and if we contract $v_1x_2y_2$, then we get a triangle $v_1x_3y_3$ in the contraction. Repeat this process by contracting a triangle $v_1x_iy_i$ for each i with $1 \le i \le \frac{m}{2}$ in the subsequent contraction. In Case 2 and Case 3, this process results in a graph in which each edge lies in a triangle. In Case 1, this process eventually results in a triangle $v_1s_1s_2$. After contracting $v_1t_1t_2$ we obtained a graph in which each edge lies in a triangle. Since 2-circuit is collapsible, the contraction of a maximally collapsible graph will result in a simple graph. By Corollary 2.2(i) and (ii), G is collapsible in each case.

Theorem 2.5 (Havel [6], Hakimi [4]). Let $d = (d_1, d_2, \ldots, d_n)$ be a nonincreasing sequence. Then d is graphic if and only if $d' = (d_2 - 1, d_3 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, \ldots, d_n)$ is graphic.

Theorem 2.6 (*Kleitman and Wang* [8]). Let $d = (d_1, d_2, ..., d_n)$ be a nonincreasing sequence. Then d is graphic if and only if $d' = (d_1 - 1, ..., d_{d_k} - 1, d_{d_k+1}, ..., d_{k-1}, d_{k+1}, ..., d_n)$ is graphic.

Lemma 2.7. If $d = (d_1, d_2, ..., d_n)$ is a nonincreasing sequence with $n \ge 4$ and $d_n = 3$, then d is graphic if and only if $d' = (d_1 - 1, d_2 - 1, d_3 - 1, d_4, ..., d_{n-1})$ is graphic.

Proof. Theorem 2.6 implies Lemma 2.7 by letting k = n and $d_k = 3$.

Theorem 2.8. If $d = (d_1, d_2, ..., d_n)$ is a nonincreasing graphic sequence with $n \ge 4$ and $d_n \ge 3$, then d has a collapsible realization.

Proof. We argue by induction on *n*. If n = 4, then the assumption that $d_n \ge 3$ forces that the only realization of *d* is K_4 , and by Theorem 2.1(i), (iii), K_4 is collapsible.

Next we assume that $n \ge 5$. If $d_n \ge 4$, then $d_2 - 1 \ge d_3 - 1 \ge \cdots \ge d_{d_1+1} - 1 \ge 3$ and $d_{d_1+2} \ge \cdots \ge d_n \ge 3$. By Theorem 2.5 and the induction hypothesis, $(d_2 - 1, d_3 - 1, \dots, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n)$ has a collapsible realization H. Assume that $V(H) = \{v_2, v_3, \dots, v_n\}$ such that $v_2, v_3, \dots, v_{d_1+1}$ have degrees $d_2 - 1, d_3 - 1, \dots, d_{d_1+1} - 1$ in H, respectively, and such that v_{d_1+2}, \dots, v_n have degrees d_{d_1+2}, \dots, d_n in H, respectively. Then obtain a realization H' of d from H by adding a new vertex v_1 and joining v_1 to $v_2, v_3, \dots, v_{d_1+1}$, respectively. By Corollary 2.2(ii) H'is collapsible.

Therefore, we may assume that $d_n = 3$. If $d_3 = 3$, then by Lemma 2.4, $(d_1, d_2, 3, ..., 3)$ is collapsible. Hence we assume further that $d_3 \ge 4$.

In this case, $d_1 - 1 \ge d_2 - 1 \ge d_3 - 1 \ge 3$ and $d_4 \ge \cdots \ge d_n = 3$. By Lemma 2.7, $(d_1 - 1, d_2 - 1, d_3 - 1, d_4, \ldots, d_{n-1})$ is graphic. By the induction hypothesis, $(d_1 - 1, d_2 - 1, d_3 - 1, d_4, \ldots, d_{n-1})$ has a collapsible realization K with $V(K) = \{u_1, u_2, \ldots, u_{n-1}\}$ such that u_1, u_2, u_3 have degrees $d_1 - 1, d_2 - 1, d_3 - 1$ in K, respectively, and such that $u_4, u_5, \ldots, u_{n-1}$ have degrees d_4, \ldots, d_{n-1} in K, respectively. We obtain a realization K' of d from K by adding a new vertex u_n and joining u_n to u_1, u_2, u_3 , respectively. By Corollary 2.2(ii) K' is collapsible. \Box

3. Supereulerian sequence and Hamiltonian line graph

Let *X* and *Y* be two sets. Then $X \triangle Y = (X \cup Y) - (X \cap Y)$ denotes the *symmetric difference* of *X* and *Y*. We start with the following observation (Lemma 3.1) and a few other lemmas. Throughout this section, we assume that $n \ge 3$.

Lemma 3.1 (Edmonds [3]). If $d = (d_1, d_2, ..., d_n)$ is a nonincreasing graphic sequence with $d_n \ge 2$, then there exists a 2-edge-connected realization of d.

Lemma 3.2. Let $d = (d_1, d_2, ..., d_n)$ be a nonincreasing sequence with $d_1 \le n - 2$ and $d_n = 2$. Then *d* is graphic if and only if either of the following holds.

- (i) $d' = (d_1, d_2, ..., d_{n-1})$ is graphic, or
- (ii) $d'' = (d_1, d_2, ..., d_i 1, ..., d_j 1, ..., d_{n-1})$ is graphic for some $d_i \ge 3$ and $d_j \ge 3$, or
- (iii) both $d_{n-1} = d_n = 2$, and for some j with $1 \le j < n-1$ and with $d_j \ge 4$, $d''' = (d_1, d_2, \dots, d_{j-1}, d_j 2, d_{j+1}, \dots, d_{n-2})$ is graphic, or
- (iv) n = 3 and d = (2, 2, 2).

Proof. Suppose that $d = (d_1, d_2, ..., d_n)$ is graphic. Then there exists a 2-edge-connected realization G of d with $d(v_i) = d_i$ for $1 \le i \le n$. Suppose that $N(v_n) = \{v_i, v_j\}$. If $v_i v_j \notin E(G)$, then $G - v_n + \{v_i v_j\}$ is a realization of $(d_1, d_2, ..., d_{n-1})$, and so (i) holds. Thus we assume that $v_i v_j \in E(G)$.

If both v_i , v_j have degree at least 3 in G, then d'' is graphic and so (ii) must hold. Thus we may assume further that v_i has degree 2. If v_j also has degree 2 in G, then n = 3 and (iv) must hold. Therefore, we may assume that v_j has degree at least 3, and so v_j is a cut-vertex of G. Since G is 2-edge-connected and since v_j is a cut-vertex, $d_j = d(v_j) \ge 4$. In this case, d''' is the degree sequence of $G - \{v_n, v_i\}$, and so d''' is graphic. The sufficiency can be proved by reversing the arguments above. \Box

Proof of Theorem 1.2. If a nonincreasing graphic sequence $d = (d_1, d_2, ..., d_n)$ has a supereulerian realization, then we must have $d_n \ge 2$ as every supereulerian graph is 2-edge-connected.

We argue by induction on *n* to prove the sufficiency. If n = 3, then since $d_n \ge 2$, K_3 , a supercularian graph, is the only realization of *d*.

Suppose that $n \ge 4$ and that the theorem holds for all such graphic sequences with fewer than n entries. Let $d = (d_1, d_2, \ldots, d_n) \in \mathcal{G}$ be a nonincreasing sequence with $d_n \ge 2$. If $d_n \ge 3$, then by Theorem 2.8, d has a collapsible realization G. By Theorem 2.1(vi), G is superculerian. If $d_1 = d_2 = \cdots = d_n = 2$, then C_n is a superculerian realization of d.

In the following, we assume that $d_1 > d_n = 2$. If $d_1 = n - 1$, then by Corollary 2.3, d has a realization G such that G is collapsible. By Theorem 2.1(iv), G is superculerian. Thus d in this case must be superculerian.

Thus we may assume that $2 < d_1 \le n - 2$. By Lemma 3.2, one of the conclusions of Lemma 3.2 (except Lemma 3.2(iv)) must hold.

If Lemma 3.2(i) holds, then $d' = (d_1, d_2, ..., d_{n-1})$ is graphic. By induction, there is a supereulerian realization G' of d'. Let C' be a spanning eulerian subgraph of G' and e = uv be an edge of C'. Then by subdividing e of G' into uv_n, v_nv , we obtain a supereulerian realization of d as $d_n = 2$.

If Lemma 3.2(ii) holds, then for some $i, j, d'' = (d_1, d_2, ..., d_i - 1, ..., d_j - 1, ..., d_{n-1})$ is graphic, with $d_i \ge 3$ and $d_j \ge 3$. By induction, there is a superculerian realization G'' of d''. Let C'' be a spanning culerian subgraph of G''. If $v_i v_j \in E(G'')$, then let $C_1 = v_i v_j v_n$ and so $G = G'' + \{v_i v_n, v_j v_n\}$ is a superculerian realization of d. If $v_i v_j \notin E(G'')$, then we can get a realization G of d from $G'' + \{v_i v_j\}$ by subdividing an edge e = uv of C' into uv_n and $v_n v$.

If Lemma 3.2(iii) holds, then both $d_{n-1} = d_n = 2$, and for some j with $1 \le j < n-1$ and with $d_i \ge 4$, $d''' = (d_1, d_2, \ldots, d_{j-1}, d_j - 2, d_{j+1}, \ldots, d_{n-2})$ is graphic. By induction, there is a superculerian realization G''' of d'''. Let C''' be a spanning culerian subgraph of G'''. Obtain G from G''' by adding two new vertices v_{n-1} and v_n and three new edges $v_j v_n, v_n v_{n-1}, v_{n-1} v_j$. Then G is a realization of d, and $E(C''') \cup \{v_j v_n, v_n v_{n-1}, v_{n-1} v_j\}$ is a spanning culerian subgraph of G. \Box

In order to prove Theorem 1.5, we need the following result which shows the relationship between hamiltonian circuits in the line graph L(G) and eulerian subgraph in G. A subgraph H of G is dominating if $E(G - V(H)) = \emptyset$.

Theorem 3.3 (*Harary and Nash-Williams*, [5]). Let $|E(G)| \ge 3$. Then L(G) is hamiltonian if and only if G has a dominating eulerian subgraph.

Proof of Theorem 1.5. (i) \Rightarrow (ii). Let *G* be a realization of *d* such that L(G) is hamiltonian. By Theorem 3.3, *G* has a dominating eulerian subgraph *H*. If $d_1 = n - 1$, then we are done. Suppose that $d_1 \le n - 2$. Then $|V(H)| \ge 2$. For any v_i with $d(v_i) = 1$, v_i must be adjacent to a vertex v_j in *H* and so $d_{G-E(H)}(v_j)$ is no less than the number of degree 1 vertices adjacent to v_j . Furthermore, since *H* is eulerian and nontrivial, $d_H(v_j) \ge 2$ and so (1) must hold.

(ii) \Rightarrow (iii) Suppose $d \in \mathcal{G}$ is a nonincreasing sequence such that $d_n \ge 1$ and $\sum_{d_i=1}^{n} d_i \le \sum_{d_j \ge 2} (d_j - 2)$. If $d_n \ge 2$, then by Theorem 1.2, d has a superculerian realization. So we assume that $d_n = 1$.

Claim 3.4. Any realization of d contains a nontrivial circuit.

Suppose that there exists a realization G of d such that G is a tree. We may assume that $d_i \ge 2$ for $1 \le i \le k$ and $d_j = 1$ for $k + 1 \le j \le n$. Then

$$\sum_{i=1}^{k} d_i + (n-k) = \sum_{i=1}^{k} d_i + \sum_{i=k+1}^{n} d_i = \sum_{i=1}^{n} d_i = 2|E(G)| = 2(n-1),$$

and so

$$\sum_{i=1}^{k} (d_i - 2) + (n - k) = 2(n - 1) - 2k.$$

Hence

$$\sum_{d_j \ge 2} (d_j - 2) = \sum_{i=1}^k (d_i - 2) = 2(n-1) - 2k - (n-k) = n - k - 2 < n - k = \sum_{d_i = 1}^k d_i,$$

contrary to (1). This completes the proof of the claim.

Thus we assume that G is a realization of d containing a nontrivial circuit C.

Claim 3.5. There is a realization G of d such that $\delta(G - D_1(G)) \ge 2$.

As *G* contains a nontrivial circuit *C*, $G - D_1(G)$ is not empty. Let $S = N(D_1(G))$. It suffices to show that for each $s \in S$, $N_{G-D_1(G)}(s) \ge 2$. Suppose, to the contrary, that there is $s \in S$ such that $N_{G-D_1(G)}(s) = 1$. Choose *G* to be a graph such that $P(G) = \{s : s \in S \text{ with } d_G(s) = d_t \ge 2 \text{ such that } N_{G-D_1(G)}(s) = 1\}$ is as small as possible. Let $x \in P(G)$. Then $x \notin C$. Choose $e \in E(C)$ and we subdivide *e* and let v_e denote the subdivision vertex. And we delete $d_t - 1$ pendent edges of *x*, add $d_t - 2$ pendent edges to v_e and denote the resulting graph G_x . (Note that if $d_t - 2 = 0$, then we subdivide *e* without adding any pendent edges.) Let $N_1(x)$ be the set of pendent vertices adjacent to *x*. So $d_{G_x}(v_e) = 2+d_t-2 = d_t$ and $|D_1(G_x)| = |(D_1(G)-N_1(x))\cup \{x\}|+d_t-2 = |D_1(G)|-(d_t-1)+1+d_t-2 = |D_1(G)|$ but $|P(G_x)| < |P(G)|$, contradicting the choice of *G*.

(iii) \Rightarrow (i) If G is a realization of d such that $G - D_1(G)$ is superculerian, then by Theorem 3.3, L(G) is hamiltonian. \Box

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [2] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-45.
- [3] J. Edmonds, Existence of k-edge connected ordinary graphs with prescribed degree, J. Res. Nat. Bur. Stand., Ser. B 68 (1964) 7374.
- [4] S.L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl. Math. 10 (1962) 496–506.
- [5] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701–709.
- [6] V. Havel, A remark on the existence of finite graphs (Czech.), Časopis Pěst. Mat. 80 (1955) 477–480.
- [7] F. Jaeger, On interval hypergraphs and nowhere-zero flow in graphs, Research Report of Mathematics Application and Information, Universite Scientifique et Medicale et Institut National Polytechnique de Grenoble, No. 126, Juillet, 1978.
- [8] D.J. Kleitman, D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, Discrete Math. 6 (1973) 7988.
- [9] R. Luo, W.A. Zang, C.-Q. Zhang, Nowhere-zero 4-flows, simultaneous edge-colorings, and critical partial latin squares, Combinatorica 24 (4) (2004) 641–657.