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Abstract

A sequence d = (dy,d>, ...,dy) is graphic if there is a simple graph G with degree sequence d, and such a graph G is
called a realization of d. A graphic sequence d is line-hamiltonian if d has a realization G such that L(G) is hamiltonian, and is
supereulerian if d has a realization G with a spanning eulerian subgraph. In this paper, it is proved that a nonincreasing graphic
sequence d = (dy, dy, ..., dy) has a supereulerian realization if and only if d, > 2 and that d is line-hamiltonian if and only if
eitherd) =n—1lor ) ;_;d; < Zdjzz(dj -2).
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider finite graphs in this note. Undefined terms can be found in [1]. Let G be a graph with vertex set V (G)
and edge set E(G). A vertex v € V(G) is called a pendent vertex if d(v) = 1. Let D1(G) denote the set of all pendent
vertices of G. An edge e € E(G) is called a pendent edge if one of its endpoints is a pendent vertex. If v € V(G),
then Ng(v) = {u : uv € E(G)}; and if T € V(G), then Ng(T) ={u € V(G)\ T : uv € E(G) and v € T}. When
the graph G is understood in the context, we may drop the subscript G.

A circuit is a connected 2-regular graph. A cycle is a graph such that the degree of each vertex is even. A cycle C
of G is a spanning eulerian subgraph of G if C is connected and spanning. A graph G is supereulerian if G contains
a spanning eulerian subgraph.

If G has vertices vy, vy, ..., vy, the sequence (d(v1),d(v2),...,d(v,)) is called a degree sequence of G. A
sequence d = (d1, da, ..., dy) is nonincreasing if dy > dp > --- > d,. Asequence d = (dy, ds, ..., d,) is graphic
if there is a simple graph G with degree sequence d. Furthermore, such a simple graph G is called a realization of d.
Let G denote the set of all graphic degree sequences. A sequence d € G is line-hamiltonian if d has a realization G
such that L(G) is hamiltonian.
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The sequence S is called a bipartite graphic sequence if there is a bipartite graph G with bipartition {X, Y}
such that {d(x1),...,dxn)} = {s1,...,8m}, and {d(y1),...,d(yn)} = {t1,...,t,} where X = {x1,...,x,} and
Y =y1,..., yp and d(v) is the degree of a vertex v; the graph G is called a realization of S. In [9], Luo et al. proved
the following theorem.

Theorem 1.1 (Luo, Zang, and Zhang [9]). Every bipartite graphic sequence with the minimum degree § > 2 has a
realization that admits a nowhere-zero 4-flow.

In this paper, the following result is obtained.
Theorem 1.2. Let d = (dy, d3, ..., d,) € G be a nonincreasing sequence. Then d has a supereulerian realization if
and only if eithern = 1 and dy =0, orn > 3 and d,, > 2.

In [7], Jaeger proved the following result.

Theorem 1.3 (Jaeger [7]). Every supereulerian graph admits a nowhere-zero 4-flow.

Theorem 1.2, together with 1.3, implies a result analogous to Theorem 1.1.

Theorem 1.4 (Luo, Zang, and Zhang [9]). Letd = (d1, da, ..., d,) € G be a nonincreasing sequence. Then d has a
realization that admits a nowhere-zero 4-flow if and only if d, > 2.

The following characterization on line-hamiltonian graphic sequences is also obtained.

Theorem 1.5. Let d = (dy, da, ..., d,) € G be a nonincreasing sequence with n > 3. The following are equivalent.

(1) d is line-hamiltonian.
(ii) either dy =n — 1, or

> di< > dj-2). (1

di=1 dj>2

(iii) d has a realization G such that G — D1(G) is supereulerian.
2. Collapsible sequences

Let X € E(G). The contraction G/ X is the graph obtained from G by identifying the endpoints of each edge in
X and then deleting the resulting loops. Note that multiple edges may arise.

Let O(G) denote the set of vertices of odd degree in G. A graph G is collapsible if for any subset R C V (G) with
|R| = 0 (mod 2), G has a connected spanning subgraph Hg such that O(Hgr) = R. A sequence d = (dy,d>, ..., dy)
is collapsible if d has a simple collapsible realization.

Theorem 2.1. Let G be a connected graph. Each of the following holds.

(1) (Catlin, Corollary of Lemma 3, [2]) If H is a collapsible subgraph of G, then G is collapsible if and only if
G/ H is collapsible.
(ii) (Catlin, Corollary 1, [2]) If G contains a spanning tree T such that each edge of T is contained in a collapsible
subgraph of G, then G is collapsible.
(iii) (Caltin, Theorem 7, [2]) Ca, K3 (circuits of 2 or 3 edges) are collapsible.
@iv) (Caltin, Theorem 2, [2]) If G is collapsible, then G is supereulerian.

Theorem 2.1(ii) and (iii) imply Corollary 2.2(i); Theorem 2.1(i) and (iii) imply Corollary 2.2(ii).

Corollary 2.2. (i) If every edge of a spanning tree of G lies in a K3, then G is collapsible.
(i1) If G — v is collapsible and if v has degree at least 2 in G, then G is collapsible.

Corollary 2.3. If d = (dy, d>, ..., dy) is a nonincreasing graphic sequence with dy = n — 1 and d,, > 2, then every
realization of d is collapsible.



6628 S. Fan et al. / Discrete Mathematics 308 (2008) 66266631

T S
Sdy OF Sgy—1
Fig. 1. G.
Proof. Let G be a realization of d with N (vy) = {va, ..., v,} and let T be the spanning tree with E(T) = {vjvg : 2 <
k <n}.Sinced, > 2and N(v1) = {v2,..., vy}, forany v; € {vy : 2 <k < n}, thereisv; € {vy : 2 <k < n}\ {v;}

such that v;v; € E(G). It follows that every edge of T lies in a K3, and so by Corollary 2.2(i), G is collapsible.  [J

Lemma24. If d = (d,da,...,d,) is a nonincreasing graphic sequence with d3 = --- = d, = 3, then d is
collapsible.

Proof. Let vq, vy be two vertices and let

s, 82,000 800} if d5 is even
| {s1, 52,0, Sa,—1} ifdpis odd

be a set of vertices other than {vy, v2} and let T = {t1, 12, ..., t4,—a,} be a set of d; — d, vertices not in S U {v1, v}.
Let H denote the graph obtained from {v{, v2} U S U T by joining v; to each vertex of S and joining v; to each vertex
of SUT (if d5 is odd, then we also join vy and v;). Note that dg (vi) = do +d) —dr = d1,dg(v2) = da, dg(s) =2
fors e Sanddy(t) =1fort e T.

Case 1l dy —dy > 3. Let C = 112 - - - 14,_q, 11 be a circuit passing through all vertices of 7" and let H = HUE(Q).
As |S] is even, we join all vertices of S in pairs (i.€., 5152, 354, .. .) in H" and denote the resulting graph by H”. Note
that dg»(v1) = di,dgr(vy) = dy anddygr(v) =3 forve SUT.

Also note that

2+d;, ifd;iseven

N
V(H )|_{1+d1 if dy is odd.

Letm =n — |V(H")|. Then

_|n—=@2+d) ifdriseven
T |ln—QA+d) ifdisodd

is even as n and d; have the same parity if dy is even while n and d; have different parity if dp is odd. By
the construction of H”, H” contains a triangle visys>. We subdivide vys; and vysy % times, respectively, and let
X1, X2, ..., Xm and y1, y2, ..., ym be the new vertices resulted in subdividing vys; and vys;, respectively. Then for
1 < j < 7%, we join x;y; and denote the resulting graph by G (see Fig. 1). Hence, by the construction of G, G is a
realization of d.
Case 2 dy — dy = 2. Let G be the construction as in Case 1 except that we join #; to s1, #] to 2, t2 to s2, and delete
5182.
Case 3 d1 — dy = 1. Let G be the construction as in Case 1 except that we join #; to both s1 and s, and delete s1s>.
By Theorem 2.1(iii), K3 is collapsible. If we contract vix;y;, then we get a triangle vy x;y; in the contraction, and
if we contract vix;y;, then we get a triangle vix3y3 in the contraction. Repeat this process by contracting a triangle
vix;y; foreachi with 1 <i < 7 in the subsequent contraction. In Case 2 and Case 3, this process results in a graph in
which each edge lies in a triangle. In Case 1, this process eventually results in a triangle vys152. After contracting vyt
we obtained a graph in which each edge lies in a triangle. Since 2-circuit is collapsible, the contraction of a maximally
collapsible graph will result in a simple graph. By Corollary 2.2(i) and (ii), G is collapsible in each case. I

Theorem 2.5 (Havel [6], Hakimi [4]). Let d = (dy, da, ..., d,) be a nonincreasing sequence. Then d is graphic if
andonlyif d = (dy —1,d3 — 1,...,dg+1 — 1,dg, 42, ..., dy) is graphic.
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Theorem 2.6 (Kleitman and Wang [8]). Let d = (dy, d3, . .., d,) be a nonincreasing sequence. Then d is graphic if
andonlyif d = (1 —1,...,dg, — 1, dg+1, ..., di—1, dk+1, - .., dp) is graphic.

Lemma 2.7. If d = (dy, d3, ..., d,) is a nonincreasing sequence with n > 4 and d,, = 3, then d is graphic if and
onlyifd = (dy —1,dy —1,d3 — 1,dy, ...,d,_1) is graphic.
Proof. Theorem 2.6 implies Lemma 2.7 by letting k = nand dy =3. O

Theorem 2.8. If d = (d, da, ..., d,) is a nonincreasing graphic sequence with n > 4 and d, > 3, then d has a
collapsible realization.

Proof. We argue by induction on n. If n = 4, then the assumption that d,, > 3 forces that the only realization of d is
K4, and by Theorem 2.1(i), (iii), K4 is collapsible.
Next we assume thatn > 5.1fd,, > 4,thendr —1>d3 —1>--- >dyg41—1>3anddy 42 > -+ >d, > 3. By

Theorem 2.5 and the induction hypothesis, (d2 —1,d3 — 1, ...,dg +1—1, dg; 42, . .., dp) has a collapsible realization
H. Assume that V(H) = {v, v3, ..., vy} such that vo, v3, ..., vg 41 have degreesdr — 1,d3 — 1,...,dg+1 — lin
H, respectively, and such that vy, 42, ..., v, have degrees dy, 12, ..., d, in H, respectively. Then obtain a realization
H' of d from H by adding a new vertex v; and joining v; to va, v, ..., Vg, +1, respectively. By Corollary 2.2(ii) H’
is collapsible.

Therefore, we may assume that d, = 3. If d3 = 3, then by Lemma 2.4, (d1, d», 3, ..., 3) is collapsible. Hence we

assume further that d3 > 4.

Inthiscase,di — 1 >dr—1>d3—1 >3 anddy > --- > d, = 3. By Lemma 2.7, (di — 1,d» — 1,d3 —
1,ds,...,d,—1) is graphic. By the induction hypothesis, (dy — 1,d» — 1,d3 — 1,da, ..., d,—1) has a collapsible
realization K with V(K) = {u1,us,...,u,—1} such that uy, up, uz have degrees di — 1,d» — 1,d3 — 1 in K,
respectively, and such that ug, us, ..., u,—1 have degrees dy, ..., d,—1 in K, respectively. We obtain a realization
K’ of d from K by adding a new vertex u, and joining u, to uy, us, us, respectively. By Corollary 2.2(ii) K’ is
collapsible.  [J

3. Supereulerian sequence and Hamiltonian line graph

Let X and Y be two sets. Then XAY = (X UY) — (X NY) denotes the symmetric difference of X and Y. We start
with the following observation (Lemma 3.1) and a few other lemmas. Throughout this section, we assume that n > 3.

Lemma 3.1 (Edmonds [3]). If d = (di,da, ..., d,) is a nonincreasing graphic sequence with d,, > 2, then there
exists a 2-edge-connected realization of d.

Lemma 3.2. Letd = (d1, da, .. ., d,) be a nonincreasing sequence withdy < n — 2 and d, = 2. Then d is graphic if
and only if either of the following holds.
() d =(d, d>,...,d,_1) is graphic, or
() d" = (d1.dy,....di —1,...,dj — 1,...,d,_1) is graphic for some d; > 3 and d; > 3, or
(iii) both d,—y = d, = 2, and for some j with1 < j < n —1andwithd; > 4, d" = (d\,d>,...,dj_1,d; —
2,djy1,...,dy_2) is graphic, or
vyn=3andd = (2,2,2).

Proof. Suppose that d = (d;, da, ..., d,) is graphic. Then there exists a 2-edge-connected realization G of d with
d(v;) = d; for 1 <i < n. Suppose that N(v,;) = {v;, v;}. If v;v; & E(G), then G — v, + {v;v;} is a realization of
(d1,da, ...,dy—1), and so (i) holds. Thus we assume that v;v; € E(G).

If both v;, v; have degree at least 3 in G, then d” is graphic and so (ii) must hold. Thus we may assume further
that v; has degree 2. If v; also has degree 2 in G, then n = 3 and (iv) must hold. Therefore, we may assume that
v; has degree at least 3, and so v; is a cut-vertex of G. Since G is 2-edge-connected and since v; is a cut-vertex,
dj =d(v;) > 4. In this case, d" is the degree sequence of G — {v,, v;}, and so 4" is graphic. The sufficiency can be
proved by reversing the arguments above. [

Proof of Theorem 1.2. If a nonincreasing graphic sequence d = (dy, da, . . . , d,,) has a supereulerian realization, then
we must have d,, > 2 as every supereulerian graph is 2-edge-connected.
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We argue by induction on n to prove the sufficiency. If n = 3, then since d,, > 2, K3, a supereulerian graph, is the
only realization of d.

Suppose that n > 4 and that the theorem holds for all such graphic sequences with fewer than n entries. Let
d = (d1,ds,...,d,) € G be a nonincreasing sequence with d, > 2. If d, > 3, then by Theorem 2.8, d has a
collapsible realization G. By Theorem 2.1(vi), G is supereulerian. If dy = d» = -+ = d, = 2, then C, is a
supereulerian realization of d.

In the following, we assume that d; > d, = 2. If di = n — 1, then by Corollary 2.3, d has a realization G such that
G is collapsible. By Theorem 2.1(iv), G is supereulerian. Thus d in this case must be supereulerian.

Thus we may assume that 2 < d; < n — 2. By Lemma 3.2, one of the conclusions of Lemma 3.2 (except
Lemma 3.2(iv)) must hold.

If Lemma 3.2(i) holds, then d’ = (dy, d>, ..., d,—1) is graphic. By induction, there is a supereulerian realization
G’ of d’. Let C’ be a spanning eulerian subgraph of G’ and ¢ = uv be an edge of C’. Then by subdividing e of G’ into
uv,, v,v, we obtain a supereulerian realization of d as d,, = 2.

If Lemma 3.2(ii) holds, then for some i, j,d” = (dy,da, ..., d;i — 1, ..., dj—1,...,d,1) is graphic, with d; > 3
and d; > 3. By induction, there is a supereulerian realization G” of d”. Let C” be a spanning eulerian subgraph of
G". If vivj € E(G"), then let C; = vjv;v, and so0 G = G” + {v;v,, v;v,} is a supereulerian realization of d. If
viv; ¢ E(G"), then we can get a realization G of d from G” + {v;v;} by subdividing an edge e = uv of C’ into uv,
and v, v.

If Lemma 3.2(iii) holds, then both d,,_1 = d,, = 2, and for some j with 1 < j < n — 1 and with d; > 4,
d" =(di,dy,...,dj—1,dj —2,dj41, ..., d,—2) is graphic. By induction, there is a supereulerian realization G" of
d"”. Let C" be a spanning eulerian subgraph of G”. Obtain G from G” by adding two new vertices v,—; and v,
and three new edges vV, UpUn—1, Us—1V;. Then G is a realization of d, and E(C"") U {v;vn, UpUp—1, Us—1v;} is @
spanning eulerian subgraph of G. [J

In order to prove Theorem 1.5, we need the following result which shows the relationship between hamiltonian circuits
in the line graph L(G) and eulerian subgraph in G. A subgraph H of G is dominating if E(G — V(H)) = 0.

Theorem 3.3 (Harary and Nash-Williams, [5]). Let |E(G)| > 3. Then L(G) is hamiltonian if and only if G has a
dominating eulerian subgraph.

Proof of Theorem 1.5. (i) = (ii). Let G be a realization of d such that L(G) is hamiltonian. By Theorem 3.3, G has
a dominating eulerian subgraph H. If d; = n — 1, then we are done. Suppose that di < n — 2. Then |V (H)| = 2.
For any v; with d(v;) = 1, v; must be adjacent to a vertex v; in H and so dg_g(g)(v;) is no less than the number of
degree 1 vertices adjacent to v;. Furthermore, since H is eulerian and nontrivial, dg (v;) > 2 and so (1) must hold.

(ii) = (iii) Suppose d € G is a nonincreasing sequence such that d, > 1 and ) di=1 d <Y djzz(d./ - 2). If
d, > 2, then by Theorem 1.2, d has a supereulerian realization. So we assume that d, = 1.

Claim 3.4. Any realization of d contains a nontrivial circuit.

Suppose that there exists a realization G of d such that G is a tree. We may assume thatd; > 2 for 1 <i < k and
di =1fork+ 1< j <n.Then

n

k k n
Ydi+n—k=) di+ Y di=) di=2EG)|=2n-1),
i=1 i=1 '

i=k+1 i=1

and so

k
D (di =2)+ (n—k) =2(n — 1) — 2.
i=1
Hence
k
Z(dj—2)=Z(d,-—2):2(n—1)—2k—(n—k)=n—k—2<n—k= Zdi,
dj>2 i=1 di=1

contrary to (1). This completes the proof of the claim.
Thus we assume that G is a realization of d containing a nontrivial circuit C.
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Claim 3.5. There is a realization G of d such that §(G — D1(G)) > 2.

As G contains a nontrivial circuit C, G — D1(G) is not empty. Let S = N (D1(G)). It suffices to show that for each
s € S, Ng—p,G)(s) = 2. Suppose, to the contrary, that there is s € S such that Ng_p,(G)(s) = 1. Choose G to be
a graph such that P(G) = {s : s € § with dg(s) = d; > 2 such that Ng_p,(G)(s) = 1} is as small as possible. Let
x € P(G). Thenx ¢ C. Choose e € E(C) and we subdivide e and let v, denote the subdivision vertex. And we delete
d; — 1 pendent edges of x, add d; — 2 pendent edges to v, and denote the resulting graph G,. (Note thatif d; —2 = 0,
then we subdivide e without adding any pendent edges.) Let Nj(x) be the set of pendent vertices adjacent to x. So
dg,(ve) =2+4d; =2 = dy and [D1 (Gy)| = [(D1(G)—Ni1(x)U{x}|+d; =2 = |D1(G)|—(d:—1)+14+d; =2 = | D1 (G)]
but |P(Gy)| < | P(G)]|, contradicting the choice of G.

(iii)) = (1) If G is a realization of d such that G — D{(G) is supereulerian, then by Theorem 3.3, L(G) is
hamiltonian. [
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