Radii Properties for Subclasses of Convex Functions*

H. SILVERMAN

Department of Mathematics, University of Charleston, Charleston, South Carolina 29424

AND

E. M. SILVIA

Department of Mathematics, University of California at Davis, Davis, California 95616-8633

Submitted by H. M. Srivastava

Received April 11, 1994

A function $f(z) = z + \cdots$ is said to be in $\mathfrak D$ if $\operatorname{Re} f'(z) \ge |zf''(z)|, |z| < 1$. Using extreme point theory, the authors determine the largest disks $|z| \le \beta = \beta(\alpha)$ for which $f(\beta z)/\beta \in \mathfrak D$ when f is convex of order α or when $\operatorname{Re} f'(z) > \alpha$, $0 \le \alpha < 1$. © 1995 Academic Press, Inc.

1. Introduction

Denote by \mathcal{G} the family of functions f, normalized by f(0) = f'(0) - 1 = 0, that are analytic and univalent in the unit disk $\Delta = \{z : |z| < 1\}$ and by K the subfamily of convex functions. A function f is in K if and only if Re(1 + zf''(z)/f'(z)) > 0, $z \in \Delta$. In [6], Ruscheweyh introduced the subfamily \mathfrak{D} of K, consisting of functions f for which

Re
$$f'(z) \ge |zf''(z)|, \quad z \in \Delta.$$
 (1)

Further work on \mathfrak{D} , including some interesting convolution conjectures that would generalize the former Bieberbach conjecture (de Branges' theorem [2]), may be found in [3].

* This work was completed while the authors were Visiting Scholars at the University of California, San Diego.

428

0022-247X/95 \$12.00

Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved. Denote by $K(\alpha)$, $0 \le \alpha < 1$, the subfamily of K consisting of functions f that satisfy Re $(1 + zf''(z)/f'(z)) > \alpha$, $z \in \Delta$. Characterizing the extreme points of the closed convex hull of various compact families enables us to apply the Krein-Milman theorem to solve many linear extremal problems. In [1], it is shown that f is in the closed convex hull of $K(\alpha)$, $f \in \overline{\operatorname{co}} K(\alpha)$, if and only if

$$f(z) = \int_X f_x(z) \, d\mu(x),\tag{2}$$

where |x| = 1, μ is a probability measure defined on the unit circle X, and

$$f_{x}(z) = \begin{cases} \frac{1}{(1 - 2\alpha)x} \left[\frac{1}{(1 - xz)^{1 - 2\alpha}} - 1 \right], & \alpha \neq \frac{1}{2} \\ -\overline{x}\log(1 - xz), & \alpha = \frac{1}{2} \end{cases}$$
(3)

are the extreme points to $\overline{co} K(\alpha)$.

While \mathfrak{D} is a convex family, $K(\alpha)$ is not. In fact, a convex linear combination of functions in $K(\alpha)$ need be in \mathcal{G} only when $\alpha \geq \frac{1}{2}$. See [7]. Although \mathfrak{D} , which is contained in K, is a considerably smaller family than K, $\mathfrak{D} \not\subset K(\alpha)$ for any $\alpha > 0$. This can be illustrated with the function $z + z^2/4$, which is in $\mathfrak{D} - K(\alpha)$ for each $\alpha > 0$. On the other hand, we will see that $K(\alpha) \not\subset \mathfrak{D}$ for any α , $0 \leq \alpha < 1$.

In Section 2, we will find the largest disk $|z| \le \beta = \beta(\alpha)$ in which (1) is satisfied for $f \in K(\alpha)$. This is equivalent to finding the largest β for which $f(\beta z)/\beta \in \mathfrak{D}$. When $\alpha \ge (3 - \sqrt{5})/4$, we will show that $\beta(\alpha) = 1/(3 - 2\alpha)$. For $0 \le \alpha < (3 - \sqrt{5})/4$, the sharp result is less aesthetically pleasing. Finally, in Section 3, we will find the largest $\beta = \beta(\alpha)$ for which $f(\beta z)/\beta \in \mathfrak{D}$ when $f \in R(\alpha)$, the subfamily of \mathcal{G} consisting of functions f for which Re $f'(z) > \alpha$, $z \in \Delta$.

2. MAIN RESULTS

It is convenient to characterize the family \mathfrak{D} by $f \in \mathfrak{D} \Leftrightarrow \operatorname{Re} \{f'(z) + e^{i\gamma}zf''(z)\} > 0$ for all $z \in \Delta$ and $\gamma \in (-\pi, \pi]$. Then, from (2) and (3), we have for $f \in \overline{\operatorname{co}} K(\alpha)$ that

$$f'(z) + e^{i\gamma}zf''(z) = \int_X \left[f_0'(xz) + e^{i\gamma}xzf_0''(xz) \right] d\mu(x), \tag{4}$$

where

$$f_0(z) = \begin{cases} \frac{1}{(1-2\alpha)} \left[\frac{1}{(1-z)^{1-2\alpha}} - 1 \right], & \alpha \neq \frac{1}{2} \\ -\log(1-z), & \alpha = \frac{1}{2}. \end{cases}$$
 (5)

It follows from (4) that $f(\beta z)/\beta \in \mathcal{D}$ whenever $f_0(\beta z)/\beta \in \mathcal{D}$. Thus, it suffices to prove our results for $f_0(z)$ given by (5). We consider separately the cases $\alpha = 0$ and $\alpha = \frac{1}{2}$.

Theorem 1. If $f \in \overline{\text{co}} K$, then $f(\beta z)/\beta \in \mathfrak{D}$ for $\beta \approx 0.329$, the smallest positive root of

$$1 - \beta^2 - 2\beta \cos \theta + 2\beta^2 \cos^2 \theta - 2\beta \sqrt{1 + \beta^2 - 2\beta \cos \theta} = 0.$$

where

$$\cos \theta = \frac{-(11 - 6\beta^2) + \sqrt{117 - 72\beta^2 + 36\beta^4}}{4\beta^3}.$$

The result is sharp.

Proof. From (2) and (3) with $\alpha = 0$, we may write $f(z) = \int_X (z/(1-xz)) d\mu(x)$. Then, from (4), (5), and the superharmonicity of Re f' - |zf''|, it suffices to show that

$$p(z) = f_0'(\beta z) + e^{i\gamma} \beta z f_0''(\beta z) = \frac{1}{(1 - \beta z)^2} + \frac{e^{i\gamma} (2\beta z)}{(1 - \beta z)^3}$$

satisfies Re $p(z) \ge 0$ for |z| = 1. When $z = e^{i\theta}$,

Re
$$p(z) \ge \text{Re} \frac{1}{(1 - \beta z)^2} - \frac{2\beta}{|1 - \beta z|^3}$$

= $\frac{1 - \beta^2 - 2\beta \cos \theta + 2\beta^2 \cos^2 \theta}{|1 - \beta z|^4} - \frac{2\beta}{|1 - \beta z|^3} := g(\beta, \theta).$

A calculation shows that

$$|1 - \beta e^{i\theta}|^6 \frac{\partial g(\beta, \theta)}{\partial \theta}$$

$$= -2\beta \sin \theta \left[2\beta^3 \cos \theta + (1 - 3\beta^2) - 3\beta \sqrt{1 + \beta^2 - 2\beta \cos \theta} \right] = 0$$

for $\theta = 0$, π , and θ_0 , where θ_0 is a zero of the equation

$$\cos^2\theta + \frac{11 - 6\beta^2}{2\beta^3}\cos\theta + \frac{1 - 15\beta^2}{4\beta^6} = 0.$$

We have $g(\beta, \theta) \ge \min \{g(\beta, 0), g(\beta, \pi), g(\beta, \theta_0)\}$. Now $g(\frac{1}{3}, 0) = g(1, \pi) = 0$. On the other hand, $g(\beta, \theta_0) = 0$ for $\beta \approx 0.329$ and $\cos \theta_0 \approx 0.841$. Since $\theta = \theta_0$ gives the minimum β for which $g(\beta, \theta) = 0$, the proof is complete.

The case $\alpha = \frac{1}{2}$ provides a simpler solution.

THEOREM 2. If $f \in \overline{\text{co}} K(\frac{1}{2})$, then $2f(z/2) \in \mathfrak{D}$. The result is sharp.

Proof. In view of (5), for $f_0(z) = -\log(1 - z)$, we want to find the largest β for which

$$q(z) = f_0'(\beta z) + e^{i\gamma}\beta z f_0''(\beta z) = \frac{1}{1 - \beta z} + e^{i\gamma} \frac{\beta z}{(1 - \beta z)^2}$$
 (6)

satisfies Re $q(z) \ge 0$ for $z = e^{i\theta}$, $-\pi < \theta \le \pi$. But

Re
$$q(z) \ge \frac{1 - \beta \cos \theta}{|1 - \beta z|^2} - \frac{\beta}{|1 - \beta z|^2} \ge 0$$

as long as $1 - 2\beta \ge 0$. Thus, we have $\beta = \frac{1}{2}$, as needed.

Remark. In [3], it is essentially shown that partial sums f_n of $f \in \overline{co}$ $K(\frac{1}{2})$ also satisfy $2f_n(z/2) \in \mathfrak{D}$. It suffices to consider the partial sums $g_n(z) = z + \sum_{k=2}^n (z^k/k)$ of $g(z) = -\log(1-z)$ for which it was proved that $2g_n(z/2) \in \mathfrak{D}$.

In the proof of Theorem 2, (6) for $z = e^{i\theta}$ yielded the sharp result when $\theta = 0$. However, in the more computationally involved proof of Theorem 1, $\theta \approx \arccos(0.841)$ led to the sharp value for β . Next, we will show that $\theta = 0$ is extremal for α sufficiently large.

THEOREM 3. If $f \in \overline{co} K(\alpha)$, $\alpha \ge (3 - \sqrt{5})/4$, then $f(\beta z)/\beta \in \mathcal{D}$ for $\beta = \beta(\alpha) = 1/(3 - 2\alpha)$. The result is sharp.

Proof. Again, we need consider only $f_0(z)$ given by (5). We will show that

$$h(z) = f_0'(\beta z) + e^{i\gamma}\beta z f_0''(\beta z) = \frac{1}{(1 - \beta z)^{2 - 2\alpha}} + \frac{e^{i\gamma}(2 - 2\alpha)\beta z}{(1 - \beta z)^{3 - 2\alpha}}$$

satisfies Re $h(z) \ge 0$ for |z| = 1 and $\beta \le \beta(\alpha) = 1/(3 - 2\alpha)$. We have

Re
$$h(z) \ge \frac{\text{Re}(1-\beta\overline{z})^{2-2\alpha}}{|1-\beta z|^{4-4\alpha}} - \frac{2(1-\alpha)\beta|1-\beta z|^{1-2\alpha}}{|1-\beta z|^{4-4\alpha}} \ge 0$$

whenever

$$Re(1 - \beta \overline{z})^{2-2\alpha} - 2(1 - \alpha)\beta |1 - \beta z|^{1-2\alpha} \ge 0.$$
 (7)

Upon noting that $|Arg(1 - \beta e^{-i\theta})| < \pi/2$, we set

$$\rho(\beta, \theta) = |1 - \beta e^{-i\theta}| = \sqrt{1 + \beta^2 - 2\beta \cos \theta}$$

and

$$\Phi(\beta, \theta) = \operatorname{Arg}(1 - \beta e^{-i\theta}) = \operatorname{Arctan}\left(\frac{\beta \sin \theta}{1 - \beta \cos \theta}\right). \tag{8}$$

For $z = e^{i\theta}$, $-\pi < \theta \le \pi$, (7) can be rewritten as

$$[\rho(\beta, \theta)]^{1-2\alpha} \{ \rho(\beta, \theta) \cos (2(1-\alpha)\Phi(\beta, \theta)) - 2\beta(1-\alpha) \} \ge 0.$$

Consequently, $f(\beta z)/\beta \in \mathcal{D}$ as long as

$$\rho(\beta, \theta) \cos (2(1-\alpha)\Phi(\beta, \theta)) - 2\beta(1-\alpha) \ge 0. \tag{9}$$

For the sharp result, first we will find the θ that minimizes

$$L(\beta, \theta) = \rho(\beta, \theta) \cos(2(1 - \alpha)\Phi(\beta, \theta)) \tag{10}$$

and, then, we will determine the largest β for which (9) holds. When $\theta = 0$, (9) becomes $1 - \beta - 2\beta(1 - \alpha) \ge 0$, that is, $\beta \le 1/(3 - 2\alpha)$. Consequently, the proof will be complete when we show that $\min_{\theta \in (-\pi,\pi]} L(\beta, \theta) = L(\beta, 0) = 1 - \beta$ for $\alpha \ge (3 - \sqrt{5})/4$ and all admissible β .

In view of Theorem 2, $\beta = \beta(\alpha) \le \frac{1}{2}$ if and only if $\alpha \le \frac{1}{2}$. When $\alpha \ge \frac{1}{2}$, $2(1-\alpha)|\Phi(\beta,\theta)| \le |\Phi(\beta,\theta)| < \pi/2$. When $\alpha < \frac{1}{2}$, $2(1-\alpha)|\Phi(\beta,\theta)| \le |\Phi(\frac{1}{2},\theta)| \le 2$ Arctan $(1/\sqrt{3}) = \pi/3$. In either case, we have

$$2(1-\alpha)|\Phi(\beta,\,\theta)| < \pi/2 \tag{11}$$

and $\min_{\theta \in (-\pi,\pi]} L(\beta, \theta) > 0$. Since

$$\frac{\partial \rho}{\partial \theta} = \frac{\beta \sin \theta}{\rho(\beta, \theta)}$$
 and $\frac{\partial \Phi}{\partial \theta} = \frac{\beta (\cos \theta - \beta)}{(\rho(\beta, \theta))^2}$,

it follows that

$$\frac{\partial L}{\partial \theta} = \frac{\beta}{\rho(\beta, \theta)} \{ (\sin \theta) \cos(2(1 - \alpha)\Phi(\beta, \theta)) -2(1 - \alpha)(\cos \theta - \beta) \sin(2(1 - \alpha)\Phi(\beta, \theta)) \}$$

vanishes whenever

$$M(\theta) = (\sin \theta) \cos(2(1 - \alpha)\Phi(\beta, \theta)) - 2(1 - \alpha)(\cos \theta - \beta) \sin(2(1 - \alpha)\Phi(\beta, \theta))$$

vanishes. From (8), we see that $M(\theta) = 0$ at least when $\sin \theta = 0$, i.e., for $\theta = 0$ and $\theta = \pi$. But $L(\beta, \pi) = 1 + \beta > L(\beta, 0) = 1 - \beta$. In addition, when $\sin \theta \neq 0$, $\sin \theta$ and $\sin(2(1 - \alpha)\Phi(\beta, \theta))$ have the same sign. Consequently, from (11), we see that, if $\theta \neq 0$, π , then $M(\theta)$ can vanish only where $\cos \theta > \beta$. Finally, since $M(\theta)$ is an odd function, it suffices to show that $M(\theta) > 0$ when $\theta \in (0, \arccos \beta)$. Taking (11) into account, we conclude that $M(\theta) > 0$, for $\theta \in (0, \arccos \beta)$, if and only if

$$\frac{\sin\theta}{2(1-\alpha)(\cos\theta-\beta)}-\tan(2(1-\alpha)\Phi(\beta,\theta))>0.$$

In view of (8), this is equivalent to showing

$$G(\theta) := \operatorname{Arctan}\left(\frac{\sin \theta}{2(1-\alpha)(\cos \theta - \beta)}\right) - 2(1-\alpha)\operatorname{Arctan}\left(\frac{\beta \sin \theta}{1-\beta \cos \theta}\right) > 0.$$
(12)

Since G(0) = 0, we will be done if we can show that $G'(\theta) > 0$. We have

$$G'(\theta) = 2(1 - \alpha) \left[\frac{1 - \beta \cos \theta}{4(1 - \alpha)^2(\cos \theta - \beta)^2 + \sin^2 \theta} - \frac{\beta(\cos \theta - \beta)}{1 - 2\beta \cos \theta + \beta^2} \right]$$

and

$$G''(\theta) = \left[\frac{-4\beta(1-\beta^2)(1-\alpha)^2 - (4(1-\alpha)^2 - 1)(\beta + \beta\cos^2\theta - 2\cos\theta)}{(4(1-\alpha)^2(\cos\theta - \beta)^2 + \sin^2\theta)^2} + \frac{\beta(1-\beta^2)}{(1+\beta^2 - 2\beta\cos\theta)^2} \right] (2(1-\alpha)\sin\theta).$$
(13)

If $\frac{1}{2} \le \alpha < 1$, then

$$G'(\theta) \ge 2(1 - \alpha) \left[\frac{1 - \beta \cos \theta}{(\cos \theta - \beta)^2 + \sin^2 \theta} - \frac{\beta(\cos \theta - \beta)}{1 - 2\beta \cos \theta + \beta^2} \right]$$
$$= 2(1 - \alpha) > 0$$

and we are done. If $0 \le \alpha < \frac{1}{2}$ and $0 < \theta < Arccos \beta$, then

$$4\beta(1-\beta^2)(1-\alpha)^2 + (4(1-\alpha)^2 - 1)(\beta + \beta\cos^2\theta - 2\cos\theta) < 4\beta(1-\beta^2)(1-\alpha)^2 + (4(1-\alpha)^2 - 1)(-\beta(1-\beta^2)) = \beta(1-\beta^2).$$

Consequently,

$$G''(\theta) > 2(1 - \alpha)\sin\theta \left[\frac{-\beta(1 - \beta^2)}{(1 + \beta^2 - 2\beta\cos\theta)^2} + \frac{\beta(1 - \beta^2)}{(1 + \beta^2 - 2\beta\cos\theta)^2} \right] = 0.$$

Thus, G' is strictly increasing for $\theta \in (0, \operatorname{Arccos} \beta)$ and $G(\theta) > 0$ as long as $G'(0) \ge 0$. Whenever

$$G'(0) = \frac{2(1-\alpha)}{(1-\beta)} \left[\frac{1}{4(1-\alpha)^2} - \beta \right] \ge 0,$$

we may take $\beta = \beta(\alpha) = 1/(3 - 2\alpha)$. Since $1/(4(1 - \alpha)^2) \ge 1/(3 - 2\alpha)$ if and only if $\alpha \ge (3 - \sqrt{5})/4$, the proof is complete.

In the proof of Theorem 3, the restriction $\alpha \geq (3 - \sqrt{5})/4$ was made in order to obtain $G'(0) \geq 0$. Although G'(0) < 0 when $0 \leq \alpha < (3 - \sqrt{5})/4$, we have, from (13), that G is concave upward. Since G(0) = 0 and $G(\operatorname{Arccos} \beta) > 0$, there must be a unique $\theta = \theta(\alpha) \in (0, \operatorname{Arccos} \beta)$ for which $G(\theta(\alpha)) = 0$. This θ minimzies $L(\beta, \theta)$ defined by (10) and leads to a sharp result from (9). We summarize this with

THEOREM 4. If $f \in \overline{\operatorname{co}} K(\alpha)$, $0 \le \alpha < (3 - \sqrt{5})/4$, then $f(\beta z)/\beta \in \mathfrak{D}$ for $\beta = \beta(\alpha)$, where $\beta(\alpha)$ is the unique β for which both (i) $G(\theta(\alpha)) = 0$ $(0 < \theta(\alpha) < \operatorname{Arccos} \beta$, G defined by (12)) and (ii) equality holds in (9) when $\theta = \theta(\alpha)$.

Remark. When $\alpha = \frac{1}{2}$ and $\alpha = 0$, Theorems 3 and 4 are seen to be special cases of Theorems 2 and 1, respectively. The $\beta = \beta(\alpha)$ that give sharp results in Theorem 4 satisfy

$$0.329 < \beta(0) \le \beta(\alpha) < \beta\left(\frac{3 - \sqrt{5}}{4}\right) = \frac{1}{3 - 2((3 - \sqrt{5})/4)}$$
$$= \frac{3 - \sqrt{5}}{2} < 0.382,$$

and $1/(3-2\alpha)-\beta(\alpha)\to 0$ as $\alpha\to (3-\sqrt{5})/4$.

3. A SUBCLASS OF S

Denote by $R(\alpha)$ the subfamily of S consisting of functions f for which Re $f'(z) > \alpha$, $z \in \Delta$. Hallenbeck [4] showed that $f \in R(\alpha)$ if and only if

$$f'(z) = \int_X \frac{1 + (1 - 2\alpha)xz}{1 - xz} d\mu(x), \tag{14}$$

where |x| = 1 and μ is a probability measure defined on the unit circle X.

THEOREM 5. If $f \in R(\alpha) = \overline{\operatorname{co}} R(\alpha)$, then $f(\beta z)/\beta \in \mathfrak{D}$ for

$$\beta = \begin{cases} \frac{-1 + \sqrt{2(1 - \alpha)}}{1 - 2\alpha}, & \alpha \neq \frac{1}{2} \\ \frac{1}{2}, & \alpha = \frac{1}{2}. \end{cases}$$

The result is sharp.

Proof. From (14), it suffices to consider f for which $f'(z) = (1 + (1 - 2\alpha)z)/(1 - z)$. We wish to find the largest β for which

$$p(z) = f'(\beta z) + e^{i\gamma} \beta z f''(\beta z) = \frac{1 + (1 - 2\alpha)\beta z}{1 - \beta z} + \frac{e^{i\gamma} 2(1 - \alpha)\beta z}{(1 - \beta z)^2}$$

satisfies Re $p(z) \ge 0$ for $z = e^{i\theta}$. But

$$\operatorname{Re} p(z) \ge \frac{1 - 2\alpha\beta\cos\theta - (1 - 2\alpha)\beta^2}{|1 - \beta z|^2} - \frac{2(1 - \alpha)\beta}{|1 - \beta z|^2} \ge 0$$

if $1 - 2\beta - (1 - 2\alpha)\beta^2 \ge 0$. Solving for β yields the result.

Remark 1. Since $\mathfrak{D} \subset K$, the $\beta = \beta(\alpha)$ given in Theorem 5 also furnishes us with a disk $|z| < \beta$ in which $f \in R(\alpha)$ is convex. Silverman [8] showed the radius of convexity of $R(\alpha)$ to be

$$\begin{cases} \frac{1}{1 - 2\alpha + \sqrt{4\alpha^2 - 6\alpha + 2}}, & 0 \le \alpha \le 1/10 \\ \left(1 + \sqrt{\frac{1 - \alpha}{\alpha}}\right)^{-1/2}, & 1/10 < \alpha < 1. \end{cases}$$

When $\alpha = 0$, this bound agrees with the one given in Theorem 5.

Remark 2. A function $f \in S$ is starlike, $f \in St$, if and only if Re $\{zf'(z)/f(z)\} > 0$, $z \in \Delta$. Hamilton and Tuan [5] showed that the radius of starlikeness of \overline{co} St is $r_0 \approx 0.4035$, the positive root of the equation $r^6 + 5r^4 + 79r^2 - 13 = 0$. Since $f \in K$ if and only if $zf' \in St$, this is equivalent to saying that the radius of convexity of \overline{co} K is r_0 . The $\beta = \beta(\alpha)$ in Theorems 3 and 4 give lower bounds on the radius of convexity of \overline{co} $K(\alpha)$, $0 \le \alpha < 1$.

REFERENCES

- 1. L. BRICKMAN, D. J. HALLENBECK, T. H. MACGREGOR, AND D. R. WILKEN, Convex hulls and extreme points of families of starlike and convex mappings, *Trans. Amer. Math. Soc.* **185** (1973), 413–428.
- 2. L. DE BRANGES, A proof of the Bieberbach conjecture, Acta Math. 154 (1982), 137-152.
- 3. V. Gruenberg, F. Rønning, and St. Ruscheweyh, On a multiplier conjecture for univalent functions, *Trans. Amer. Math. Soc.* **322** (1990), 377–393.
- 4. D. J. HALLENBECK, Convex hulls and extreme points of some families of univalent functions, *Trans. Amer. Math. Soc.* 192 (1974), 285–292.
- 5. D. H. Hamilton and P. D. Tuan, Radius of starlikeness of convex combinations of univalent starlike functions, *Proc. Amer. Math. Soc.* **78** (1980), 56-58.
- St. Ruscheweyh, Extension of Szegő's theorem on the sections of univalent functions, Siam J. Math. Anal. 19 (1988), 1442-1449.
- 7. H. SILVERMAN, Linear combinations of convex mappings, Rocky Mountain J. Math. 5 (1975), 629-632.
- 8. H. SILVERMAN, Convexity theorems for subclasses of univalent functions, *Pacific J. Math.* **64** (1976), 253-263.