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A function f(z) = z + - - is said to be in D if Re f'(2) = [z f"(2)l. |z] < 1. Using
extreme point theory, the authors determine the largest disks |z| = B8 = B(a) for
which f(Bz)/8 € @ when fis convex of order a or when Re f'(z) > o, 0 = a <
1. © 1995 Academic Press, Inc.

1. INTRODUCTION

Denote by & the family of functions f, normalized by f(0) = f'(0) —
1 = 0, that are analytic and univalent in the unit disk A = {z : |z| < 1} and
by K the subfamily of convex functions. A function fis in K if and only if
Re(l + zf"(z)/f’(z)) > 0, z € A. In [6], Ruscheweyh introduced the
subfamily 9 of K, consisting of functions f for which

Re f'(z) = |zf"(2). z€A (1)

Further work on @, including some interesting convolution conjectures that
would generalize the former Bieberbach conjecture (de Branges’ theorem
[2]), may be found in [3].

* This work was completed while the authors were Visiting Scholars at the University of
California, San Diego.
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Denote by K(a), 0 = a < 1, the subfamily of K consisting of functions
f that satisfy Re (1 + zf"(z)/f'(z)) > a, z € A. Characterizing the extreme
points of the closed convex hull of various compact families enables us to
apply the Krein—Milman theorem to solve many linear extremal problems.
In [1], it is shown that fis in the closed convex hull of K(a), f € ¢0 K(a),
if and only if

1) = |, flzyduto), @

where |x| = 1, u is a probability measure defined on the unit circle X, and

1 1
(1= 2a)x [(1 —xz)' 1]’ 7

—xlog(1 — x2), a=

fl2) = (3)

SN S Y

are the extreme points to ¢o K(a).

While & is a convex family, K{(a) is not. In fact, a convex linear combina-
tion of functions in K (&) need be in ¥ only when o = 3. See [7]. Although
%, which is contained in K, is a considerably smaller family than K, @ ¢
K(a) for any a > 0. This can be illustrated with the function z + z%/4,
which is in @ — K{«) for each « > 0. On the other hand, we will see that
K{a) ¢ @ forany o, 0 = o < 1.

In Section 2, we will find the largest disk |z] = 8 = B(«) in which (1) is
satisfied for f € K(a). This is equivalent to finding the largest 8 for
which f(8z)/8 € @. When o = (3 — V/5)/4, we will show that 8(a) =
1/(3 — 2a&). For 0 = o < (3 — V5)/4, the sharp result is less aesthetically
pleasing. Finally, in Section 3, we will find the largest 8 = B(«) for which
f(Bz)/B € % when f € R(«), the subfamily of & consisting of functions f
for which Re f'(z) > a, z € A.

2. MAIN REsuLTS
It is convenient to characterize the family @ by f € @ < Re {f'(z) +

e'zf"(z)} > O for all z € A and y € (~m, n]. Then, from (2) and (3), we
have for f € ¢0 K(a) that

@)+ er2f7@) = [ [fixz) + ez fixa)] dua(), @)

where
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1 1
(1—2a)[(1—z)‘*2a_1]’ “r

—log(1l - 2), o=

fo(z) = &)

NIl— R

It follows from (4) that f(Bz)/8 € @ whenever f,(8z)/8 € 9. Thus, it
suffices to prove our results for fy(z) given by (5). We consider separately
the cases @« = 0 and a = 4.

Tueorem 1. Iff € 0 K, then f(Bz)/B8 € D for B =~ 0.329, the smallest
positive root of

1 —8%—2Bcos 8+ 2B%cos?0— 28 V1 + B2 — 2B cos 6 = 0,

where

—(11 — 68 + V117 — 728 + 368*
43’ '

cos 6=

The result is sharp.

Proof. From (2) and (3) with @« = 0, we may write f(z) =
fx(z/(l — x2)) du(x). Then, from (4), (5), and the superharmonicity of
Re f' — |z f7|, it suffices to show that

1 + e"(28z)
(1-8z (1-82)

p(2) = fo(Bz) + "Bz f§(Bz) =

satisfies Re p(z) = 0 for |z| = 1. When z = €,

1 2B

(1-Bz [1-8z
_1-p*—2Bcos§+2Bcos’d 2B
1 —Bzf* 1- Bz

Rep(z) = Re

=g(B, 9).
A calculation shows that
- Bewls%’m

a0
= —2Bsin 8[2B8%cos 8 + (1 — 38%) — 38 V1 + B2 — 2B cos =0
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for 8 = 0, 7, and 6,, where 6, is a zero of the equation

11 - 68° 11582
—-——233 cos 6 + ——-—-—466 =

We have g(B, 6) = min {g(B, 0), g(B, m), g(B, 6)}. Now g(3, 0) =
g(1, #) = 0. On the other hand, g(8, 8,) = 0 for 8 =~ 0.329 and cos §, =~
0.841. Since 8 = 6, gives the minimum B for which g(8, ) = 0, the proof
is complete.

cos?f + 0.

The case a = } provides a simpler solution.

THEOREM 2. If f € €0 K(3), then 2f(2/2) € B. The result is sharp.

Proof. In view of (5), for fy(z) = —log(l — z), we want to find the
largest 8 for which

Iy Bz
Bz ¢ - ey

4(2) = Fi(B2) + Bz fi(B2) = 1= ©)

satisfies Re q(z) = 0 for z = €%, —w < 6 = . But

_1—Bcost B

Re (I(Z) - '1 _ BZ{Z - .1 _BZ

F=?

as long as 1 — 283 = 0. Thus, we have 8 = 4, as needed.

Remark. In [3], it is essentially shown that partial sums f, of f € co
K (%) also satisfy 2f,(2/2) € 9. It suffices to consider the partial sums
gn(z) = z + Zies (2%1k) of g(z) = —log(1 — z) for which it was proved
that 2¢,(2/2) € &.

In the proof of Theorem 2, (6) for z = € yielded the sharp result when
# = 0. However, in the more computationally involved proof of Theorem
1, 8 = Arccos (0.841) led to the sharp value for B. Next, we will show that
# = 0 is extremal for « sufficiently large.

THeoreM 3. If f € & K(a), a = (3 — V/5)/4, then f(Bz)IB € D for
B = B(a) = 1/(3 — 2a). The result is sharp.

Proof. Again, we need consider only fu(z) given by (5). We will show
that

1 4 e"(2 - 2a)Bz
(1= Bz)* % (1-Bz)*>

satisfies Re h(z) = 0 for |z] = 1 and 8 = B(a) = 1/(3 — 2a). We have

h(z) = fi(Bz) + "Bz f§(Bz) =
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Re(l - B2)* % 2(1 -~ a)B|l - Bz _

ReMD =T e = TRVEE
whenever
Re(l - 82" - 2(1 — a)B1 - B[ > = 0. (7)
Upon noting that |Arg(1 — Be )| < 7/2, we set
p(B,60) =11 —Be ™ =V1+ B2~ 2Bcos @
and
(B, ) = Arg(1 — Be™) = Arctan (l—f—’Z—ig’s—a). (8)

For z = ¢, —7 < 8 < 7, (7) can be rewritten as

[p(B. O)]' > {p(B. 8) cos (2(1 — a)P(B, 6)) — 2B(1 — @)} = 0.
Consequently, f(8z)/8 € @ as long as
p(B, 0) cos (2(1 — a)®(B, 8)) — 2B8(1 — a) = 0. 9)
For the sharp result, first we will find the € that minimizes
L(B. 6) = p(B, ) cos (2(1 — a)P(B, 6)) (10)
and, then, we will determine the largest 8 for which (9) holds. When 8 =
0,(9) becomes1 — 8 — 2B(1 ~ a) = 0, that is, 8 < 1/(3 — 2a). Consequently,
the proof will be complete when we show that mine( .., L(B, 6) =
L(B,0) =1 — Bfora = (3 ~ V5)/4 and all admissible 8.
In view of Theorem 2, B8 = B(a) = 3 if and only if & < §. When o = 3,

201 — )| (B, 6)| = |®(B, )] < 7/2. When « < §, 2(1 — a)|®(B, 8)] =
|®(3. 6)] = 2 Arctan (1/V3) = 7/3. In either case, we have

2(1 — a)|®(B, 6)| < 7/2 (11)

and minge( ., L(B, 6) > 0. Since
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dp_PBsino . 9P _p(cosb—p)
98 p(B, 6) 36 (p(B.6)) °

it follows that

L B

a6 p(B.6)
~2(1 — a)(cos 8 — B) sin(2(1 — a)P(B, 6))}

{(sin ) cos(2(1 — a)P(B, 6))

vanishes whenever

M(8) = (sin ) cos(2(1 — a)P(B, 8))
= 2(1 — a)(cos 8 — B) sin(2(1 — a)P(B, §))

vanishes. From (8), we see that M(6) = 0 at least when sin 8 = 0, i.e., for
#=0and 0 = 7. But L(B, 7m) =1+ B> L(B,0) =1 — B. In addition,
when sinf # 0, sin# and sin(2(1 — a)®(B, 6)) have the same sign. Conse-
quently. from (11), we see that, if § # 0, 7, then M(6) can vanish only
where cos 6 > 8. Finally, since M(#6) is an odd function, it suffices to show
that M(8) > 0 when 8 € (0, Arccos B). Taking (11) into account, we
conclude that M(6) > 0, for 8 € (0, Arccos 8), if and only if

sin 6
2(1 — a)(cos 8 — B)

— tan(2(1 — &)®(B. 6)) > 0.

In view of (8), this is equivalent to showing

- sin
G(#) := Arctan (2(1 — a)(cos B — B)> (12)

_ _ Bsin 6
2(1 — a) Arctan (——————-——1 ~Beos 0) >0

Since G(0) = 0, we will be done if we can show that G'(6) > 0. We have

1 - Bcos b _ __B(cos 6~ B) ]

GO =21-a [4(1 —a)*(cos #— B) +sin?8 1—2Bcos 8+ B

and
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G () = [—43(1 — 81 — @) — (4(1 — a)® = 1)(B + Bcos’d — 2 cos )
(4(1 — a)*(cos 8 — B)? + sin? 6)°

i Zz(a—zgc)os 0)2] 2(1 - ) sin 9).

(13)

1f}i=<a<l,then

, _ 1 -pBcosé@ ___B(cos 6 - B)
G(6)=2(1~a) [(cos @ B)> +sin?0 1—2Bcos#+ B
=2(1-a)>0
and we are done. If 0 = o < $ and 0 < ¢ < Arccos 8, then

48(1 — B2)(1 — a)® + (4(1 — a)? — 1)(B + B cos?® — 2 cos 6)
<4B(1 - BH(1 — a) + (4(1 — )’ — D)(—B(1 — B%)) = B(1 - 7).

Consequently,

. - —B(1 - 8) B - B

"(6) >2(1 - 0 + =
G'(6)>2(1 ~ a)sin [(1 T BT —2Bcos ) (1 + B — 2B cos )
Thus, G' is strictly increasing for 8 € (0, Arccos 8) and G(8) > 0 as long
as G'(0) = 0. Whenever

2w 1 .
GO =g [4(1—a>2 B]“O’

we may take 8 = B(a) = 1/(3 — 2a). Since 1/(4(1 — @)*) = 1/(3 — 2a) if
and only if @ = (3 —~ V/5)/4, the proof is complete.

In the proof of Theorem 3, the restriction & = (3 — \/5)/4 was made in
order to obtain G'(0) = 0. Although G'(0) < 0 when 0 = o < (3 —
V/5)/4, we have, from (13). that G is concave upward. Since G(0) = 0 and
G(Arccos B8) > 0, there must be a unique ¢ = 6a) € (0, Arccos B) for
which G(6(a)) = 0. This # minimzies L(f3, ) defined by (10) and leads to
a sharp result from (9). We summarize this with

TueorReM 4. If f € 6 K(a), 0 = a < (3 — V/5)/4, then f(Bz)/B € D
for B = Bla), where B(«) is the unique B for which both (i) G(6(a)) = 0
(0 < 6(a) < Arccos B, G defined by (12)) and (ii) equality holds in (9)
when 6 = 8(w).
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Remark. When @ = } and « = 0, Theorems 3 and 4 are seen to be
special cases of Theorems 2 and 1, respectively. The 8 = B(a) that give
sharp results in Theorem 4 satisfy

) 3= 2((3 — V5)/4)

:3—\/5
2

0.329 < B(0) < B(ar) < B (3 - \@) 1

< (0.382,

and 1/(3 — 2a) — Bla) — 0 as a — (3 — V5)/4.

3. A SuUBCLASS OF S

Denote by R(a) the subfamily of S consisting of functions f for which
Re f'(z) > a, z € A. Hallenbeck [4] showed that f € R(e) if and only if

fri = [ U2 ) (14)

where |x| = 1 and u is a probability measure defined on the unit circle X.

THEOREM 5. If f € R(e) = ©0 R(e), then f(Bz)/B € D for

—1+V2(1 -~ a) 1
— a;é_

1 -2« 2

gl al
2 2

The result is sharp.

Proof. From (14), it suffices to consider f for which f'(z) = (1 +
(1 — 2a)z)/(1 — z). We wish to find the largest 8 for which

1+ (1 -2a)8z + e2(1 — a)Bz

p(x)=f'(B2) + e"Bzf"(B2) = — - (1- B2y

satisfies Re p(z) = 0 for z = €. But
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—2aBcos §— (1 —2a)8° 2(1 —a)B _ 0
1 - Bz n-Bz

Rep(z) = 1

if 1 =28 — (1 — 2a)B? = 0. Solving for B yields the result.

Remark 1. Since & C K, the 8 = B(«) given in Theorem 5 also furnishes
us with a disk |z} < B8 in which f € R(a) is convex. Silverman [8] showed
the radius of convexity of R(a) to be

L . 0=a=1/10
1 =20+ Vida? —6a+2
1 — o\
<1+ ) s V10 < @ < 1.
«

When a = 0, this bound agrees with the one given in Theorem 5.

Remark 2. A function f € § is starlike, f € Sy, if and only if Re {zf'(z)/
f(2)} > 0, z € A. Hamilton and Tuan [5] showed that the radius of star-
likeness of co St is r, = 0.4035, the positive root of the equation
P+ 5r* + 797 — 13 = 0. Since f € K if and only if zf' € S, this is
equivalent to saying that the radius of convexity of ¢co K is ry. The 8 =
B(«) in Theorems 3 and 4 give lower bounds on the radius of convexity
of c0 K(a),0 = a < 1.
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