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Bi-axial Gegenbauer Functions of the Second Kind
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Bi-axially symmetric monogenic generating functions on R”*¢ have been used
recently to define generalisations of Gegenbauer polynomials. These polynomials
are orthogonal on the unit ball in R?. Generalised Cauchy transforms of these
polynomials are used to define corresponding bi-axial Gegenbauer functions of
the second kind. It is demonstrated that these functions of the second kind satisfy
second order differential equations related to those satisfied by the corresponding
bi-axial Gegenbauer polynomials, © 1995 Academic Press, Inc.

1. INTRODUCTION

We consider here functions on R” taking values in a complex Clifford
algebra «. The generating vectors of the Clifford algebra s are {¢;; | =
1, 2, ..., m} satisfying the defining relations

ee; + eje;= —28;€, iLl=12, .. m, a1.n

where ¢, is the unit element of the algebra. To every point in R™ there
corresponds a vector in the algebra,

T= xe,. (1.2)
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726 A. K. COMMON

The function f on an open set () of R™ taking values in # is said to be
left monogenic when

a—;fEZe,:—fzo, VreQ, (1.3)
=1 Xy

and right monogenic when

fayzlzjge,:o, Vx € Q. (1.4)
= !

Here we will consider a sub-class of such functions defined on bi-axially
symmetric domains [1]. The approach is to consider the iglitting R™ =
R? + R¢ and to denote a general element X of R" by X = ¥, + x, = p1o,
+ p.wy, where p, = |X/], p» = [}, and X; € R, X, € R9. Inner spherical
monogenics P,\.»,(T,'), ;) have been introduced in [2] for the bi-axial case.
They are polynomials which are homogeneous of degrees & in Yfand [in
%, and satisfy

Iv P (6], 30) = o5 P (1. 53) = 0, (1.5)
where
p F Pty 3
dp=2, ¢, i = e (1.6)
. /:21 "ox, no A gy

Then bi-axial monogenic functions of order (k, /) are monogenic functions
of the form

ﬁ,/(—«?) =[Api.pd) + —(J)IBA.I(Pl .p2) .u—)?lCA.I(pl . P2)

(1.7)
+ w D, (p,, Pz)]PkJ(—ﬂ?lsa;)»
where A, etc. are scalars.

A topic discussed by Sommen [3] for axial monogenics (corresponding
essentially to the case when g = 1) was the generalisation of Hermite
polynomials H,(z) to polynomials H,I_,,,'A(?) using an axial monogenic
generating function. The set of polynomials {H, ,, ,(X)P{(X); k, n € N,
i=1,2,...,3(m, k)} form an orthogonal basis for L,{R"; exp(—p*/2)},
where {PQ,"’(T()); i=1,2,...,%(m, k)} is an orthonormal basis for the
space of inner spherical monogenics of degree k. Subsequently [4, 5]
Cnops derived these polynomials from a Rodrigues formula and extended
them to Gegenbauer polynomials. He obtained the set of polynomials
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{C, (XIPO(X); k,n EN, 1 < = i= K(m, k), a > —1} which form an
orthogonal basis for L,{B™; (1 + X )"} where B™ is the unit ball in R”,

In Section 2 we consider the corresponding generalised Gegenbauer
polynomials in the bi-axially symmetric case which have been defined
recently by the author and F. Sommen [6]. They have the explicit expres-
sions

(—Y(a+k+1+pl2+ql2— 1);(k + p/Z)J
(I+q/ T+ 1) (1.8)
X Fa+k+1+pl2+q2+j—1,—jik+p/2; %)

(ex) ) =
Clj:p.q:k.l(xl ) -

(—Ya+k+1+p2+q/2- Dk +pl2 +1);
([+([/2)J+11‘(‘]+ l) (19)

X XpaFi@+k+1+p/l2+ql2+j, —jik+1+p/2: -5

{a)
Coitpgik, I(xl ) =

forj=0,1,2,...,p,q,k,l € N.

We will show in Section 2 that they are very closely related to the
{C'= . (X,)} and hence derive the second order differential equations
satisfied by them and also explain how they are given by a Rodrigues-
type formula.

The main aim of this work is to extend the concept of Gegenbauer
functions of the second kind to bi-axial monogenics. In the standard case
this extension is made by considering the Cauchy integral transform of
the Gegenbauer polynomials C‘¥(z) and more generally of Jacobi polyno-
mials P!*#(z); i.e., the Jacobi function of the second kind is defined to be

1 _ o (=021 + DEPB()
(a.3) [ _ af o B n
QP(z) 2(2. Dz+1) L e dr (1.10)
with the Gegenbauer case corresponding to o, 8 — a — 4. It may be

shown [7] that Q!*#)(z) satisfies the same second order dlfferentlal equation
as P(a B)(Z)

In Section 3 we use bi-axially symmetric Cauchy transforms to define
corresponding generalised Gegenbauer functions of the second kind.
These transforms have been studied previously by F. Sommen and the
author [8]. For a given scalar function f(A) one may define

xl + Xv ;l—)]f()\)

) = ey P (RE)d7 (11D
X x2—14 "
X +x - wlnfix
AB G = L[ T m"f”Pk,,(Tq’.};’)dP?. (1.12)

r ‘}T+ ;;__’7(m*21



728 A. K. COMMON

where @ = X%, |7 | = 1, and w, is the area of the unit sphere in p-
dimensions. These transforms are bi-axial monogenic functions in R™\R?.
The generalised Gegenbauer functions of the second kind Qﬁ,‘f},;k,,(}'l), %)
will be defined by taking the above transforms of the C\%), .., (37) P (X7,
%,). Integral expressions for the Qﬁ,‘?},.q;k‘,(}]))P,\,_,(Y?, %,) will be derived
by using the Funk—Hecke theorem [9] to perform the angular integrations
in (1.11), (1.12) in this case.

Finally, in Section 4, we will derive the second order differential equa-
tions satisfied by our generalised Gegenbauer functions. In the standard
case Q!¥(z) satisfies the same equation as C'?(z). In the bi-axial case this
is not quite true although the two sets of differential equations are very

closely related.
2. Bi-AxiAL GEGENBAUER POLYNOMIALS

Generalised Gegenbauer polynomials in the axial monogenic case have
been defined by Cnops [4, 5] using a Rodrigues-type formula

C@ (RIP(R) =1+ )@=y I(1 + TP Q.1)

for « > —1, n, m € N. Using this definition, it was shown that these
polynomials satisfy the second order differential equation

(1+37) {1+ T, [CE, ((RIPEN

N N 2.2)
= B(n9 a, k)Cgla,Zn‘k( X )Pk(x )’
where
Bn, a, k) = nQa + n + m + 2k), n=0,2,4,..., 2.3)
=QRa+n+Dn+m+2k-1), n=135.... (24

They were also demonstrated to have the following explicit expression in
terms of hypergeometric functions:

Chma(¥) = Pa+j+ 1mi2 + k),

—>2 (25)

Fi(jra+ml2+k ~jik+mi2;—x77)

C(ﬁl"""k(—?) =29 a+j+ D (m/2 + k + l)j? 2.6)
HEGra+ml2+k+ 1, —jsk+m/i2+ 1, _?2).

Here it should be noted that factors of (=) and (—)"*! on the RHS of
Egs. (9), (10) of Ref. [4] are incorrect and should be deleted.
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Comparing these expressions with those given in (1.8), (1.9) for the
C'® . (x;) we see that
np.qk I\

_—
C(z'};)p.q;k,l(xl )

. 2.7
- (—)’(1/2)j(a+q/2+P/2+k+[ jCE tarei-1i )
(I+qi)a+q2+1+)TQj+1) ¥
C(Z(;lep,q:k,l(z) (2.8)

(YUY e+ gl pR2+k+ 1= 1),
U+ q2) (e g2+ 1+ ) T2 +2)

C% /2+I l)( ‘)

whenp + g = m.
It follows that the bi-axial Gegenbauer polynomials satisfy the second
order differential equation

(1 + x ) toa+gqi2+i~ l)a_,{(] + )a+q12+16 [Cs,qu ,(Xl )P/‘ I(X|, (lh)]} (2.9)

= B(n,a + q/2 + l - 1, k)C(,,‘fl),_q;k.,(xl )Pk.’(xl,wz)

forn=0,1,2,..., where 8(n, « + g/2 + 1 — 1, k) is given by (2.3), (2.4)
with m replaced by p.

Alsoasthe C'&), .. (x7) are scalar multiples of C!#/42*"-(X7) it follows
that they may be represented by the corresponding multiples of the
Rodrigues formula (2.1) with o« — o« + ¢/2 + [ - 1.

3. Bi-axIAL GEGENBAUER FUNCTIONS OF THE SEcoND KIND

It is seen from (1 8), (1.9) that CS"’,, ik, ,(x, ) is a scalar valued function,
while C{, (., 4. /(x7) is vector valued. We may then define the transforms

A@ (R)= 1 (x,+%, - @)1 +u )‘”"/2” 'C) vk ,( 7)
Pkl @, B? ‘x‘ + xl _ ulm+2/ (3.1)
PRX)dE,  n=01,2,...,

which are of the form (1.11) for # even and of the form (1.12) for » odd
and so are monogenic for R"™\B”. We use these transforms to make the
following definition:

DEerINITION.The bi-axial Gegenbauer functions of the second kind are
given by
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@ (P (], @)

np.q;k,
—  —> _ 2 _
~ im {[_(xl +7, )2 -1 at+ql2+l (x_|>+ ;2”__7)(1 +7 )a+q/2+l 1
= p
Lt %o, v mam-g

C ()P (W, }3’)} &Fuin,p, g, kIEN, a>0. (3.2

Taking the limit l'x_fl — 0 and using the Rodrigues formula for the
C ()P, (4, x;) obtained from (2.1), (2.7), (2.8),

(=YD e+ g2+ pl2+k+ 1~ 1),
(+ q/2)j-(a +q/2+1 +j)jF(2j +1)
S e&?;)p,q;k,l(;l))Pk,l(;I)’E;)

(=Y(1/2);, (a+ g2+ p2+ k+1-1),,
U+ q/2)(a+ g2+ 1+ )l (2 +2)

Qg??ﬂ.q:k.l(;:)Pk‘I(}T,K) =

(3.3)

0L 1 gk d VP (1 @)) =

(3.4)
—> — —
X eg}ll;p,q;k,[(xl )Pk,[(x]a 0)2)
where
[__}')2 _|]~a+q/2+l

Gfﬁz,q;kvl('z)[)k.l(;ﬁa;) = I o

p
x| SRR (G W (VT kst WA S R

B” ’;]’_7|m+21 )

&, n=0,1,2,....

We show now that the RHS of (3.3), (3.4) are proportional to the spheri-
cal monogenic P,\.,,(?,), ®,) as implied by this definition (3.2) for O ki
(}T). We may use Cauchy’s theorem [10] to integrate by parts n times,
noting that the contributions from the surface of B” are zero for « > 0

when n, {, g € N. Therefore

[_;])2 — I]—u+q/2+[(_)n

—> — —>
eﬂ,q;k.i(xl WP (x), 0;) = "

P (3.6)
—
x J (;1)_ u) @)t (1 + ?2)(r+q/2+[—|+n1) ('—) — ) dp""
B? l—) —> 7] 4 kd U, oy u.

X, — i |m+21
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Now it may be proved by induction that

{[%] (av)zj} = (—4Y(m/2 + Dy + q/2), % 3.7)

Xy —u Xy —
(}7_—")) 2j+1
|":>_~—:>‘|,,,—+g (0¢)
Xn—u (3.8)
P 1
=5 (=41 (m/2 + Dq/2 + D)., T

forj=0,1,2,.... Substituting these expressions in (3.6) and using the
result in (3.3), (3.4),

Qg‘;!pvq;k,l(z)Pk.z(;; Z);)
_ U)o+ mi2+ k+1-1)2%m/2 + 1)1.(—)7,’2 — 1)-atitan
(a+g2+1+)T2j+ Do,

- — —
X D ki (X P (X, @)

3.9

— — —
Qgﬂl:p.q;k.l(xl WP (X, ;)

—(1/2);, (@ + ml2 + k + 1= 1), 29 (m/2 + D (=X72, — 1)-o+i+a2
(@+ql2+1+));, T2+ 2w,

— — —
X DY ki (P (X, @3 ),

(3.10)
where
DL, s DPy (X7, @)
(5, =R (1 + @ )erazei-1+2 P 61

= B |}T_7|m+2/+2j

(1 +;72 Jaraiz 42

DL 11y s 1O ) Py (X, ) = P(H@)d . (3.12)

(:14 (}T__—u>lm+;zl+2j
The angular integrations in these integrals over B” may be performed
using the Funk-Hecke theorem [9] since P; ( 7?5:) and—u)P,(, (u, ZJ;) are
spherical harmonics of orders k and k + 1, respectively, in «, while the
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denominator of the integrand depends only on 7 through its magnitude
and scalar product with'x.

The result is that the RHS of (3.11), (3.12) are proportional to P, ,(x,.
@, ) as required and specifically

— — —> — ! i 1k
(D'ZL}:)P-CI:/\'.I(XI P (X, 0) = w0, Io (1 — AZ)xrai2+ =102\ p= 1k

9 Jl [Py, (9)py = Py A1 — sH)P=32 ds
Z1 (az — 2bs)m/2+[+j

] dNP, (@), @), (3.13)

—> — —> 1 iy ]k
q)g;i]:p'q;k.l(xl )P“(xh wz) =w,_, fo (1 - )\2)(x+(1/2+[+~1)\ﬂ 1+k

1P ()(1 = s3I gy
X l:f] (al —- 2bs)'"/‘2+l+j

] d\P, (@), @ ), (3.14)

where ¢* = pi + A\, b = Apy, and p, q, k, I, j € N. Also P, ,(s) is the
Legendre polynomial of order & in p-dimensions.

4. THE DIFFERENTIAL EQUATION SATISFIED BY THE BI-AXIAL
GEGENBAUER FUNCTIONS OF THE SECOND KIND

We state the result giving the differential equation satisfied by the bi-
axial Gegenbauer functions of the second kind.

. . - —> e
THEOREM. The bi-axial Gegenbauer function Q) ... (X)) Py (X, @)

defined by (3.2) for a > 0, p, g, k, | € N, satisfies the differential equation

(_er —pyaa {(_}TZ _ |ya-t-aze aﬁ[QE,‘?},,q;k.z(E’)Pk‘,(},’,Ez )]}
=¥(p, g, kL, WO, P X @), n=0,1,2,..., “@h
where
YD, g,k 1,2)) = =Qa + 2j)(m + 21+ 2k +2j - 2) 4.2)
and

y(p, g,k L2j+ 1) =~Qa+p+2k+2)g+ 20+ 2)) 4.3)

forj=0,1,2,... andx, € R\B".
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Proof. We consider first the case when n = 2j + 1 as this is slightly
easier to deal with. We have from (3.12) for the given values of , that

IR[PL 1y s P (X @)] = =(m + 21 + 2j)

. (4.4
Xf (}T_m(l +?2)a+q/2+lhj P AT TN T )
B? %} = | k(s ;) d"u
and
(=372 =1 0% [P u s (KDPET, @)
=m+2+20g+20+2j+2)
—2 Y442 > > .5)
(1 + u )a+q/-+{+.}+lPk'1( u, wz) dp 2]
B? ;:_7 m+20+2j+2
(x_>2 _ 72)(1 4 ;z’)a+q/2+l+2jpk'1( IBZ) &Fu
8’ |;])_7!m+21+2j+2 :
We make use of the identify
G -4) g2t 2l p (P TN >
0= Jo 1% =@ mt2tv 22 dop (1 +a )= 8P, (u, wy) P i
X;~u (4.6)

3 —>
j (x;y —u)
B’ |;l>_7|m+21+2j+2

{ 3 I:(l + 72)a+q/2+1+2j+lpk‘[('a” Z)‘; )]} dp_lz

which follows from Cauchy’s theorem [10] since the integrand is zero on
the surface of B”. Hence

a+ ?2)a+q/2+l+ 2j+1

—(g+2A+2/+2) fw P (i o) W

'x_l’_”u”lm+21+2j+2

—2 2 ; -~ —> —>
—u )(1 +u )a+q!2+l+2;PL,( u,wz)d” ¥

,z’_‘;lmﬂh*ljﬂ

. &’
=Qa+q+2A+4j+2) fa»

4.7)

2 .
rig G =) + @) e up, (G df'Tf}
-3 _

P 7 T m 242542
B X, — |y
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But

—2 2 2 :
J, (xl _7 )(1 +7 )a+q/2+l+2jpk"("l7"u‘;;) dp‘&)
B |;l> __u)‘n|+21+2j+2

— _wp_] J;)‘ }\p+k‘l(l — /\2)a+q/2+{+2j(p% _ )\2)
(4.8)

v P (s)d - $2)P-I12 g
JA] [p% + }\2 __ ZAp,S]"’"z“*HI

= D1, ks Pi(x], @)

] dAPA-.I(Zﬁ,UZ)

4.9

2 ]
+ E;nT;I_l:ﬁ é'p-[q)f?‘}Ll:p,q;k,l(}T)Pk,l(}—l)’Z‘?Z)]'
1

Therefore

2 5
(=% = 18R PE 1 g (K P (37, @))]

= —(m+ 2l + 2))QQa + 2j) x {d)&“' ()P (X @)

2+ 1ip,gikd

2 b]
+ (m + 2’:;1+ ZJ) 5;: [(D[.’lﬂlzp,q:k.{(;l))Pk.[(}_l)v2;)2)]} 4.10)

— Qo+ q+ 2+ 4§+ DX 9 [PE) 1, s ()P (x, @),

Now

a}_l}:z)*l(_a_*_l[‘_{)’ e =T o, @.11)
aip; P ' ]

and <D‘2‘}Ll;pvq;k',(fl’) is a scalar depending only on |X;| as follows from
(3.14). Therefore

013 P51k D P, )
= =X 05, [P, (XD Py (37, @2)] 4.12)
+ kP, (PR, @)
as

Ty P, @) = —kPy (3], @) (4.13)
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Substituting from (4.12) in (4.10)

(=3 = DOF IO, 1, x50 Py (T )]
— 20 — g =2 = 20%]0: [P 1, x i3 IP (], )] (4.14)

+ Qo+ 2j)m + 2 + 2k + 2D s s IP( @2) = 0.

Let us make the definition

Ve () = (=3 — D702, ). 4.15)
Then
2 'y 2l —g)?
(=X = D72 ] = X)) o (W G PR @)

- D7 290 (= 2 — 1 - q/2)x;

(4.16)
X [qu_;ll;p.q:k‘[(;l))Pk.l(}—l)*—a)?.)]
+ (=1 = 05 [, (s G (5 a1
Using the fact that for any scalar function f(p,)
a5 (X1 f o) Py o] 4.17)

= —(p + 20 fp) Pi(X;, ) + X105 [f(p) Py(x7. @3)]

and (4.14), it follows from (4.16) that

(=3 = DR (=X D (e R PR e

= {2p + 2k — [ — q/2) = 2a + j)(m + 20 + 2k + 2j)} (4.18)
X \l’gll:p.q:k.l(;;)Pk.[(}T’ @)
since <D§‘}L,:p.q;k.,(Y,>) is a scalar valued flir;ction of p,. Finally
Q% 1., 4x(X7)isjust proportional to W§2 | . (x7) so (4.1) follows imme-
diately when » is odd.
To prove (4.1) for even n, we note from (3.11), (3.12) that
(ngLz;p,qzk,l(,x_l))Pk.l(}T»(—')‘;)

I S
T o m+20+2))

(4.19)

— — —
oz (DG s (XD PR, )],
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Differentiating (4.14) with o — « + 1,
0 {(=x1 = DIZ P, 2 g s () Pry(RT, )]

~ Qa = q = 2059, 0 i () Py (X))} (4.20)

+ Qa+2j+ 2)(m + 2 + 2k + 2L 5, o (K P(RT @) = 0.

Using the fact that @5‘}17.,,#;,(',(}7) is equal to —ﬁ) multiplied into a scalar

valued function of p,, it is straightforward to show that
— —>
a?,’ {xlq)gl}-)l-Z;p,q;k,l(xl )Pk.l(}: 5)2)}

= X002 {00, o (D P o)} (4.21)

+ (D + 2k = DO s (D) P37, ).
Substituting in (4.20) and setting j + 2 — j, it may be deduced that

[~ + DI o3 {{— (3 + DI an (Wi, G PR @)}

= —Qa + 2j)(m + 20 + 2k + 2 — DY, PG @), (4.22)

where \pg?p,q;k,l(}_])) is defined in (4.15) and is proportional to
Qg‘ﬁp_q;,\.',(?,)). Thus we obtain the differential equation (4.1) foreven n. |

In the complex scalar case the Gegenbauer functions of the second kind
satisfy the same differential equation as the corresponding Gegenbauer
polynomials. In the bi-axial case the two sets of differential equations
(2.8) and (4.1) are related but not identical. However, from their definitions
(2.3), (2.4) and (4.2), (4.3), respectively,

Bn,a+qgl2+1-1,k)=~vy(p,q,k, 1, n (4.23)

forp = g =1, k =1 = 0 and in this case the equations satisfied by the
bi-axial Gegenbauer polynomials are the same as those for the bi-axial
Gegenbauer functions of the second kind. Therefore our results do agree
with the standard complex variable case since the latter corresponds to
takingp = g = 1.
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