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Abstract

Theone parameter family of Jack� measures on partitions is an important discrete analog ofDyson’s
� ensembles of random matrix theory. Except for special values of� = 1

2,1,2 which have group
theoretic interpretations, the Jack� measure has been difficult if not intractable to analyze. This paper
proves a central limit theorem (with an error term) for Jack� measure which works for arbitrary values
of �. For � = 1 we recover a known central limit theorem on the distribution of character ratios of
random representations of the symmetric group on transpositions. The case� = 2 gives a new central
limit theorem for random spherical functions of a Gelfand pair (or equivalently for the spectrum of
a natural random walk on perfect matchings in the complete graph). The proof uses Stein’s method
and has interesting combinatorial ingredients: an intruiging construction of an exchangeable pair,
properties of Jack polynomials, and work of Hanlon relating Jack polynomials to the Metropolis
algorithm.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to give a new approach to studying a certain probability
measure on the set of all partitions of sizen, known as Jack� measure. Here� > 0, and this
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measure chooses a partition� of sizenwith probability

�nn!∏
s∈�
(�a(s)+ l(s)+ 1)(�a(s)+ l(s)+ �)

,

where the product is over all boxes in the partition. Herea(s) denotes the number of boxes
in the same row ofs and to the right ofs (the “arm” of s) andl(s) denotes the number of
boxes in the same column ofsand belows (the “leg” of s). For example the partition of 5
below

would have Jack� measure

60�2

(2� + 2)(3� + 1)(� + 2)(2� + 1)(� + 1)
.

Before proceeding, it should be mentioned that there is significant interest in the study of
statistical properties of Jack� measure when� is fixed. The case� = 1 corresponds to the
Plancherel measure of the symmetric group, which is nowwell understood due to numerous
results in the past few years. The surveys[AlD,De,O2] and the seminal papers[BOO,J,O1]
indicate how the Plancherel measure of the symmetric group is a discrete analog of random
matrix theory, and describe its importance in representation theory and geometry. The case
� = 2 corresponds to the Gelfand pair(S2n,H2n) whereS2n is a symmetric group andH2n
is the hyperoctahedral group of size 2nn!. When� = 1

2, Jack polynomials arise in the study
of the Gelfand pair(GL(n,H),U(n,H))whereH denotes the division ring of quaternions
andGL,U denote general linear and unitary group. Okounkov[O2] emphasizes that the
study of Jack� measure is an important open problem, about which relatively little is known
[BO1]. It is a discrete analog of Dyson’s� ensembles, which are tractable for the three
values� = 1,2,4. In particular, the correlation functions of Jack� measure are not known,
so the traditional techniques for studying discrete analogs of random matrix theory are not
obviously applicable.
In the current paper we study Jack� measure using a remarkable probability technique

known as Stein’s method.Although Stein’s method can be quite hard to work with, there are
some problemswhere it seems to be the only option available (see[RR] for such an example
involving the antivoter model). Good surveys of Stein’s method (two of them books) are
[ArGG,BHJ,Stn1,Stn2].
The current paper is a continuation of[F1], which applied Stein’s method to the study

of Plancherel measure of the symmetric groupSn. Let ��
(2,1n−2)

denote the character of the

irreducible representation ofSn parameterized by� on the conjugacy class of transpositions.
Let dim(�) denote the dimension of the irreducible representation parameterized by�.
LettingP� denote the probability of an event under Jack� measure (so thatP1 corresponds
to Plancherel measure), the following central limit theorem was proved:
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Theorem 1.1(Fulman [F1]). For n�2 and all realx0,

|P1

n− 1√

2

��
(2,1n−2)

dim(�)
�x0


− 1√

2�

∫ x0
−∞
e−

x2
2 dx|�40.1n−1/4.

This result sharpened earlier work of Kerov[K1] (see[IO] for a detailed exposition of
Kerov’s argument) and Hora[Ho], who both obtained a central limit theorem by themethod
of moments, but with no error bound. We remark that statistical properties of the quantity
��
(2,1n−2)
dim(�) (also called a character ratio) have important applications to random walk[DSh]
and to the moduli space of curves[EO].
The main result of the current paper is the following deformation of Theorem1.1. To

state it one needs some notation about partitions. Let� be a partition of some non-negative
integer|�| into integer parts�1��2� · · · �0. The symbolmi(�) will denote the number
of parts of� of sizei. Let l(�) denote

∑
i�1mi(�), the number of parts of�. Let n(�) be

the quantity
∑
i�1(i − 1)�i . One defines�′ to be the partition dual to� in the sense that

�′
i = mi(�)+mi+1(�)+ · · ·. Geometrically this corresponds to flipping the diagram of�.

Theorem 1.2. Suppose that��1.LetW�(�) = �n(�′)−n(�)√
�(n2)

. For n�2 and all realx0,

|P�(W��x0)− 1√
2�

∫ x0
−∞
e−

x2
2 dx|�A�n

−1/4,

whereA� depends on� but not on n.

Note that the assumption that��1 ismerely for convenience. Indeed, from the definition
of Jack measure it is clear that the Jack� probability of� is equal to the Jack1/� probability
of �′. From this one concludes that the Jack� probability thatW� = w is equal to the Jack1/�
probability thatW1/� = −w, so that a central limit theorem holds for� if and only if it
holds for 1� .
We conjecture that the convergence rate upper bound inTheorem1.2can be improved to a

universal constantmultiplied by themaximumof1√
n
and

√
�
n
. In fact the thirdmoment ofW�

is �−1√
�(n2)

(see Corollary5.3), so certainly
√

�
n

→ 0 is necessary forW� to be asymptotically

normal. Of course typically one is interested in� fixed, as� is a parameter which represents
the symmetries of the system. In this case the conjecture has recently been proved[CF].
A result of Frobenius[Fr] is that

��
(2,1n−2)

dim(�)
= n(�

′)− n(�)(
n
2

) .

Hence Theorem1.2is a generalization of Theorem1.1in the case� = 1. It is also of group
theoretic interest in the case� = 2. By p. 410 of Macdonald[M] one sees for the� = 2

case that2n(�
′)−n(�)
2(n2)

is the value of a spherical function corresponding to the Gelfand pair
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(S2n,H2n), whereH2n is the hyperoctahedral group of size 2nn!. Moreover when� = 2,
Theorem1.2 gives a central limit theorem for the spectrum of a natural random walk on
perfect matchings of the complete graph. For a definition and analysis of the convergence
rate of this random walk on matchings, see[DHol] , where it was studied in connection
with phylogenetic trees. Note that their Corollary 1 shows that the eigenvalues of that
random walk are indexed by partitions� of n, and are W2(�)√

n(n−1)
, occurring with multiplicity

proportional to the Jack2 measure on�.
Next, we make some remarks about the proof of Theorem1.2. The argument is not a

straightforward modification of arguments used in[F1], and requires new ideas. The reason
for this is that for general� the Jack� measure does not have a known interpretation in terms
of representation theory of finite groups. Hence, the proof of[F1], which used concepts such
as induction and restriction of characters, can not be applied. There is another fundamental
differencebetween the caseofPlancherelmeasure and Jack� measure. In thePlancherel case
the argument of[F1] can be pushed through to conjugacy classes other than transpositions,
but the same is not clearly so for the Jack� case. This is because the Jack� case uses
connections between Jack polynomials and the Metropolis algorithm (due to Hanlon[Ha]
and to be reviewed in Section5) and it is not clear that these connections work for classes
other than transpositions.
Theorem1.2will be a consequence of the following bound of Stein. Recall that ifW,W ∗

are randomvariables, they are called exchangeable if for allw1, w2,P(W = w1,W ∗ = w2)
is equal toP(W = w2,W ∗ = w1). The notationEW(·)means the expected value givenW.
Note from[Stn1]that there areminor variations on Theorem1.3(and thus for Theorem1.2)
for h(W) whereh is a bounded continuous function with bounded piecewise continuous
derivative. For simplicity we only state the result whenh is the indicator function of an
interval.

Theorem 1.3(Stein [Stn1 ]). Let (W,W ∗) be an exchangeable pair of real random vari-
ables such thatEW(W ∗) = (1− �)W with 0< � < 1.Then for all realx0,

|P(W�x0)− 1√
2�

∫ x0
−∞
e−

x2
2 dx|

�2

√
E[1− 1

2�
EW(W ∗ −W)2]2 + (2�)− 1

4

√
1

�
E|W ∗ −W |3.

In order to apply Theorem1.3 to study a statisticW, one clearly needs an exchangeable
pair(W,W ∗) such thatEW(W ∗) = (1−�)W .AMarkov chainK (with chanceof going from
x to y denoted byK(x, y)) on a finite setX is called reversible with respect to a probability
distribution� if �(x)K(x, y) = �(y)K(y, x). This condition implies that� is a stationary
distribution forK. The idea is to use a reversible Markov chain on the set of partitions of
sizenwhose stationary distribution is Jack� measure, to let�

∗ be obtained from� by one
step in the chain where� is sampled from�, and then set(W,W ∗) = (W(�),W(�∗)). A
main contribution of this paper is the construction and analysis of an exchangeable pair
which is useful for Stein’s method.
Section2 revisits and generalizes the construction of an exchangeable pair for Plancherel

measure of the symmetric group. We give a connection between harmonic functions on
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Bratelli diagrams and decomposition of tensor products and extend some results in[F2].
Section3 reviews necessary facts about Jack polynomials. Motivated by the discussion in
Section2, Section4 constructs an exchangeable pair(W�,W

∗
� ) to be used in the proof of

Theorem1.2. The combinatorics in this section is quite interesting. Section5 recalls needed
work of Hanlon[Ha] relating Jack polynomials to the Metropolis algorithm. Section6
combines the ingredients of the previous sections to prove Theorem1.2.
To close the introduction, we mention some follow up work to this paper. Paper[F3]

sharpens the bound in Theorem1.2using martingale theory. The forthcoming paper[CF]
extends the approach of this paper to other Gelfand pairs (where the limit need not be a
Gaussian law). It also further sharpens the bound of Theorem1.2.

2. Plancherel measure revisited

To begin, we revisit the construction of an exchangeable pair(W,W ′) for the special
case� = 1, corresponding to Plancherel measure, which was studied in[F1]. In doing so
we clarify and generalize some of the results there and in[F2]. This will be very helpful for
treating the case of general�.
Asmentioned in the introduction, to construct an exchangeable pair(W,W ∗)with respect

to a probability measure� on a finite setX, it is enough to construct a Markov chain
on X which is reversible with respect to�. Indeed, choosingx from � and lettingx∗ be
obtained fromx by one step of the chain, it follows that(W,W ∗) := (W(x),W(x∗))
is an exchangeable pair. Of course one wants to construct the Markov chain in such a
way that the exchangeable pair is useful for Stein’s method, and more precisely useful for
Theorem1.3.

2.1. Known constructions

To start we consider the situation for an arbitrary finite groupG. Let Irr(G) denote the
set of irreducible representations ofG. Then the Plancherel measure onIrr(G) chooses a

representation�with probability dim(�)
2

|G| , wheredim(�) denotes the dimension of�. In [F2]
weconstructedaMarkov chainMH onIrr(G)which is reversiblewith respect toPlancherel
measure. To define thisMarkov chain, one first fixes a subgroupH ofG. For� ∈ Irr(H) and
� ∈ Irr(G), we let�(�,�) denote the multiplicity of� in the representation ofG obtained
by inducing� from H (by Frobenius reciprocity, this is also equal to the multiplicity of
� in the representation ofH obtaining by restricting�). Then[F2] defined the transition
probabilityMH(�,�) of moving from a representation� to a representation� by

|H |
|G|
dim(�)
dim(�)

∑
�∈Irr(H)

�(�, �)�(�,�).

It was proved there that these transition probabilities sum to one, and that the Markov chain
with transition mechanismMH is indeed reversible with respect to the Plancherel measure
of G.
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For arbitrary groups, this construction can be recast in terms of harmonic functions on
Bratelli diagrams. We recommend[K2] or [BO2] for an introduction to this subject. One
starts with a Bratteli diagram; that is an oriented graded graph	 = ⋃

n�0	n such that

(1) 	0 is a single vertex∅.
(2) If the starting vertex of an edge is in	i , then its end vertex is in	i+1.
(3) Every vertex has at least one outgoing edge.
(4) All 	i are finite.

For two vertices�,
 ∈ 	, one writes� ↗ 
 if there is an edge from� to
. Part of the
underlying data is a multiplicity function�(�,
). Letting the weight of a path in	 be the
product of the multiplicities of its edges, one defines the dimensiondim(
) of a vertex

to be the sum of the weights over all minimal length paths from∅ to 
. Given a Bratteli
diagramwith amultiplicity function, one calls a function� harmonicif �(0) = 1,�(�)�0
for all � ∈ 	, and

�(�) =
∑


:�↗


�(�,
)�(
).

An equivalent concept is that of coherent probability distributions. Namely a set{Mn} of
probability distributionsMn on	n is calledcoherentif

Mn−1(�) =
∑


:�↗


dim(�)�(�,
)
dim(
)

Mn(
).

The formula showing the concepts to be equivalent is�(�) = Mn(�)
dim(�) . Note that in this

setting there is a natural transition mechanism for moving up or down a step in the Bratelli
diagram. Namely the chance of moving from� to
 is �(�,
)Mn(
)dim(�)

Mn−1(�)dim(
)
, and the chance of

moving from
 to � is dim(�)�(�,
)
dim(
) .

Let H0 = {id} ⊆ H1 ⊆ · · · ⊆ Hn = G be a tower of subgroups ofG. Consider
the Bratelli diagram whosejth level consists of irreducible representations ofHj , with
edge multiplicity given by�(�, �) as in the first paragraph of this subsection. It is proved
in [F2] that the Plancherel measures of the groups form a coherent family of probability
distributions (this was known for the symmetric group[K1]). Moreover it was shown that
if one transitions from leveln to leveln− 1, and then from leveln− 1 to leveln, that the
resulting Markov chain on irreducible representations ofHn is exactly the chainMHn−1.

2.2. New construction

Next, we give a new Markov chainL� on the set of irreducible representations ofG
which is reversible with respect to Plancherel measure, and which generalizes the chain
MH . First fix �, any representation (not necessarily irreducible) ofG whose character is
real valued. Let< �,
 > be the usual inner product on class functions ofG defined as
1

|G|
∑
g∈G �(g)
(g). Then the probability that the chainL� transitions from� to � is

dim(�)
dim(�)dim(�)

< ��, ���� > .
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Note that this is nonnegative because< ��, ���� > is the multiplicity of� in the tensor
product of� and�.

Lemma 2.1. Let� be a representation of a finite group G whose character is real valued.
Then the transition probabilities ofL� sum to 1, and the Markov chainL� is reversible with
respect to the Plancherel measure of G.

Proof. To see that the transition probabilities do as claimed sum to 1, observe that∑
� dim(�)�

� is the character of the regular representation ofG, so takes value|G| at the
identity element and 0 elsewhere. The reversibility assertion uses the fact that< ��, ���� >

is equal to< ����, �� >, which is true since�� is real valued. �
We remark that the second part of Lemma2.1needs�� to be real valued. An instructive

counterexample when�� is not real valued is obtained by lettingG be a cyclic group of

ordern and taking� to be the representation whose value on a fixed generator ise
2�i
n .

One can also define a chain with transition probability

dim(�)
dim(�)dim(�)

< ����, �� >

whichwould not require� real valued in Lemma2.1but this is less useful for theapplications
at hand, since then Proposition2.3 would fail as any reversible Markov chain has real
eigenvalues.
Proposition2.2shows thatMH is in fact a special case ofL�.

Proposition 2.2. LetMH be the Markov chain on irreducible representations of G cor-
responding to the choice of subgroup H. LetL� be the Markov chain on the irreducible
representations of G corresponding to the choice that� is the representation of G on cosets
of H (i.e. the induction of the trivial representation of H to G). ThenMH = L�.

Proof. Throughout the proof we letRes, Ind denote restriction and induction of charac-
ters.

L�(�,�)= |H |
|G|

dim(�)
dim(�)

< ��, ��IndGH [1] >G

= |H |
|G|

dim(�)
dim(�)

< ����, IndGH [1] >G

= |H |
|G|

dim(�)
dim(�)

< ResH (����), 1>H

= |H |
|G|

dim(�)
dim(�)

< ResH (��), ResH (��) >H

= |H |
|G|

dim(�)
dim(�)

∑
�∈Irr(H)

�(�, �)�(�,�)

=MH(�,�).
Note that the third equality is Frobenius reciprocity.�
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Next, we note that the chainL� can be explicitly diagonalized, a fact which has impli-
cations for the decomposition of tensor products. As this directly generalizes results from
[F2] (which explains their importance) and can be proved by a similar technique, we omit
the proofs.

Proposition 2.3. Let G be a finite group and� any representation of G whose charac-
ter is real valued. Let� denote the Plancherel measure of G. Then the eigenvalues and
eigenfunctions of the Markov chainL� are indexed by conjugacy classes C of G.

(1) The eigenvalue parameterized by C is�
�(C)

dim(�) .

(2) An orthonormal basis of eigenfunctions
C in L
2(�) is defined by
C(�) = |C| 12 ��(C)

dim(�) .

Proposition 2.4. Let � be a representation of a finite group G whose character�� is real

valued. Suppose that|G| > 1. Let � = maxg �=1

∣∣∣ ��(g)

dim(�)

∣∣∣ and let� denote the Plancherel

measure of G. Then for integerr�1,

∑
�∈Irr(G)

∣∣∣∣ dim(�)dim(�)r
< ��, (��)r > −�(�)

∣∣∣∣ � |G|1/2�r .

3. Properties of Jack polynomials

The purpose of this section is to collect properties of Jack polynomials which will be
crucial in the proof of Theorem1.2. A thorough introduction to Jack polynomials is in
Chapter 6 of Macdonald[M] . We conform to Macdonald’s notation and letJ (�)� denote
the Jack polynomial with parameter� associated to the partition�. When� = 1, the Jack
polynomials are Schur functions, and when� = 2 or � = 1

2, they are zonal polynomials
corresponding to spherical functions of a Gelfand pair.
As in the introduction, given a boxs in the diagram of�, leta(s) andl(s) denote the arm

and leg ofs, respectively. One defines quantities

c�(�) =
∏
s∈�

(�a(s)+ l(s)+ 1)

c′�(�) =
∏
s∈�

(�a(s)+ l(s)+ �).

Recall thatmi(�) denotes the number of parts of� of sizei and thatl(�) denotes the total
number of parts of�. We let z� = ∏

i�1 i
mi(�)mi(�)!, the size of the centralizer of a

permutation of cycle type� in the symmetric group.
Let��

�(�) denote the coefficient of the power sum symmetric functionp� in J
(�)
� . Lemma

3.1 gives orthogonality relations for these coefficients. We remark that when� = 1,

��
�(1) is equal to n!

z�

��
�

dim(�) where��
� is the character value of the representation ofSn
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parameterized by� on elements of cycle type�. Thus when� = 1, Lemma3.1specializes
to the orthogonality relations for characters of the symmetric group.

Lemma 3.1(Macdonald [M, p. 382]).

(1) ∑
|�|=n

z��l(�)�
�
�(�)�

�
�(�) = ��,�c�(�)c

′
�(�).

(2)

∑
|�|=n

��
�(�)�

�
� (�)

c�(�)c′�(�)
= ��,�

1

z��l(�)
.

The following special values of��
�(�) will be needed.

Lemma 3.2. (1) (Macdonald[M, p.382])

��
(1n)(�) = 1.

(2) (Macdonald[M, p.383])

�(n)� (�) = n!
z�

�n−l(�).

(3) (Macdonald[M, p.384])

��
(2,1n−2)

(�) = n(�′)� − n(�).
(4) (Stanley[St, p.107])

�(n−1,1)
� (�) = �n−l(�)n!

z�

(�(n− 1)+ 1)m1(�)− n
�n(n− 1)

.

Next, we consider the ring of symmetric functions, with inner product defined by the
orthogonality condition< p�, p� >�= ��,�z��l(�). By Lemma3.1, this is equivalent to the

condition that< J (�)� , J
(�)
� >�= ��,�c�(�)c′�(�). For a symmetric functionf, its adjointf

⊥
is defined by the condition< fg, h >�=< g, f⊥h >� for all g, h in the ring of symmetric
functions. It is straightforward to check thatp⊥

1 = � �
�p1

(for the case� = 1 see p. 76 of

Macdonald[M] ).
Let


′
�/�(�) =

∏
s∈C�/�−R�/�

(�a�(s)+ l�(s)+ 1)

(�a�(s)+ l�(s)+ �)
(�a�(s)+ l�(s)+ �)
(�a�(s)+ l�(s)+ 1)

,

whereC�/� is the union of columns of� that intersect� − � andR�/� is the union of rows
of � that intersect� − �.
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Lemma 3.3.

p⊥
1 J
(�)
� =

∑
|�|=n−1

c′�(�)

′
�/�(�)

c′�(�)
J (�)� .

Proof. Take the inner product of both sides withJ (�)� . The left-hand side becomes

< p⊥
1 J
(�)
� , J

(�)
� >�=< J (�)� , p1J

(�)
� >� .

Using the Pieri rule for Jack symmetric functions ([M, p.340]), this becomes

c�(�)
c�(�)


′
�/�(�) < J

(�)
� , J

(�)
� >�= c�(�)c′�(�)
′

�/�(�).

By the orthogonality relations for theJ ′s, this is equal to the inner product of the right-hand
side withJ (�)� . �

4. Construction of an exchangeable pair

The purpose of this section is twofold. First, we use the theory of harmonic functions on
Bratelli diagrams to construct an exchangeable pair(W�,W

∗
� )with respect to Jack� measure

on the set of partitions of sizen (and as usual, we suppose without loss of generality that
��1).We give a Markov chainM� which is a deformation of the chainMH from Section2
(when� = 1 it corresponds to the case thatG = Sn andH = Sn−1). The second and more
subtle part of this section is to show that this construction is closely related to a chainL�
which is a deformation of the chainL� from Section2 (when� = 1 it corresponds to the
case thatG = Sn and� is the irreducible representation of the symmetric group of shape
(n− 1,1)). In fact much of this paper can be pushed through for generalizations ofM� and
L� corresponding to more vigorous walks on the set of partitions, but for Stein’s method it
is preferable to use local walks.
The use of bothM� andL� will be crucial to this paper. An interesting result in this

section will be that (except for holding probabilities),L� is a rescaling ofM�, so that one
canworkwith whichever ismore convenient. For instance it will be clear from the definition
that the transition probabilities ofM� are always non-negative. But except for cases such
as� = 1,2 where there is a group theoretic reason, it will not be clear that the transition
probabilities ofL� are always non-negative. But to prove thatW� is an eigenvector ofM�,
it will be convenient to use connections withL�.
In order to defineM�, we first recall results on the theory of harmonic functions on

Bratelli diagrams. The basic language was reviewed in Section2. The level	n consists
of all partitions of sizen. The multiplicity function��(�, �) is defined as
′

�/�(�) where


′
�/�(�) was defined in Section3. A result of Stanley[St] is thatdim�(�) = n!�n

c′�(�)
. Then

[K3] shows that the Jack� measure

��(�) = �nn!
c�(�)c′�(�)

forms a coherent set of probability distributions for this Bratelli diagram.
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Motivatedby thediscussion inSection2, for�,� ∈ 	n, wedefine (for��1) the transition
probabilityM�(�,�) to be

��(�)
dim�(�)dim�(�)

∑
|�|=n−1

dim�(�)2��(�,�)��(�, �)
��(�)

= c′�(�)
�nc�(�)

∑
|�|=n−1


′
�/�(�)


′
�/�(�)c�(�)

c′�(�)
.

Note that this corresponds to transitioning down a level and then up a level in the Bratelli
diagram. The expression forM�(�,�) is a mess, but three useful observations can be made.
First, being a sum of non-negative terms, it is non-negative. Second, it is clear that the
transition mechanismM� proceeds by local moves, in the sense that ifM�(�,�) �= 0, then
� and� have a common descendant. Third,M� is reversible with respect to Jack� measure.
As an example, whenn = 3 the reader can verify that theM� transition probabilities

(rows add to 1) are

(3) (2,1) (13)

(3) 1
2�+1

2�
2�+1 0

(2,1) �+2
3(�+1)(2�+1)

2(�2+7�+1)
3(�+2)(2�+1)

�(2�+1)
3(�+1)(�+2)

(13) 0 2
�+2

�
�+2

Next, we define (for��1) a chainL� to have transition “probability”

L�(�,�) = 1

c�(�)c′�(�)�nn!
∑
|�|=n

(z�)
2�2l(�)��

�(�)�
�
�(�)�

(n−1,1)
� (�).

As an example, whenn = 3 using the special values of the�’s given in Lemma3.2(and also
the value��

(3)(�) which is determined from the other values by the orthogonality relations
Lemma3.1), the reader can verify that theL� transition probabilities (rows add to 1) are

(3) (2,1) (13)

(3) 0 1 0

(2,1) �+2
6�(�+1)

2�2+11�−4
6�(�+2)

(2�+1)2

6(�+1)(�+2)

(13) 0 2�+1
�(�+2)

�2−1
�(�+2)

Since the�’s can be negative it is not clear (see more discussion below) that these transition
“probabilities” are non-negative. HoweverL� is clearly “reversible” with respect to Jack�
measure. Proposition4.1shows that the transition probabilities sum to one.

Proposition 4.1.∑
|�|=n

L�(�,�) = 1.
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Proof. By definition
∑

|�|=n L�(�,�) is equal to

∑
|�|=n

1

c�(�)c′�(�)�nn!
∑
|�|=n

(z�)
2�2l(�)��

�(�)�
�
�(�)�

(n−1,1)
� (�).

Using the fact from part 1 of Lemma3.2that��
(1n) = 1, this can be rewritten as

∑
|�|=n

(z�)
2�2l(�)��

�(�)�
(n−1,1)
� (�)

∑
|�|=n

��
�(�)�

�
(1n)

c�(�)c′�(�)�nn!
.

The result now follows from part 2 of Lemma3.1and part 1 of Lemma3.2. �
Theorem4.2establishes a fundamental relationship between the chainsM� andL�.

Theorem 4.2. If � �= �, then

L�(�,�) = �(n− 1)+ 1

�(n− 1)
M�(�,�).

Proof. By part 4 of Lemma3.2, L�(�,�) is equal to

1

�n(n− 1)c�(�)c′�(�)
∑
|�|=n

��
�(�)�

�
�(�)�

l(�)z�((�(n− 1)+ 1)m1(�)− n).

Since� �= �, part 1 of Lemma3.1shows that this is equal to

(�(n− 1)+ 1)

�n(n− 1)c�(�)c′�(�)
∑
|�|=n

��
�(�)�

�
�(�)�

l(�)z�m1(�).

Bearing in mind the results from Section3, this can be rewritten as

(�(n− 1)+ 1)

�n(n− 1)c�(�)c′�(�)
∑
|�|=n

< p1
�

�p1

∑
|�|=n

��
�(�)p�,

∑
|�|=n

��
�(�)p� >�

= (�(n− 1)+ 1)

�2n(n− 1)c�(�)c′�(�)
< p⊥

1 J
(�)
� , p

⊥
1 J
(�)
� >�

= (�(n− 1)+ 1)

�2n(n− 1)c�(�)c′�(�)

<
∑

|�|=n−1


′
�/�(�)c

′
�(�)

c′�(�)
J (�)� ,

∑
|�|=n−1


′
�/�(�)c

′
�(�)

c′�(�)
J (�)� >�

= (�(n− 1)+ 1)

�(n− 1)

∑
|�|=n−1

c′�(�)c�(�)

′
�/�(�)


′
�/�(�)

�nc′�(�)c�(�)

= �(n− 1)+ 1

�(n− 1)
M�(�,�). �
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Note thatTheorem4.2implies thatL�(�,�)�0 for� �= �.Weconjecture thatL�(�, �)�0
for all � and��1. Using Theorem4.2, this is equivalent to the assertion thatM�(�, �)�

1
�(n−1)+1 for all �. However as this paper only uses non-negativity ofM�, this conjecture
is somewhat of a distraction and we do not pursue it here. The proof should not be too
difficult.
In fact sinceL1(�,�) is simply the chainL� of Section2with � the irreducible represen-

tation of shape(n− 1,1), non-negativity ofL1 is clear. To conclude this section we give a
similar group theoretic argument thatL2(�,�)�0 for all �,�.

Proposition 4.3. L2(�,�)�0 for all �,�.

Proof. LetH2n be the hyperoctahedral group of order 2nn!. Using the notation of Section
7.2 of Macdonald[M] for the Gelfand pair(S2n,H2n), given�,� partitions ofn, let��

� be

the value of the spherical function�� on a double coset of type�. It follows that

L2(�,�) = (2nn!)2
c�(2)c′�(2)

∑
|�|=n

1

2l(�)z�
��

��
�
��
(n−1,1)
� .

It is a general fact ([M, p.396]) that if�1, . . . ,�t are spherical functions for a Gelfand pair
(G,K) andakij are defined by

�i�j =
∑
k

akij�k

(where the multiplication�i�j denotes the pointwise product) thenakij are real and�0.
The proposition now follows from the orthogonality relation

∑
�

1

2l(�)z�
��

��
�
� = ��,�

c�(2)c
′
�(2)

(2nn!)2

on p. 406 of Macdonald[M] . �

5. Jack polynomials and the Metropolis algorithm

To begin we recall the Metropolis algorithm[MRRTT] for sampling from a positive
probability�(x)onafinite setX.Amarveloussurveyof theMetropolisalgorithm, containing
references and many examples is[DSa]. The Metropolis algorithm is especially useful
when one can understand the ratiosry,x = �(y)

�(x) , but cannot easily compute�(x) (for
instance in Ising-type models). LetS(x, y) (the base chain) be the transition matrix of a
symmetric irreducibleMarkov chain onX. Define theMetropolis chainTby lettingT (x, y),
the probability of moving fromx to y be defined by


S(x, y)ry,x if ry,x < 1
S(x, y) if y �= x andry,x�1
S(x, x)+ ∑

z �=x
rz,x<1

S(x, z)(1− rz,x) if y = x
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This chain has desirable properties. First, is easy to implement. Fromx, pick y with
probabilityS(x, y). If y �= x andry,x�1, the chain moves toy. If y �= x andry,x < 1,
flip a coin with success probabilityry,x . If the coin toss succeeds, the chain moves toy.
Otherwise the chain stays atx. Second, the chainT (x, y) is irreducible and aperiodic with
stationary distribution�. Thus taking sufficiently many steps according to the chainT one
obtains an arbitrarily good approximate sample of�.
A remarkable result of Hanlon[Ha] relates the Metropolis algorithm to Jack symmet-

ric functions. Fix��1. Hanlon defines a Markov chainT� on the symmetric groupSn as
follows. Let�(x) be the probability measure onSn which choosesxwith probability pro-
portional to�−c(x) wherec(x) is the number of cycles ofx (ironically for sampling purposes
one does not need to use the Metropolis algorithm as the constant of proportionality can be
exactly computed in this case). LetS(x, y) = 1

(n2)
if x−1y is a transposition, and 0 other-

wise. Then Hanlon definesT�(x, y) to be the resulting Metropolis chain. To be explicit, if
�x is the partition whose rows are the cycle lengths ofx, then the chanceT�(x, y) of moving
from x to y is



(�−1)n(�′
x)

�(n2)
if y = x

1
(n2)

if y = x(i, j) andc(y) = c(x)− 1

1
�(n2)

if y = x(i, j) andc(y) = c(x)+ 1

0 otherwise

Thus forn = 3 the transition matrix is (rows sum to 1)

id (12) (13) (23) (123) (132)

id 0 1
3

1
3

1
3 0 0

(12) 1
3�

�−1
3� 0 0 1

3
1
3

(13) 1
3� 0 �−1

3� 0 1
3

1
3

(23) 1
3� 0 0 �−1

3�
1
3

1
3

(123) 0 1
3�

1
3�

1
3� 1− 1

� 0

(132) 0 1
3�

1
3�

1
3� 0 1− 1

�

.

It is clear that the transition matrix forT� commutes with the action ofSn on itself by
conjugation. Thus lumping the chainT� to conjugacy classes gives a Markov chain on
conjugacy classes ofSn. We denote this lumped Metropolis chain byK�. The transition
probabilityK�(�, �) is defined as

∑
T�(x, y) wherex is any permutation in the class� and

y ranges over all permutations in the class�. For instance whenn = 3 the transition matrix
(rows sum to 1) is

(13) (2,1) (3)

(13) 0 1 0

(2,1) 1
3�

�−1
3�

2
3

(3) 0 1
� 1− 1

�
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Theorem5.1is due to Hanlon and is quite deep. In[DHa] it is applied to analyze the con-
vergence rate of theMetropolis chainT�. The case� = 1 of Theorem5.1is the usual Fourier
analysis on the symmetric group (see[DSh] for details and an application to analyzing the
convergence rate of random walk generated by random transpositions).

Theorem 5.1(Hanlon[Ha] ). Suppose that��1.Then thechance that the lumpedMetropo-
lis chainK� on partitions moves from(1n) to the partition� after r steps is equal to

�nn!
∑
|�|=n

��
�(�)

c�(�)c′�(�)

(
�n(�′)− n(�)

�
(
n
2

)
)r
.

The following consequence is worth recording.

Corollary 5.2. Suppose that��1.Then the chance that the lumped Metropolis chainK�
on partitions of size n moves from the partition(1n) to itself after r steps is the rth moment
of the statistic W�√

�(n2)
under Jack� measure.

Proof. By part 1 of Lemma3.2, ��
(1n)(�) = 1. The result is now clear from

Theorem5.1. �
Corollary5.2allows one to compute therthmoment ofW� in terms of return probabilities

of the Metropolis chainK�. This opens the door to the method of moments approach to
proving a central limit theorem forW�, as in[Ho] for the special case� = 1. However, we
prefer the Stein’s method approach, as it comes with an error term. But in passing we note
a consequence which indicates that the scaling ofW� has been chosen correctly.

Corollary 5.3. Suppose that��1.ThenE(W�) = 0,E(W2
� ) = 1,andE(W3

� ) = �−1√
�(n2)

.

Proof. The chance thatK� goes from(1n) to itself in one step is 0. HenceE(W�) = 0.
The chance thatK� goes from(1n) to itself in two steps is computed to be1�(n2)

. Hence

E(W2
� ) = 1. The chance thatK� goes from(1n) to itself in three steps is equal to the chance

of going from(1n) to (2,1n−2) in two steps, and then back to(1n). This chance is �−1
�2(n2)

2 .

HenceE(W3
� ) = �−1√

�(n2)
. �

6. Central limit theorem for Jack measure

In this section, we prove Theorem1.2. Thus��1 is fixed and we aim to show that

W�(�) = �n(�′)−n(�)√
�(n2)

satisfies a central limit theoremwhen� is chosen from Jack� measure.

Let (W�,W
∗
� ) be the exchangeable pair constructed in Section4 using the Markov chain

M�. Abusing notation due to possible negativity issues, it is also convenient to let(W�,W
′
�)

be the exchangeable pair constructed in Section4 usingL�. To apply Stein’s method it
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is necessary to work with the genuine exchangeable pair(W�,W
∗
� ), but Theorem4.2will

reduce computations involving it to the more tractable pair(W�,W
′
�).

Proposition6.1shows that the hypothesis needed to apply the Stein method bound (The-
orem1.3) is satisfied. It also tells us thatW� is an eigenvector for the Markov chainM�,
with eigenvalue 1− 2

n
. It is perhaps unexpected that this eigenvalue is independent of�.

Proposition 6.1. EW�(W ∗
� ) = (1− 2

n
)W�.

Proof. Theorem4.2 implies that

E�(W ∗
� −W�) = �(n− 1)

�(n− 1)+ 1
E�(W ′

� −W�).

Using the definition of the chainL� and part 3 of Lemma3.2, it follows that

E�(W ′
�)

= 1√
�
(
n
2

) ∑
|�|=n

L�(�,�)�
�
(2,1n−2)

(�)

= 1√
�
(
n
2

) ∑
|�|=n

��
(2,1n−2)

(�)

c�(�)c′�(�)�nn!
∑
|�|=n

(z�)
2�2l(�)��

�(�)�
�
�(�)�

(n−1,1)
� (�)

= 1√
�
(
n
2

) ∑
|�|=n

(z�)
2�2l(�)��

�(�)�
(n−1,1)
� (�)

∑
|�|=n

��
�(�)�

�
(2,1n−2)

(�)

c�(�)c′�(�)�nn!
.

Using part 2 of Lemma3.1, one sees that only the term� = (2,1n−2)makes a non-zero
contribution. Thus

E�(W ′
�)=

2

�n(n− 1)
�(n−1,1)
(2,1n−2)

(�)
��
(2,1n−2)

(�)√
�
(
n
2

)
= 2

�n(n− 1)
�(n−1,1)
(2,1n−2)

(�)W�

=
(
1− 2(�n− � + 1)

n(n− 1)�

)
W�.

The last two equations used Lemma3.2. Consequently

E�(W ′
� −W�) = −

(
2(�n− � + 1)

n(n− 1)�

)
W�.

ThusE�(W ∗
� − W�) = − 2

n
W�, and since this depends on� only throughW�, the result

follows. �
More generally, the following proposition (proved using the same method as for Propo-

sition6.1) holds.
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Proposition 6.2. Fix � a partition of n. Then��
�(�) is an eigenvector ofL� with eigenvalue

z�
�n−l(�)n!�

(n−1,1)
� (�) and an eigenvector ofM� with eigenvalue

1+ �(n− 1)

�(n− 1)+ 1

( z�

�n−l(�)n!�
(n−1,1)
� (�)− 1

)
.

As a consequence of Proposition6.1, we see that the meanE(W�) is equal to 0.

Corollary 6.3. E(W�) = 0.

Proof. Since the pair(W�,W
∗
� ) is exchangeable,E(W

∗
� −W�) = 0. Using Proposition

6.1, we see that

E(W ∗
� −W�) = E(EW�(W ∗

� −W�)) = −2

n
E(W�).

HenceE(W�) = 0. �
Next, we computeE�(W ′

�)
2. Recall that this notation means the expected value of(W ′

�)
2

given�. This will be useful for analyzing the error term in Theorem1.3.
Proposition 6.4.

E�((W ′
�)
2)= 1+ ��

(2,1n−2)
(�)

4(� − 1)(�
(
n−1
2

)− 1)

�2n2(n− 1)2

+��
(3,1n−3)

(�)
6(�(n− 1)(n− 3)− 3)

�2n2(n− 1)2

+��
(22,1n−4)

(�)
4 (�(n− 1)(n− 4)− 4)

�2n2(n− 1)2
.

Proof.

E�((W ′
�)
2)= �

(
n

2

) ∑
|�|=n

L�(�,�)

(
�n(�′)− n(�)

�
(
n
2

)
)2

= �
(
n

2

) ∑
|�|=n

1

c�(�)c′�(�)�nn!

×
∑
|�|=n

(z�)
2�2l(�)��

�(�)�
�
�(�)�

(n−1,1)
� (�)

(
�n(�′)− n(�)

�
(
n
2

)
)2

= �
(
n

2

) ∑
|�|=n

��
�(�)�

(n−1,1)
� (�)

(z�)
2�2l(�)

�nn!

×
∑
|�|=n

��
�(�)

c�(�)c′�(�)

(
�n(�′)− n(�)

�
(
n
2

)
)2
.
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Next observe that using Theorem5.1, one can compute the sum

�nn!
∑
|�|=n

��
�(�)

c�(�)c′�(�)

(
�n(�′)− n(�)

�
(
n
2

)
)2

for any partition�. Indeed, it is simply the probability that the lumped Metropolis chain
K� moves from(1n) to � in two steps. From the explicit description of the transition rule
of K�, it is straightforward to calculate that this probability is1�(n2)

when� = (1n), is �−1
�(n2)

when� = (2,1n−2), is 4(n−2)
n(n−1) when� = (3,1n−3), and is(n−2)(n−3)

n(n−1) when� = (22,1n−4).
Together with part 4 of Lemma3.2, this completes the proof of the proposition.�
One can use Proposition6.4to give a Stein’s method proof of the fact thatV ar(W�) = 1,

but in light of Corollary5.3there is no need to do so.
In order to prove Theorem1.2, we have to analyze the error terms in Theorem1.3. To

begin we study

E
(
−1+ n

4
E�(W ∗

� −W�)
2
)2
,

obtaining an exact formula. From Jensen’s inequality for conditional expectations, (see
Lemma 5 of[F4] for details) the fact thatW� is determined by� implies that

E[EW�(W ∗
� −W�)

2]2�E[E�(W ∗
� −W�)

2]2.
Hence Proposition6.5gives an upper bound on

E
(
−1+ n

4
EW�(W ∗

� −W�)
2
)2
.

Proposition 6.5.

E
(
−1+ n

4
E�(W ∗

� −W�)
2
)2 = 3�n+ 2�2 − 10� + 2

4�n(n− 1)
.

Proof. By Theorem4.2and Proposition6.1,

E�(W ∗
� −W�)

2 = �(n− 1)

�(n− 1)+ 1
E�(W ′

� −W�)
2

= �(n− 1)

�(n− 1)+ 1
(W2

� − 2W�E
�(W ′

�)+ E�(W ′
�)
2)

= �(n− 1)

�(n− 1)+ 1

(
(
4(�n− � + 1)

�n(n− 1)
− 1)W2

� + E�(W ′
�)
2
)
.

Combining this with Proposition6.4, it follows that−1 + n
4E

�(W ∗
� − W�)

2 is equal to
A+ B + C +D + E where

(1) A = −1+ n
4

�(n−1)
�(n−1)+1
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(2) B = (�−1)(�(n−1
2 )−1)

�n(n−1)(�n−�+1)�
�
(2,1n−2)

(�)

(3) C = 3(�(n−1)(n−3)−3)
2�n(n−1)(�n−�+1)�

�
(3,1n−3)

(�)

(4) D = �(n−1)(n−4)−4
�n(n−1)(�n−�+1)�

�
(22,1n−4)

(�)
(5)

E = n
4

�(n− 1)

�n− � + 1
(
4(�n− � + 1)

�n(n− 1)
− 1)�

(
n

2

)(
�n(�′)− n(�)

�
(
n
2

)
)2

= n
4

�(n− 1)

�n− � + 1
(
4(�n− � + 1)

�n(n− 1)
− 1)

1

�
(
n
2

) (��
(2,1n−2)

(�))2.

We need to compute the Jack� average of(A + B + C + D + E)2. SinceA2 is con-
stant, the average ofA2 is

(
−1+ n

4
�(n−1)

�(n−1)+1

)2
. The Jack� averages ofB2,C2,D2 can all

be computed using part 2 of Lemma3.1. To compute the Jack� average ofE2 one uses
Theorem5.1 to reduce to computing the probability that after three steps taken by the
chainK� started from the partition(1n), that one is at the partition(2,1n−2). From the
description of the entries of the transition matrix ofK�, one computes this probability to be
2(3�n2+�n+2�2−16�+2)

�2n2(n−1)2
. The Jack� averages of 2AB, 2AC, 2AD, 2BC, 2BD, 2CD are all 0

by part 2 of Lemma3.1. The Jack� average of 2AE is computed using the second expression
for E and part 2 of Lemma3.1. Finally, Theorem5.1reduces computation of the Jack� av-
erage of 2BE (respectively 2CE and 2DE) to the probability that after two steps taken by
the chainK� started at(1n), that one is at the partition(2,1n−2) (respectively(3,1n−3) and
(22,1n−4)). Thus all of the enumerations are elementary and adding up the terms yields the
proposition. �
The final ingredient needed to prove Theorem1.2 is an upper bound onE|W ∗ −W |3.

Typically this is the crudest term in applications of Stein’s method.
Lemma6.6bounds the tail probabilities for�1, �

′
1 under Jack� measure.

Lemma 6.6. Suppose that� > 0.

(1) The Jack� probability that�1�2e
√
n
� is at most �n2

42e
√
n
�
.

(2) The Jack� probability that�
′
1�2e

√
�n is at most n2

�42e
√
n� .

Proof. Given a partition�, let � be the partition ofn− �1 given by removing the first row
of �. Then by the definition of Jack� measure, it follows that the Jack� measure of� is at
most n!

(n−�1)!�1!(�(�1−1)+1)···(�+1) multiplied by the Jack� measure of�. It follows that the
Jack� probability that�1 = l is at most

n!
(n− l)!l!

1

�l−1(l − 1)! �(
n

�
)l

�l
l!2 .
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Using the inequalityy!�(y/e)y and assuming thatl�2e
√
n
� this is at most

(
ne2

�l2

)l
�l� �n

42e
√
n
�

.

The first assertion follows by summing overl with n� l�2e
√
n
� .

The second assertion follows from the first assertion by symmetry. Indeed, since the Jack�
measure of�′ is the Jack1

�
measure of�, the Jack� probability that�

′
1�2e

√
�n is equal to

the Jack1
�
probability that�1�2e

√
�n. Now apply part 1 of the lemma with� replaced by

1
� . �

Proposition 6.7. Suppose that��1.Then there is a constantC� depending on� such that

E|W ∗ −W |3�C�n
−3/2

for all n.

Proof. Recall that

W = 1√
�
(
n
2

) (�n(�′)− n(�)).

From the definition ofM�, it is clear that�
∗ is obtained from� by removing a box from the

diagram of� and reattaching it somewhere. It follows that

|W ∗ −W |� 1√
�
(
n
2

) (�(�1 + 1)+ �′
1 + 1).

Indeed, suppose that�∗ is obtained from� by moving a box from rowa and columnb to a
different rowc and columnd. Then

W ∗ −W = 1√
�
(
n
2

) (�(�c − �a + 1)+ (�′
b − �′

d − 1)).

Suppose that�1�2e
√
n
� and that�′

1�2e
√

�n. Then by the previous paragraph

|W ∗ −W |� C0√
n

for a universal constantC0 (not even depending on�). Note by the first paragraph, that even

if �1 > 2e
√
n
� or �

′
1 > 2e

√
�n occurs, then|W ∗ −W |�C1√� for a universal constantC1.

The result now follows by Lemma6.6, which shows that these events occur with very low
probability for� fixed. �
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Summarizing, now we prove Theorem1.2(the main result).

Proof of Theorem 1.2.We use Theorem1.3 with the exchangeable pair(W,W ∗) con-
structed in Section4. Proposition6.1shows this to be possible with� = 2

n
. The result now

follows from Proposition 6.5 (together with the paragraph before it) and
Proposition6.7. �
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