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Abstract

The one parameter family of Jaakeasures on partitions is an important discrete analog of Dyson’s
f ensembles of random matrix theory. Except for special values:ef%, 1, 2 which have group
theoretic interpretations, the Jaakeasure has been difficult if not intractable to analyze. This paper
proves a central limit theorem (with an error term) for Jatlkeasure which works for arbitrary values
of o. Foro = 1 we recover a known central limit theorem on the distribution of character ratios of
random representations of the symmetric group on transpositions. The €dsgives a new central
limit theorem for random spherical functions of a Gelfand pair (or equivalently for the spectrum of
a natural random walk on perfect matchings in the complete graph). The proof uses Stein’s method
and has interesting combinatorial ingredients: an intruiging construction of an exchangeable pair,
properties of Jack polynomials, and work of Hanlon relating Jack polynomials to the Metropolis
algorithm.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to give a new approach to studying a certain probability
measure on the set of all partitions of siggknown as Jackmeasure. Here > 0, and this
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measure chooses a partitidmof sizen with probability
o"'n!

[1(a(s) +1(s) + 1)(oa(s) +1(s) + o)’

SEA

where the product is over all boxes in the partition. Hewe denotes the number of boxes
in the same row o§ and to the right ok (the “arm” of s) and/(s) denotes the number of
boxes in the same column sfand belows (the “leg” of s). For example the partition of 5
below

LI
LI

would have Jackmeasure

600
2o+ 2B+ Do+ 2) 20+ (o + 1)

Before proceeding, it should be mentioned that there is significant interest in the study of
statistical properties of Jagkneasure when is fixed. The case = 1 corresponds to the
Plancherel measure of the symmetric group, which is now well understood due to numerous
results in the past few years. The survgd,De,02] and the seminal pap€e300,J,01]
indicate how the Plancherel measure of the symmetric group is a discrete analog of random
matrix theory, and describe its importance in representation theory and geometry. The case
o = 2 corresponds to the Gelfand péb,,, Ho,) whereS,, is a symmetric group anHo,
is the hyperoctahedral group of siZ&:2 Wheno = % Jack polynomials arise in the study
of the Gelfand paitGL(n, H), U (n, H)) whereH denotes the division ring of quaternions
andGL, U denote general linear and unitary group. Okounjog] emphasizes that the
study of Jack measure is an important open problem, about which relatively little is known
[BO1]. It is a discrete analog of Dysonjs ensembles, which are tractable for the three
valuesf = 1, 2, 4. In particular, the correlation functions of Jackeasure are not known,
so the traditional techniques for studying discrete analogs of random matrix theory are not
obviously applicable.

In the current paper we study Jaakieasure using a remarkable probability technique
known as Stein’s method. Although Stein’s method can be quite hard to work with, there are
some problems where it seems to be the only option availablggggdor such an example
involving the antivoter model). Good surveys of Stein’s method (two of them books) are
[ArGG,BHJ,Stn1,Stn2]

The current paper is a continuation[&fl], which applied Stein’s method to the study
of Plancherel measure of the symmetric gréypLet X?”z 1-2) denote the character of the
irreducible representation 8 parameterized byon the bonjugacy class of transpositions.

Let dim(4) denote the dimension of the irreducible representation parameterizéd by
Letting P, denote the probability of an event under Jagteasure (so that; corresponds
to Plancherel measure), the following central limit theorem was proved:
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Theorem 1.1(Fulman [F1]). For n>2 and all realx,

n—1 1?2,1”72)

1 x0 2
<x0| — — e 7 dx <4O.ln_1/4.
V2 dim() %) T Vn / . |

| P1

This result sharpened earlier work of Kerfi</1] (see[lO] for a detailed exposition of
Kerov’'s argument) and Hoff&lo], who both obtained a central limit theorem by the method
of moments, but with no error bound. We remark that statistical properties of the quantity

Al qn— . . L
g(zf;, i lj) (also called a character ratio) have important applications to random[I¥&H

and to the moduli space of curvgsQ].

The main result of the current paper is the following deformation of Thedrdnilro
state it one needs some notation about partitionsilbet a partition of some non-negative
integer|4| into integer partsl; > /2> - -- >0. The symboln; (1) will denote the number
of parts of/ of sizei. Let/(4) denote}) ;- ; m;(4), the number of parts of. Letn(4) be
the quantity) ;- 1 (i — 1)4;. One defines!’ to be the partition dual td in the sense that
i =m;(A) +mi+1(2) + - - -. Geometrically this corresponds to flipping the diagrani.of

Theorem 1.2. Suppose that > 1. Let Wy (1) = M’f”) For n>2 and all real xq,
Va(3)

o2 —1/4
e 2 dx|<Ayun ,

1
| Py(Wy < x0) — E

whereA, depends on but notonn

Note that the assumption that 1 is merely for convenience. Indeed, from the definition
of Jack measure it is clear that the Japkobability of £ is equal to the Jagk, probability
of /. From this one concludes that the Japkobability thatW,, = w is equal to the Jaak,
probability thatWy,, = —w, so that a central limit theorem holds ferif and only if it
holds for?.

We conjecture that the convergence rate upper bound in TheloBaran be improved to a

universal constant multiplied by the maximum%f andﬁ In fact the third moment o,

is

(see Corollanp.3), so Certaml;ﬁ — 0is necessary fdi, to be asymptotically

normal Of course typically one is interestedfixed, as: is a parameter which represents
the symmetries of the system. In this case the conjecture has recently been[@ejed
A result of FrobeniugFr] is that

i ;
Xo-2  n(A)—n()

dim(2) (3

Hence Theorer.2is a generalization of Theoreinlin the case: = 1. Itis also of group
theoretic interest in the case= 2. By p. 410 of Macdonal@M] one sees for the = 2

case tha (12/%;)"(’“ is the value of a spherical function corresponding to the Gelfand pair
2
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(S2,, H2,), whereHy, is the hyperoctahedral group of sizén2 Moreover whernr = 2,
Theoreml.2 gives a central limit theorem for the spectrum of a natural random walk on
perfect matchings of the complete graph. For a definition and analysis of the convergence
rate of this random walk on matchings, g&#ol], where it was studied in connection

with phylogenetic trees. Note that their Corollary 1 shows that the eigenvalues of that

random walk are indexed by partitionf n, and are-%224_ occurring with multiplicity

Vn(n=1)"
proportional to the Jagkmeasure oIi.

Next, we make some remarks about the proof of TheoteInThe argument is not a
straightforward modification of arguments usegR], and requires new ideas. The reason
for this is that for general the Jack measure does not have a known interpretation in terms
of representation theory of finite groups. Hence, the proff# b, which used concepts such
as induction and restriction of characters, can not be applied. There is another fundamental
difference between the case of Plancherel measure andrdaelsure. In the Plancherel case
the argument off-1] can be pushed through to conjugacy classes other than transpositions,
but the same is not clearly so for the Jadase. This is because the Jadase uses
connections between Jack polynomials and the Metropolis algorithm (due to Haldpn
and to be reviewed in Sectidd) and it is not clear that these connections work for classes
other than transpositions.

Theoreml.2will be a consequence of the following bound of Stein. Recall thiag,ifv*
are random variables, they are called exchangeable if fanalbs, P(W = w1, W* = w»)
is equal toP (W = wp, W* = wy). The notationt " (-) means the expected value givéh
Note from[Stn1]that there are minor variations on Theorgr8(and thus for Theorer.2)
for h(W) whereh is a bounded continuous function with bounded piecewise continuous
derivative. For simplicity we only state the result wheis the indicator function of an
interval.

Theorem 1.3(Stein [Stn1]. Let (W, W*) be an exchangeable pair of real random vari-
ables such thaW (W*) = (1 — 1) W with 0 < t < 1. Then for all realxg,

2
|P(W<xo0) — ~7 dx|

1 (%
— e
\/27'6 /foo

1 1
gz\/E[l — S EW (W — W)?R 4 2n)~ 1| ZE|W* — W3,
T T

In order to apply Theorerh.3to study a statistidV, one clearly needs an exchangeable
pair(W, W*) suchthatz W (W*) = (1—1) W.A Markov chairK (with chance of going from
xtoy denoted byK (x, y)) on a finite seX is called reversible with respect to a probability
distributionr if ©(x)K (x, y) = n(y)K (y, x). This condition implies that is a stationary
distribution forK. The idea is to use a reversible Markov chain on the set of partitions of
sizen whose stationary distribution is Jackneasure, to let* be obtained froni by one
step in the chain whergis sampled fromr, and then setW, W*) = (W (1), W(i")). A
main contribution of this paper is the construction and analysis of an exchangeable pair
which is useful for Stein’s method.

Section2 revisits and generalizes the construction of an exchangeable pair for Plancherel
measure of the symmetric group. We give a connection between harmonic functions on
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Bratelli diagrams and decomposition of tensor products and extend some regbgR$.in
Section3 reviews necessary facts about Jack polynomials. Motivated by the discussion in
Section2, Section4 constructs an exchangeable pdif,, W;) to be used in the proof of
Theoreml.2 The combinatorics in this section is quite interesting. Se&i@talls needed
work of Hanlon[Ha] relating Jack polynomials to the Metropolis algorithm. Section
combines the ingredients of the previous sections to prove Thebizm

To close the introduction, we mention some follow up work to this paper. H&3ér
sharpens the bound in Theordn? using martingale theory. The forthcoming pafeF]
extends the approach of this paper to other Gelfand pairs (where the limit need not be a
Gaussian law). It also further sharpens the bound of Thedr@m

2. Plancherel measure revisited

To begin, we revisit the construction of an exchangeable @&irw’) for the special
casex = 1, corresponding to Plancherel measure, which was studigdl]nin doing so
we clarify and generalize some of the results there affieidh This will be very helpful for
treating the case of general

As mentioned in the introduction, to construct an exchangeablé§paiw *) with respect
to a probability measure on a finite setX, it is enough to construct a Markov chain
on X which is reversible with respect te. Indeed, choosing from = and lettingx* be
obtained fromx by one step of the chain, it follows thaw, W*) = (W(x), W(x*))
is an exchangeable pair. Of course one wants to construct the Markov chain in such a
way that the exchangeable pair is useful for Stein’s method, and more precisely useful for
Theoreml.3.

2.1. Known constructions

To start we consider the situation for an arbitrary finite gr@upet 7rr(G) denote the
set of irreducible representations®f Then the Plancherel measure b (G) chooses a

representation with probability d’%l}‘)z , wheredim(2) denotes the dimension &f In [F2]

we constructed a Markov chabiy on/rr(G) whichis reversible with respectto Plancherel
measure. To define this Markov chain, one first fixes a subgtafiis. Fort € Irr(H) and

p € Irr(G), we letxk(t, p) denote the multiplicity op in the representation @ obtained
by inducingt from H (by Frobenius reciprocity, this is also equal to the multiplicity of
7 in the representation dfl obtaining by restricting). Then[F2] defined the transition

probability My (4, p) of moving from a representatiohto a representatiop by

|H] dim(p)
|G| dim(Z)

> k(. DK, p).

telrr(H)

It was proved there that these transition probabilities sum to one, and that the Markov chain
with transition mechanism g is indeed reversible with respect to the Plancherel measure
of G.
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For arbitrary groups, this construction can be recast in terms of harmonic functions on
Bratelli diagrams. We recommeri2] or [BOZ2] for an introduction to this subject. One
starts with a Bratteli diagram; that is an oriented graded gfaghl J,,~. o I'» such that

(1) I'ois asingle vertex.

(2) If the starting vertex of an edge is In, then its end vertex is if; ;1.
(3) Every vertex has at least one outgoing edge.

(4) All I'; are finite.

For two vertices., A € I', one writesl 7 A if there is an edge from to A. Part of the
underlying data is a multiplicity functior(Z, A). Letting the weight of a path if be the
product of the multiplicities of its edges, one defines the dimengion(A) of a vertexA
to be the sum of the weights over all minimal length paths ftbto A. Given a Bratteli
diagram with a multiplicity function, one calls a functigrharmonicif ¢(0) = 1, (1) >0
forall 2 € I', and

Py = > K DPA).
A2/ A

An equivalent concept is that of coherent probability distributions. Namely g\gt of
probability distributionsV,, on I, is calledcoherentf

dim(ADx(A, A
R N )
A2 /A

The formula showing the concepts to be equivalenp(s) = é‘f}’;—% Note that in this
setting there is a natural transition mechanism for moving up or down a step in the Bratelli
diagram. Namely the chance of moving franto A is &AM (Ddin) 544 the chance of

. M, —1(Ddim(A)
moving fromA to 1 is %%/1)

Let Ho = {id} € H1 € --- € H, = G be a tower of subgroups @. Consider
the Bratelli diagram whosgh level consists of irreducible representationsiyf, with
edge multiplicity given byk(z, ) as in the first paragraph of this subsection. It is proved
in [F2] that the Plancherel measures of the groups form a coherent family of probability
distributions (this was known for the symmetric grdifi]). Moreover it was shown that
if one transitions from leveh to leveln — 1, and then from levetl — 1 to leveln, that the
resulting Markov chain on irreducible representation#fpfis exactly the chaidfy, ,.

2.2. New construction

Next, we give a new Markov chain, on the set of irreducible representations®f
which is reversible with respect to Plancherel measure, and which generalizes the chain
My . First fix n, any representation (not necessarily irreduciblefsoffhose character is
real valued. Let< ¢,y > be the usual inner product on class functionsadiefined as
ﬁ deG ¢ ()Y (g). Then the probability that the chai, transitions fronv. to p is

dim(p)

PNl
dimapdimzy ~ £ AL T
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Note that this is nonnegative becausey”, 1" > is the multiplicity of p in the tensor
product ofy and .

Lemma 2.1. Lety be a representation of a finite group G whose character is real valued.
Then the transition probabilities df, sum to 1and the Markov chaiil.,, is reversible with
respect to the Plancherel measure of G

Proof. To see that the transition probabilities do as claimed sum to 1, observe that
Zp dim(p)y? is the character of the regular representatio®p$o takes valu¢G| at the

identity element and O elsewhere. The reversibility assertion uses the fact fhay" * >
is equal to< ¥1%*, y* >, which is true since is real valued. O]

We remark that the second part of Lemeh&needsy” to be real valued. An instructive
counterexample whep' is not real valued is obtained by lettirig be a cyclic group of
ordern and takingy to be the representation whose value on a fixed generaetor is

One can also define a chain with transition probability

dlm(p) - 0.0 0 -
dimipdimy ~“ 4k
whichwould not requirg real valued in Lemma.1but this is less useful for the applications
at hand, since then Propositi@3 would fail as any reversible Markov chain has real
eigenvalues.

Proposition2.2 shows thatM is in fact a special case @f;,.

Proposition 2.2. Let My be the Markov chain on irreducible representations of G cor-
responding to the choice of subgroup H. gt be the Markov chain on the irreducible
representations of G corresponding to the choice thistthe representation of G on cosets
of H (i.e. the induction of the trivial representation of H t9.GhenMy = L,.

Proof. Throughout the proof we l&Res, Ind denote restriction and induction of charac-
ters.

Enlh 0= |II(—?II| g:mx; 2 ndS11 >
- %2:2?2 < P4 IndS[1] >¢
B %g:?wij; < Resu(’7"). 1>u
B %2:::% < Resy (). Resy(1") >n
H| dim
= % dimiﬁi TE;H) Kk(t, DK(T, p)
=Mp (2, p).

Note that the third equality is Frobenius reciprocity.]
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Next, we note that the chaih, can be explicitly diagonalized, a fact which has impli-
cations for the decomposition of tensor products. As this directly generalizes results from
[F2] (which explains their importance) and can be proved by a similar technique, we omit
the proofs.

Proposition 2.3. Let G be a finite group ang any representation of G whose charac-
ter is real valued. Letr denote the Plancherel measure of G. Then the eigenvalues and
eigenfunctions of the Markov chain, are indexed by conjugacy classes C of G

(1) The eigenvalue parameterized by Cd)%‘(r%

1
IC127P(C)

(2) An orthonormal basis of eigenfunctioig. in L?(n) is defined by (p) = “dimG)

Proposition 2.4. Lety be a representation of a finite group G whose charagteis real
— 1"(g)

valued. Suppose that| > 1. Letf = max,«1 ‘am and letn denote the Plancherel

measure of G. Then for integee> 1,

2

pelrr(G)

dim(p) _
dimepr

PO > —n(p)’ <IGI"2p.

3. Properties of Jack polynomials

The purpose of this section is to collect properties of Jack polynomials which will be
crucial in the proof of Theoremt.2 A thorough introduction to Jack polynomials is in
Chapter 6 of MacdonalfM]. We conform to Macdonald’s notation and lef) denote
the Jack polynomial with parameterassociated to the partitioh Wheno = 1, the Jack
polynomials are Schur functions, and wher= 2 oro = 2, they are zonal polynomials
corresponding to spherical functions of a Gelfand pair.

As in the introduction, given a basin the diagram ofl, leta(s) andi(s) denote the arm
and leg ofs, respectively. One defines quantities

c)(o) = H(oca(s) +1(s)+ 1)

SEA

¢y (@) = [ Jaats) +1(s) + ).

SEA

Recall thatn; (1) denotes the number of parts bbf sizei and that (1) denotes the total
number of parts of.. We letz, = [];~;i"”m;(4)!, the size of the centralizer of a
permutation of cycle typé in the symmetric group.

Let 64(00 denote the coefficient of the power sum symmetric functipin J(“) Lemma
3.1 g|ves orthogonallty relations for these coefficients. We remark that when 1,

A A
0 (D is equal to> m where 7, is the character value of the representationSpf
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parameterized by on elements of cycle type. Thus wherx = 1, Lemma3.1specializes
to the orthogonality relations for characters of the symmetric group.

Lemma 3.1(Macdonald [M, p. 382).

@
> 2 P05 07 (o) = 8, 1¢p ()] ().
|ul=n
@)
0@l 1
et cp(a)ch (@) — g0l

The following special values cﬁi;(oc) will be needed.

Lemma 3.2. (1) (MacdonaldM, p.382)

Oy (@) = 1.
(2) (MacdonaldM, p.383)

0(”) (O() : ot l(l«l)
Z’u

3) (Macdonalo[M, p.384)
(2 10— 2)(06) =n(A)o—n(A).
(4) (StanleyfSt, p.107)

"1 Wnl (a(n — 1) + Dma(u) —n
2 on(n — 1)

Hznfl,l)(a) _

Next, we consider the ring of symmetric functions, with inner product defined by the
orthogonality condition< py, py >x= dy .z, *. By Lemma3.1, this is equivalent to the
condition that< Jé“), Ji“) >u= 5,7,,1c,1(oc)c;(oc). For a symmetric functiof its adjoint f -
is defined by the conditior fg, h >,=< g, f h >“forall g, hin the ring of symmetric
functions. It is straightforward to check thpiL = 05~ (for the casexr = 1 see p. 76 of
MacdonaldM]).

Let
1—[ (oa;(s) +1;(s) +1) (aac(s) + l(s) + o)

e ar,, (S L)+ D) (arls) + 1) + 1)

WA/T(O{) =

whereC),. is the union of columns of that intersect —  andR; . is the union of rows
of A that intersect. — 7.
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Lemma 3.3.

/ /
() Ci(a)'/ji/f(a) (@)
prdY = - amtt AL
’ T I—Xn: 1 cz(®) '
Proof. Take the inner product of both sides witf”. The left-hand side becomes
< pi‘]}%“), TP >, =< Ji(a), p1J® >,
Using the Pieri rule for Jack symmetric functiofi§l( p.340]), this becomes

%% (@) < I TP = (@) (@) ().
A

By the orthogonality relations for thEs, this is equal to the inner product of the right-hand
side with/”. O

4. Construction of an exchangeable pair

The purpose of this section is twofold. First, we use the theory of harmonic functions on
Bratelli diagrams to construct an exchangeable @&y, W) with respect to Jackmeasure
on the set of partitions of size(and as usual, we suppose without loss of generality that
o>1). We give a Markov chainf, which is a deformation of the chaii; from Sectior2
(whena = 1 it corresponds to the case tlat= S, andH = S,,_;). The second and more
subtle part of this section is to show that this construction is closely related to akchain
which is a deformation of the chaify, from Section2 (wheno = 1 it corresponds to the
case thatG = S, andy is the irreducible representation of the symmetric group of shape
(n— 1, 1)). In fact much of this paper can be pushed through for generalizatiovfs ahd
L,, corresponding to more vigorous walks on the set of partitions, but for Stein’s method it
is preferable to use local walks.

The use of bothM,, and L,, will be crucial to this paper. An interesting result in this
section will be that (except for holding probabilitie€), is a rescaling oM, so that one
can work with whichever is more convenient. For instance it will be clear from the definition
that the transition probabilities @fl, are always non-negative. But except for cases such
asa = 1, 2 where there is a group theoretic reason, it will not be clear that the transition
probabilities ofL,, are always non-negative. But to prove thi#t is an eigenvector of/,,
it will be convenient to use connections with.

In order to defineM,, we first recall results on the theory of harmonic functions on
Bratelli diagrams. The basic language was reviewed in Se&tidre levell’, consists
of all partitions of sizen. The multiplicity functionk,(z, 1) is defined aSVA/T(O‘) where

IVMT(OC) was defined in SectioB. A result of Stanley[St] is thatdim, (1) = C"'—g) Then
[K3] shows that the Jagkmeasure ’

o"n!
c ()¢ ()

forms a coherent set of probability distributions for this Bratelli diagram.

Ty (4) =
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Motivated by the discussionin Secti@rfor 4, p € I',, we define (for. > 1) the transition
probability M, (4, p) to be
75 (p) 3 dim, (1)2i5(t, p)kea (T, 4)
dim,(Hdim, (p) = | o(7)

¢, (@) W) (O, () (2)

ancp(a) e cp(a)

n—1

Note that this corresponds to transitioning down a level and then up a level in the Bratelli
diagram. The expression faf,(/, p) is a mess, but three useful observations can be made.
First, being a sum of non-negative terms, it is non-negative. Second, it is clear that the
transition mechanism¥,, proceeds by local moves, in the sense thafj{ 4, p) # 0, then
A andp have a common descendant. Thikd, is reversible with respect to Jackneasure.

As an example, when = 3 the reader can verify that thi,, transition probabilities
(rows add to 1) are

©) 2.1 (13)
1 2
(3) 2041 2%11 0
2.1 o+2 2(a2+7a+1) o(20+1)
g 3+ e+ 3@+ (2e+D)  3(e+D)(a+2)
3 2 o
) 0 =, w2

Next, we define (for.>1) a chainL,, to have transition “probability”

1 ;
L.() — § 2 2[(/1)64 o° 9(}171,1) o).

As an example, whem = 3 using the special values of this given in LemmeB.2(and also
the valueefg)(oc) which is determined from the other values by the orthogonality relations
Lemmag3.1), the reader can verify that thg, transition probabilities (rows add to 1) are

() 2.1 (13)
©) 0 1 0
2 1) o+2 202 +115—4 (20+1)2
’ 60 (0+1) 60(0+2) 6(0+1) (e+2)
3 2041 21
(€] 0 P Eic==)

Since the)’s can be negative it is not clear (see more discussion below) that these transition
“probabilities” are non-negative. Howevey, is clearly “reversible” with respect to Jack
measure. Propositioh 1 shows that the transition probabilities sum to one.

Proposition 4.1.

Z L,(J, p) = 1.

[pl=n
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Proof. By definition}_ ) _, L.(4, p) is equal to

1 / n—
ey, o 2 @ MO0 .
lpl=n |ul=n

Using the fact from part 1 of Lemrr&Zthat@fl,,) = 1, this can be rewritten as

050y,

cp(@)e), (aorn! ’

Y @22 W0 @0 P @ Y

[ul=n lpl=n
The result now follows from part 2 of Lemn8&land part 1 of Lemm&.2 O
Theoremd.2 establishes a fundamental relationship between the chajrend L.

Theorem 4.2.If 1 # p, then

an—1)+1

ch()w p) = a(n — 1)

My(2, p).

Proof. By part 4 of Lemmé.2, L,(/, p) is equal to

1
oan(n — 1)cp(ot)cl’0(oc) |

D Oh@ 02 Wz = D + Dma () = n).
w=n

Sincel # p, part 1 of LemmaB.1shows that this is equal to

(¢(n —1) + 1)
oan(n — 1)cp(ot)c’p(oc)

> 04 @00l P zma ().
|ul=n

Bearing in mind the results from Secti@nthis can be rewritten as

0
S DUACT I ACT IS
PL=n |l=n

(a(n — 1) + 1) 3

an(n — Dep(a)e), (o) lil=n

(OC(I’Z — 1) + 1) 1 (o) 1 7()
= J, 7 1
azn(n_l)Cp(OC)C;)(O() <P 2 D1 14 >
((n —1) +1)

o2n(n — 1) Cp (oz)c’p ()

3 YOG 5 U0

|t|=n—-1 C;:(Ot) ‘ [t|=n—1 C;:(O() t x
_ G DA g GO ()
T an—1) it anc’,(o)cp (o)
M+ . O

aln — 1)
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Note that Theorem.2impliesthatl, (4, p) >0for A # p.We conjecture that, (4, 1) >0
for all 2 ando>1. Using Theorend.2, this is equivalent to the assertion thidf, (4, 1) >
m for all 1. However as this paper only uses non-negativity&f this conjecture
is somewhat of a distraction and we do not pursue it here. The proof should not be too
difficult.

In fact sinceL1(4, p) is simply the chairL,, of Section2 with 5 the irreducible represen-
tation of shapén — 1, 1), non-negativity of_1 is clear. To conclude this section we give a

similar group theoretic argument thas (4, p) >0 for all 4, p.
Proposition 4.3. La(4, p) >0 for all 4, p.

Proof. Let Hy, be the hyperoctahedral group of ordér2 Using the notation of Section
7.2 of MacdonaldM] for the Gelfand pairS2,, H2,), given/, i partitions ofn, let wi be

the value of the spherical functieo’ on a double coset of type It follows that

2y 2 1
Lo(4, p) = (2"n)) Z wlwﬁw(n—l,l).
cp(D)cp(2) | 2z, F I

ul=n

Itis a general fact{M, p.396]) that if w1, ..., o, are spherical functions for a Gelfand pair
(G, K) andaf‘j are defined by

. — k
wiw; = Zaija)k
k

(where the multiplicationv; «w; denotes the pointwise product) theff) are real and>0.
The proposition now follows from the orthogonality relation '

1 AoV __ 5 C}(Z)C;(Z)
Zﬂzzmz,lw“w“ ~ T 22

on p. 406 of MacdonalgM]. [

5. Jack polynomials and the Metropolis algorithm

To begin we recall the Metropolis algorithfiMRRTT] for sampling from a positive
probabilityz(x) on afinite seK. Amarvelous survey of the Metropolis algorithm, containing
references and many examplegisSa] The Metropolis algorithm is especially useful
when one can understand the ratigs, = % but cannot easily compute(x) (for
instance in Ising-type models). L8{(x, y) (the E)ase chain) be the transition matrix of a
symmetric irreducible Markov chain ot Define the Metropolis chaifiby lettingT (x, y),
the probability of moving fronx to y be defined by

S(-x7 y)r.y,x |f ry.x <1
S(x, y) if y #xandry,>1
S, )+ Y SG)A—r.y) ify=x

IFX

rzx<1l
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This chain has desirable properties. First, is easy to implement. Krqmck y with
probability S(x, y). If y # x andr, , >1, the chain moves tp. If y # x andr,, < 1,
flip a coin with success probability;, .. If the coin toss succeeds, the chain moveg.to
Otherwise the chain staysxatSecond, the chaifi (x, y) is irreducible and aperiodic with
stationary distributiom. Thus taking sufficiently many steps according to the chiaame
obtains an arbitrarily good approximate samplerof

A remarkable result of HanlofHa] relates the Metropolis algorithm to Jack symmet-
ric functions. Fixa > 1. Hanlon defines a Markov chaify on the symmetric grouf, as
follows. Letn(x) be the probability measure dfjy which chooses with probability pro-
portional tox—®) wherec(x) is the number of cycles of(ironically for sampling purposes
one does not need to use the Metropolis algorithm as the constant of proportionality can be
exactly computed in this case). L&tx, y) = % if x~1y is a transposition, and 0 other-
wise. Then Hanlon defineg, (x, y) to be the rezsulting Metropolis chain. To be explicit, if

Ay is the partition whose rows are the cycle lengths, tfien the chancg, (x, y) of moving
fromxtoyis

(a=Dn(2y)
s if y =
() y==

é if y=x(,j)andc(y) =c(x) -1
le) if y=x(@,j)andc(y) = c(x) +1
0 otherwise

Thus forn = 3 the transition matrix is (rows sum to 1)

id (12 (13 (23 (123 (132
id o % %+ 1 0 0
12 4+ % o0 0 i :
13 3 0 F 0 3 3
23 £ O o %t 1 3
123 0 £ 4+ 3 1-% 0
132 o 4+ £ £ 0o 1-1

It is clear that the transition matrix fdf, commutes with the action f,, on itself by
conjugation. Thus lumping the chaify to conjugacy classes gives a Markov chain on
conjugacy classes df,. We denote this lumped Metropolis chain &y. The transition
probability K, (u, v) is defined a$ _ T, (x, y) wherex is any permutation in the clagsand
y ranges over all permutations in the clas§or instance when = 3 the transition matrix
(rows sumto 1) is

3 @21y ©
1 o 1
2y 5 %
3 0

SYI™ ‘-"’|
Rl
wnN o
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Theorenb.lis due to Hanlon and is quite deep[DHa] it is applied to analyze the con-
vergence rate of the Metropolis chdip The case = 1 of Theoren®.1is the usual Fourier
analysis on the symmetric group (&sh] for details and an application to analyzing the
convergence rate of random walk generated by random transpositions).

Theorem 5.1(Hanlon[Ha]). Supposethat>1.Thenthe chance thatthe lumped Metropo-
lis chain K, on partitions moves frortil") to the partitionu after r steps is equal to

0y (2) (%n(p/) —~ n(p)>r

R CTACIE T

The following consequence is worth recording.

o'n!

lpl

Corollary 5.2. Suppose that > 1. Then the chance that the lumped Metropolis chi&in
on partitions of size n moves from the partitict) to itself after r steps is the rth moment
of the statistic—Y~— under Jack measure

Vo(z)

Proof. By part 1 of Lemma3.2 Hfl,,)(oc) = 1. The result is now clear from
Theorem5.1L [

Corollary5.2allows one to compute thiéh moment ofW,, in terms of return probabilities
of the Metropolis chairK,. This opens the door to the method of moments approach to
proving a central limit theorem fdi,, as in[Ho] for the special case = 1. However, we
prefer the Stein’s method approach, as it comes with an error term. But in passing we note
a consequence which indicates that the scalingphas been chosen correctly.

Corollary 5.3. Suppose that>1.ThenE(W,) = 0, E(W?) = 1,and E(W)) = j%
2

Proof. The chance thak, goes from(1") to itself in one step is 0. Hend&(W,,) = 0.

The chance thak, goes from(1") to itself in two steps is computed to bei. Hence

2)
E(Wf) = 1. The chance tha, goes from(1") to itself in three steps is equal to the chance

of going from (1) to (2, 1"~2) in two steps, and then back t&"). This chance is%=%;.

2(3)°
HenceE(W2) = %=L, O
o(3)

6. Central limit theorem for Jack measure

In this section, we prove Theorein2 Thusa>1 is fixed and we aim to show that
Wy () = ME”)W satisfies a central limit theorem wheis chosen from Jagkmeasure.
%2
Let (W,, W) be the exchangeable pair constructed in Seetiosing the Markov chain

M,. Abusing notation due to possible negativity issues, it is also convenienti&jeW,)
be the exchangeable pair constructed in Secfiarsing L,,. To apply Stein’s method it
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is necessary to work with the genuine exchangeable(pajr W), but Theoren#.2 will
reduce computations involving it to the more tractable pad, W,).

Proposition6.1shows that the hypothesis needed to apply the Stein method bound (The-
orem1.3) is satisfied. It also tells us thak, is an eigenvector for the Markov cha,,
with eigenvalue 1- % It is perhaps unexpected that this eigenvalue is independent of

Proposition 6.1. EW«(W}) = (1— ,%)Wx-

Proof. Theorem4.2implies that

an — 1)

2 *
E' W —Wy) = ——
(W %) an —1) +1

EX(W, — W,).

Using the definition of the chaih, and part 3 of Lemma3.2, it follows that

EX(W))
1 )
= Z LOC(/% p)gfz’ln—Z) (O()

\/@ lpl=n

0
1 9(2,1’“2)(06) 221w pi ) (n—1,1)
a a(n) pIZ Cp(OC)C/p(OC)OC"n! ;; (2) 0“(06)9”((%)9” @
2) Ipl=n =n
1 052007, 1,2, (@)

) ,; “u A l;ﬂ cp(@)ch (@)arn!

Using part 2 of Lemma&.1, one sees that only the temm= (2, 1"~2) makes a non-zero
contribution. Thus

2 0%y 112, (@)

A N (n—1,1) (2,1"—<)

E (WO() - Oa’l(n o 1) 9(2’11172) (OC) ”
o(3)

2 gn-11)
an(n — 1) 2172

_ (1_ w> W,.
nn— 1o

The last two equations used Lemi®&. Consequently

2(om — o+ 1)
nn — 1o ) Wo.

() Wy,

EX(W), — W,) = — <

ThusEi(W;‘ — Wy = —%Wa, and since this depends dronly throughW,, the result
follows. [

More generally, the following proposition (proved using the same method as for Propo-
sition 6.1) holds.
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Proposition 6.2. Fix v a partition of n. Therﬂi(oc) is an eigenvector aof , with eigenvalue
0{"~1Y (4) and an eigenvector af,, with eigenvalue

O

oa(n —1) 2 p
an—1)+1 (oc" oty @ )

As a consequence of Propositiéri, we see that the meai(W,) is equal to 0.
Corollary 6.3. E(W,) =0

Proof. Since the paikW,, W) is exchangeable; (W; — W,) = 0. Using Proposition
6.1, we see that

* W, * 2
EW, = Wy) = E(E™*(W, = Wy)) = ——E(Wy).
n

HenceE(W,) =0. [

Next, we computeE’l(W;)z. Recall that this notation means the expected ValL(WQBZ
given /. This will be useful for analyzing the error term in Theorérs.
Proposition 6.4.

Ao —D(@(";Y) — 1

EX (W) =1+ 9(2 2y (@)

a?n?(n — 1)2
6(a(n — 1(n — 3) — 3)
(3 1n— 3)( ) 062}12(11 — 1)2
d(au(n—1(n—4) -4
+9(22 1= 4)(06) 2n2(n — 1)2
Proof.
(p) —n(p)
E*(W))?) = oc( ) Ly(p (“"_)
|P|X_:n o(3)
n 1
~(3) Z s
"o 2
X Z (ZH)ZO(ZI(”)Hi}(tx)@ﬁ(ot)@gl*l‘l)(oc) <W)
[ul=n 2
252 ()
=) 2 oo T —

|ul=n

05,) (ocn(p’) - n(p>)2

@\ o)

lpl=
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Next observe that using Theoresri, one can compute the sum

o 0 (2) (an(p’)—n(p)>2

L @) ()

for any partitionu. Indeed, it is simply the probability that the lumped Metropolis chain
K, moves from(1") to u in two steps. From the explicit description of the transition rule
of K, itis straightforward to calculate that this probablllty—%— whenu = (1), is & ( )

whenu = (2,1"72),is 4%" 2; wheny = (3, 1"%), and is?- 2= 2)(" 3 whenu = (22, 1"4).
Together with part 4 of Lemm3.2, this completes the proof o? the propositior]

One can use Propositi@4to give a Stein’s method proof of the fact théar (W,) = 1,
but in light of Corollary5.3there is no need to do so.

In order to prove Theorerh.2, we have to analyze the error terms in Theore® To
begin we study

lpl=

E <—1+ %E}‘(W; - WO()Z)Z,

obtaining an exact formula. From Jensen’s inequality for conditional expectations, (see
Lemma 5 of[F4] for details) the fact thaW, is determined byt implies that

E[EY* (W} — W)? P < E[EX (W) — Wy)?)2.

Hence PropositioB.5gives an upper bound on
2
E (—1+ %EW“(W; - Wx)z) .
Proposition 6.5.

3un + 202 — 100 + 2
don(n — 1)

2
E (—1+ %E’(W; . W1)2> -

Proof. By Theorem4.2and Propositior.1,

2 * 2 _ OC(I’l—l) J) ;o 5

E*(W, W“)_—a(n—1)+1E (W, — W)
_oc(n——l) 2 _ Aovis! Dovxr N2
_on—1) don—oa+1) P
_a(n—1)+1( mn—1n Wtk (Wa)>-

Combining this with Propositio®.4, it follows that —1 + %E’A“(W(;k — W,)? is equal to
A+ B+ C + D+ E where

_ (n—1
1 A=-1+ %ac(aizﬁl)ll
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_ (oc—l)(ot("*l)—l) A
@) B = e V.12 (@)

_ 3m—D(n-3-3) pi
) C= 20m(Z—1)(’o1m—oc+1) 0(3,1»1—3)(“)

_am=D(n—-dH—-4 pHl
(4 D = 3D on—atD 9(22,1'1—4)(“)

®)
E=5 — Do T
don—oa+1 on(n—1) 2 o(3)
_noan=1) Am—-a+D 1 ,

We need to compute the Jgcliverage of A + B + C + D + E)2. SinceA? is con-

n_on—1)
4 a(n—1)+1

be computed using part 2 of Lemr8al To compute the Jagkaverage of£2 one uses
Theoremb5.1 to reduce to computing the probability that after three steps taken by the
chain K, started from the partitioil”), that one is at the partitiof2, 1"~2). From the
description of the entries of the transition matrixkf, one computes this probability to be

2<3“"2;r§‘:2r5f21)’216°‘+2) . The Jack averages of 2B, 2AC, 2AD, 2BC, 2BD, 2C D are all 0
by part 2 of Lemma.1 The Jack average of 2 E is computed using the second expression
for E and part 2 of Lemma&.1 Finally, Theorenb.1reduces computation of the Jackv-
erage of BE (respectively Z E and 2D E) to the probability that after two steps taken by
the chaink, started at1"), that one is at the partitiof2, 1" —2) (respectively3, 1"~3) and
(22, 1"~%). Thus all of the enumerations are elementary and adding up the terms yields the
proposition. [

The final ingredient needed to prove Theorgris an upper bound ol |W* — W /3.
Typically this is the crudest term in applications of Stein’s method.

Lemma6.6 bounds the tail probabilities for;, A; under Jack measure.

2
stant, the average of? is (—1 + ) . The Jack averages oB3?,C2,D? can all

Lemma 6.6. Suppose that > 0.

(1) The Jack probability thati; > Zeﬁ is at most—2*

42(/@ ’
(2) The Jack probability that] > 2e./on is at mostmz”em.

Proof. Given a partition, lett be the partition ofi — A1 given by removing the first row
of A. Then by the definition of Jagkmeasure, it follows that the Jackneasure of. is at

1 . .
most (n—m!),1!(a<),’;'—1>+1)~~(a+1) multiplied by the Jack measure oft. It follows that the

Jack, probability thati; = [ is at most

n! 1 n ol
(n =D =21 =1 "o 112
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Using the inequality! > (y/e)” and assuming thdt> Zeﬁ this is at most
n€2 ! wl < on
al? OV

The first assertion follows by summing oJewith n>1> Ze\/g.

The second assertion follows from the first assertion by symmetry. Indeed, since the Jack
measure of.’ is the Jack measure of,, the Jack probability that’; > 2e./an is equal to

the JacI% probability thaxt)d; 2e./on. Now apply part 1 of the lemma withreplaced by

i o

Proposition 6.7. Suppose that> 1. Then there is a constant, depending onx such that
EIW* — W3 Cyn 2

for all n.

Proof. Recall that

1

W = (on(Z) —n(h).

(5)

From the definition of\1,, it is clear thatl* is obtained froml by removing a box from the
diagram of/ and reattaching it somewhere. It follows that

1 . .
|W* — ng—n(a(/nl—}- 1)+ 43+ D).

V)

Indeed, suppose that is obtained fron¥. by moving a box from rova and columrbto a
different rowc and columrd. Then

W*—W =

(e = Ja + 1) + gy = 7 = D).
%(2)

Suppose that; < Ze\/g and thatl; <2e./an. Then by the previous paragraph

Co
W*—W|<—
I I N
for a universal constairtp (not even depending ar). Note by the first paragraph, that even
if 21 > Ze\/g orl1 > 2e./on occurs, thenW* — W| < C14/o for a universal constar; .

The result now follows by Lemm@.6, which shows that these events occur with very low
probability foro fixed. O
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Summarizing, now we prove Theorelr? (the main result).

Proof of Theorem 1.2.We use Theoreni.3 with the exchangeable pa{W, W*) con-
structed in Sectiod. Proposition6.1 shows this to be possible with= % The result now
follows from Proposition 6.5 (together with the paragraph before it) and
Proposition6.7. O
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