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Stanley (1986) showed how a finite partially ordered set gives rise
to two polytopes, called the order polytope and chain polytope,
which have the same Ehrhart polynomial despite being quite dif-
ferent combinatorially. We generalize his result to a wider family
of polytopes constructed from a poset P with integers assigned to
some of its elements.
Through this construction, we explain combinatorially the rela-
tionship between the Gelfand–Tsetlin polytopes (1950) and the
Feigin–Fourier–Littelmann–Vinberg polytopes (2010, 2005), which
arise in the representation theory of the special linear Lie algebra.
We then use the generalized Gelfand–Tsetlin polytopes of Beren-
stein and Zelevinsky (1989) to propose conjectural analogues of the
Feigin–Fourier–Littelmann–Vinberg polytopes corresponding to the
symplectic and odd orthogonal Lie algebras.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Consider the simple complex Lie algebra sln . The irreducible representations of sln are parametrized
up to isomorphism by dominant integral weights, i.e., weakly decreasing n-tuples of integers deter-
mined up to adding multiples of (1, . . . ,1). Given a dominant integral weight λ, let V (λ) denote the
corresponding irreducible sln-module. The module V (λ) has a distinguished basis, the Gelfand–Tsetlin
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[6] basis, parametrized by the points with integral coordinates (“integral points” or “lattice points” for
short) in the Gelfand–Tsetlin polytope GT(λ) ⊂ Rn(n−1)/2.

Recently, Feigin, Fourier, and Littelmann [3] constructed a different basis of V (λ), conjecturally
announced by Vinberg [9]. This basis is related to the Poincaré–Birkhoff–Witt basis of the universal
enveloping algebra U (n−), where n− is the span of the negative root spaces. Again, the basis elements
are parametrized by the integral points in a certain polytope FFLV(λ) ⊂ Rn(n−1)/2.

Feigin, Fourier, and Littelmann used two subtle algebraic arguments to prove that their basis in-
deed spans V (λ) and is linearly independent. When they had only produced the first half of the
proof, they asked the second author of this paper the following question, which would imply the
second half:

Question 1.1. (See [5].) Is there a combinatorial explanation for the fact that GT(λ) and FFLV(λ) contain
the same number of lattice points?

This question provided the motivation for this paper. We answer it by generalizing a result of
Stanley [7] on poset polytopes, as we now describe. Let P be a finite poset. Let A be a subset of P
which contains all minimal and maximal elements of P . Let λ = (λa)a∈A be a vector in RA such that
λa � λb whenever a � b. We think of λ as a marking of the elements of A with real numbers. We call
such a triple (P , A, λ) a marked poset.

Definition 1.2. The marked order polytope of (P , A, λ) is

O(P , A)λ = {
x ∈ RP−A

∣∣ xp � xq for p < q, λa � xp for a < p, xp � λa for p < a
}
,

where p and q represent elements of P − A, and a represents an element of A. The marked chain
polytope of (P , A, λ) is

C(P , A)λ = {
x ∈ RP−A

�0

∣∣ xp1 + · · · + xpk � λb − λa for a < p1 < · · · < pk < b
}
,

where a and b represent elements of A, and p1, . . . , pk represent elements of P − A.

For any polytope with integer coordinates Q there exists a polynomial E Q (t), the Ehrhart polyno-
mial of Q , with the following property: for every positive integer n, the n-th dilate nQ of Q contains
exactly E Q (n) lattice points (see [8]). With this notion, our answer to Question 1.1 is given by the
following two results.

Theorem 1.3. For any marked poset (P , A, λ) with λ ∈ ZA , the marked order polytope O(P , A)λ and the
marked chain polytope C(P , A)λ have the same Ehrhart polynomial.

Theorem 1.4. For every partition λ there exists a marked poset (P , A, λ) such that GT(λ) = O(P , A)λ and
FFLV(λ) = C(P , A)λ .

We also consider the extension of these constructions to other Lie algebras. Berenstein and Zelevin-
sky proposed a construction of generalized Gelfand–Tsetlin polytopes [1] for other semisimple Lie
algebras. For the symplectic and odd orthogonal Lie algebras, their polytopes are also in the family of
marked order polytopes. Therefore Theorem 1.3 yields candidates for the Feigin–Fourier–Littelmann–
Vinberg polytopes in types Bn and Cn .

The paper is organized as follows. In Section 2 we discuss the relevant aspects of the representa-
tion theory of the simple complex Lie algebras sln . Section 3 treats marked order and chain polytopes,
and gives a bijection between their lattice points. Section 4 discusses the application of the combina-
torial results of Section 3 to the representation theoretic polytopes that interest us.

We note that the combinatorial Section 3 is self-contained, and may be of independent interest
beyond the representation theoretic application. A possible way to read this article is to skip Section 2
and continue there directly.
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Fig. 1. Board defining Gelfand–Tsetlin patterns.

2. Preliminaries

Consider the simple complex Lie algebra sln . Let h be the Cartan subalgebra consisting of its di-
agonal matrices. For i = 1, . . . ,n, let εi ∈ h∗ denote the projection onto the i-th diagonal component.
As ε1 + · · · + εn = 0, the coefficient vector of an integral weight is only determined as an element
of Zn/〈(1, . . . ,1)〉. We identify an integral weight with the corresponding equivalence class of coeffi-
cient vectors. If λ is a weight and we use the symbol λ in a context where it has to be interpreted
as an n-tuple λ = (λ1, . . . , λn), we use the convention that a representative has been chosen im-
plicitly. Fix simple roots αi = εi − εi+1 for i = 1, . . . ,n − 1. The corresponding fundamental weights
are ωi = ε1 + · · · + εi . Hence dominant integral weights correspond to weakly decreasing n-tuples of
integers, or partitions.

Given a dominant integral weight λ, the associated Gelfand–Tsetlin [6] polytope GT(λ) is defined
as follows: Consider the board given in Fig. 1.

Each one of the n(n − 1)/2 empty boxes stands for a real variable. The polytope GT(λ) ⊂ Rn(n−1)/2

is given by the fillings of the board with real numbers with the following property: each number is
less than or equal to its upper left neighbor and greater than or equal to its upper right neighbor.
Note that the ambiguity in choosing an n-tuple for the weight λ amounts to an integral translation
of GT(λ), and hence does not affect its number of integral points. In fact, the integral points in GT(λ)

parametrize the Gelfand–Tsetlin basis of V (λ), hence |GT(λ) ∩ Zn(n−1)/2| = dim V (λ).
Feigin, Fourier, and Littelmann [3] associate a different polytope with a dominant integral weight

λ as follows: The positive roots of sln are Φ+ = {αi, j | 1 � i < j � n}, where αi, j = εi − ε j . In this
notation the simple root αi defined above can be written as αi = αi,i+1. A Dyck path is by definition
a sequence (β(0), . . . , β(k)) in Φ+ such that β(0) and β(k) are simple, and if β(l) = αi, j , then either
β(l + 1) = αi+1, j or β(l + 1) = αi, j+1. Denote the coordinates on RΦ+ by sβ for β ∈ Φ+ . Let λ =
m1ω1 + · · · + mn−1ωn−1. Then the polytope FFLV(λ) ⊂ RΦ+ is given by the inequalities

sβ � 0

for all β ∈ Φ+ and

sβ(0) + · · · + sβ(k) � mi + · · · + m j

for all Dyck paths (β(0), . . . , β(k)) such that β(0) = αi and β(k) = α j .
For all α ∈ Φ+ , let fα be a nonzero element of the root space g−α . Let vλ be a highest weight

vector of V (λ). Fix any total order on Φ+ . As s ranges over the lattice points of FFLV(λ), the elements
(
∏

α∈Φ+ f sα
α )vλ form a basis of V (λ) [3, Theorem 3.11]. Hence | FFLV(λ) ∩ ZΦ+| = dim V (λ).

The previous discussion shows that | FFLV(λ) ∩ ZΦ+| = |GT(λ) ∩ Zn(n−1)/2|. In the sequel, we give a
combinatorial explanation and an extension of this fact.

3. Marked poset polytopes

To any finite poset P , Stanley [7] associated two polytopes in RP : the order polytope and the chain
polytope. He showed that there is a continuous, piecewise linear bijection between them, which re-
stricts to a bijection between their sets of integral points. In this section we construct a generalization
of the order and chain polytopes, and prove the analogous result. We begin with a review of Stanley’s
work.
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Fig. 2. A marked Hasse diagram defining a partial order on the set P = {p,q, r} ∪ A with |A| = 4 and λ = (3,2,1,0) ∈ RA .

3.1. Stanley’s order and chain polytopes

Let P be a finite poset. For p,q ∈ P we say that p covers q, and write p 	 q, when p > q and
there is no r ∈ P with p > r > q. We identify P with its Hasse diagram: the graph with vertex set P ,
having an edge going down from p to q whenever p covers q.

The order polytope and chain polytope of P are,

O(P ) = {
x ∈ [0,1]P

∣∣ xp � xq for all p < q
}
, and

C(P ) = {
x ∈ [0,1]P

∣∣ xp1 + · · · + xpk � 1 for all chains p1 < · · · < pk
}

respectively.
Stanley proved that, even though O(P ) and C(P ) can have quite different combinatorial structures,

they have the same Ehrhart polynomial. He did this as follows. Define the transfer map ϕ : RP → RP

by

ϕ(x)p =
{

xp if p is minimal,

min{xp − xq | p 	 q} otherwise
(1)

for x ∈ RP , p ∈ P . Then:

Theorem 3.1. (See [7, Theorem 3.2].) The transfer map ϕ restricts to a continuous, piecewise linear bijection
from O(P ) onto C(P ). For any m ∈ N, ϕ restricts to a bijection from O(P ) ∩ 1

m ZP onto C(P ) ∩ 1
m ZP .

3.2. Marked poset polytopes

We now recall the definition of marked order and chain polytopes, and prove that they satisfy a
generalization of Theorem 3.1.

An element of a poset is called extremal if it is maximal or minimal.

Definition 3.2. A marked poset (P , A, λ) consists of a finite poset P , a subset A ⊆ P containing all
its extremal elements, and a vector λ ∈ RA such that λa � λb whenever a � b. We identify it with the
marked Hasse diagram, where we label the elements a ∈ A with λa in the Hasse diagram of P .

Definition 3.3. The marked order polytope of (P , A, λ) is

O(P , A)λ = {
x ∈ RP−A

∣∣ xp � xq for p < q, λa � xp for a < p, xp � λa for p < a
}
,

where p and q represent elements of P − A, and a represents an element of A. The marked chain
polytope of (P , A, λ) is

C(P , A)λ = {
x ∈ RP−A

�0

∣∣ xp1 + · · · + xpk � λb − λa for a < p1 < · · · < pk < b
}
,

where a and b represent elements of A, and p1, . . . , pk represent elements of P − A.
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Fig. 3. The marked order polytope of the marked poset in Fig. 2 is given by the inequalities 0 � xp � xq � xr � 3 and 1 �
xq � 2. The marked chain polytope is given by the inequalities xp , xq, xr � 0, xp + xq + xr � 3, xp + xq � 2, xq + xr � 2, and
xq � 1. Note that they are not combinatorially isomorphic.

Stanley’s construction is a special case of ours as follows: Given any finite poset P , add a new
smallest and largest element to obtain P̃ = P ∪ {0̂, 1̂} for 0̂, 1̂ /∈ P . Let A = {0̂, 1̂} and λ = (0,1). Then

O(P ) = O( P̃ , A)λ and C(P ) = C( P̃ , A)λ.

The following definitions will be needed in the proof of Theorem 3.4: The length of a chain C =
{p1 < · · · < pk} ⊆ P is 	(C) = k − 1. The height of p ∈ P is the length of the longest chain ending
at p. If P is graded, the height of an element is just its rank.

Theorem 3.4. Let (P , A, λ) be a marked poset. The map ϕ̃ : RP−A → RP−A defined by

ϕ̃(x)p = min
({xp − xq | p 	 q, q /∈ A} ∪ {xp − λq | p 	 q, q ∈ A})

for each p ∈ P − A restricts to a continuous, piecewise affine bijection from O(P , A)λ onto C(P , A)λ .

The following alternative description of ϕ̃ may be useful. Let ϕ : RP → RP be Stanley’s transfer map
as defined in (1). Let π : RP → RP−A be the canonical projection which forgets the coordinates in A,
and let i : RP−A → RP be the canonical inclusion into the fiber over λ ∈ RA , which adds a coordinate
λa to each a ∈ A. Then ϕ̃ = π ◦ ϕ ◦ i.

These maps (and some more to be defined in the proof) are illustrated in the following diagram.

RP
ϕ

RP

π

O(P , A)λ

i

ϕ̃

C(P , A)λ

ψ̃

ψ

Proof. We start by showing that ϕ̃(O(P , A)λ) ⊆ C(P , A)λ . Let x ∈ O(P , A)λ and y = ϕ̃(x). Let a,b ∈ A,
and p1, . . . , pk ∈ P − A be such that a < p1 < · · · < pk < b. The definition of ϕ implies that ypi �
xpi − xpi−1 for all i = 2, . . . ,k and yp1 � xp1 − λa . Thus,

yp1 + · · · + ypk � (xp1 − λa) + (xp2 − xp1) + · · · + (xpk − xpk−1)

= xpk − λa � λb − λa.

Hence, y ∈ C(P , A)λ .
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To show that ϕ̃ is bijective, we construct its inverse ψ̃ : C(P , A)λ → O(P , A)λ . We first define a
map ψ : RP−A → RP , where we define ψ(y)p recursively by going up the poset according to the rule:

ψ(y)p =
{

λp if p ∈ A,

yp + max{ψ(y)q | p 	 q} if p /∈ A.

Since all the elements of height 0 are in A, ψ(y) is well-defined. We then define ψ̃ = π ◦ ψ by
applying ψ and then forgetting the A-coordinates. We will prove that, when restricted to C(P , A)λ ,
the map ψ̃ is the inverse of ϕ̃ .

First we show that ψ̃ ◦ ϕ̃ is the identity on O(P , A)λ . We begin by showing that ψ ◦ ϕ̃ = i; i.e.,
that if x ∈ O(P , A)λ and y = ϕ̃(x) then i(x) = ψ(y). We prove i(x)p = ψ(y)p by induction on ht(p).
The claim certainly holds for ht(p) = 0. Suppose that we have proved it for all elements of height at
most n, and let p have height n + 1. If p ∈ A, then

ψ(y)p = λp = i(x)p

by definition. Otherwise, if p /∈ A, we have

ψ(y)p = yp + max
{
ψ(y)q

∣∣ p 	 q
}

= yp + max
{

i(x)q
∣∣ p 	 q

}
by the inductive hypothesis. As

yp = ϕ̃(x)p = π
(
ϕ

(
i(x)

))
p = ϕ

(
i(x)

)
p

= min
{

i(x)p − i(x)q
∣∣ p 	 q

}
= i(x)p − max

{
i(x)q

∣∣ p 	 q
}
,

we conclude that ψ(y)p = i(x)p , as desired.
We have shown that ψ ◦ ϕ̃ = i. By composing with the projection which forgets the A coordinates,

we obtain that ψ̃ ◦ ϕ̃ is the identity on O(P , A)λ . Hence ϕ̃ is injective.
To prove surjectivity, let y ∈ C(P , A)λ and define x = ψ̃(y) ∈ RP−A . We start by showing that

x ∈ O(P , A)λ . Let p ∈ P − A. By definition,

xp = ψ(y)p = yp + max
{
ψ(y)q

∣∣ p 	 q
}
.

As yp � 0, this implies xp � ψ(y)q for all q such that p 	 q. If q ∈ A, this says that xp � λq . If q /∈ A,
this says that xp � xq . To show that xp � λb for any b ∈ A exceeding p, choose

p =: pk+1 	 pk 	 · · · 	 p1 	 p0

such that pk, . . . , p1 ∈ P − A and p0 ∈ A, and that the maximum in the definition of ϕ(y)pi is attained
at q = pi−1 for i = k + 1, . . . ,1. For any b ∈ A with b > p, from the definition of C(P , A)λ is follows
that yp1 + · · · + ypk � λb − λp0 . By the choice of the pi , we have

xp = ϕ(y)p = λp0 + yp1 + · · · + ypk .

Hence xp � λb . As p is arbitrary, it follows that x ∈ O(P , A)λ .
Finally, we claim that ϕ̃(x) = y. Once again, we prove that ϕ̃(x)p = yp for all p ∈ P − A by induc-

tion on the height of p. For height 0 this statement is vacuous. Suppose that it holds for all elements
of height at most n, and consider p ∈ P − A with ht(p) = n + 1. Then

ϕ̃(x)p = min
{

i(x)p − i(x)q
∣∣ p 	 q

}
= min

{
ψ(y)p − ψ(y)q

∣∣ p 	 q
}

= ψ(y)p − max
{
ψ(y)q

∣∣ p 	 q
}

= yp + max
{
ψ(y)q

∣∣ p 	 q
} − max

{
ψ(y)q

∣∣ p 	 q
}

= yp,

as desired. We have shown that ϕ̃ ◦ ψ̃ is the identity on C(P , A)λ , hence ϕ̃ is surjective.
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Fig. 4. Marked Hasse diagram for sln .

We conclude that ψ̃ : C(P , A)λ → O(P , A)λ and ϕ̃ : O(P , A)λ → C(P , A)λ are inverse functions,
and therefore bijective, as we wished to show. The fact that they are continuous and piecewise affine
follows directly from the definitions. �

We conclude this section with the generalization of the second part of Theorem 3.1, the compati-
bility of the transfer map with the integral lattice.

Lemma 3.5. If (P , A, λ) is a marked poset with λ integral, then the polytopes O(P , A)λ and C(P , A)λ are
integral.

Proof. It is immediate from its defining inequalities that O(P , A)λ is integral. We now “transfer” this
property to C(P , A)λ .

Consider the subdivision of O(P , A)λ induced by the braid arrangement, which consists of the
hyperplanes xp = xq for p and q in P − A. Each polytope C in this subdivision is integral. Notice that
ϕ̃ is linear on C and, since ϕ̃ maps lattice points to lattice points, ϕ̃(C) is also integral. Therefore
C(P , A)λ has a subdivision into integral polytopes, and hence must be integral. �

It is worth remarking that the integrality of the polytope C(P , A)λ is quite subtle, in the sense that
the inequalities defining it do not necessarily form a totally unimodular matrix.

Since O(P , A)λ and C(P , A)λ are integral, they have an Ehrhart polynomial. In fact:

Theorem 3.6. Let (P , A, λ) be a marked poset with λ ∈ ZA . Then O(P , A)λ and C(P , A)λ have the same
Ehrhart polynomial.

Proof. This follows immediately from the proof of Theorem 3.4, which shows that ϕ̃ restricts to a
bijection between O(P , A)λ ∩ 1

m ZP−A and C(P , A)λ ∩ 1
m ZP−A . �

Theorem 3.6 does not hold for general λ ∈ RA .

4. Applications

We now show how marked poset polytopes occur “in nature” in the representation theory of
semisimple Lie algebras. More concretely, marked order polytopes occur as Gelfand–Tsetlin polytopes
in types A, B , and C , and marked chain polytopes occur as Feigin–Fourier–Littelmann–Vinberg poly-
topes in type A.

4.1. Type A

Let λ be a dominant integral weight for sln . Let O(P , A)λ and C(P , A)λ be the marked order
and chain polytopes determined by the marked Hasse diagram given in Fig. 4. Note that Fig. 4 is
obtained from Fig. 1 by a clockwise rotation by 90◦ . Hence from the definitions it is immediate
that GT(λ) = O(P , A)λ . Similarly, it follows immediately from the definitions that FFLV(λ) = C(P , A)λ .
Hence the equation
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Fig. 5. Board defining generalized Gelfand–Tsetlin pat-
terns for sp2n and o2n+1.

Fig. 6. Marked Hasse diagram for sp2n and o2n+1.

∣∣ FFLV(λ) ∩ ZΦ+ ∣∣ = ∣∣GT(λ) ∩ Zn(n−1)/2
∣∣

is implied by Theorem 3.6.
It would be interesting to see whether the explicit bijection of Theorem 3.6 gives interesting

information about the transition matrix between the Gelfand–Tsetlin basis and the Feigin–Fourier–
Littelmann–Vinberg basis of V (λ).

4.2. Type C

Now consider the symplectic Lie algebra sp2n . Here the role of Gelfand–Tsetlin patterns is played
by the generalized Gelfand–Tsetlin patterns defined by Berenstein and Zelevinsky [1]. Fix a Cartan
subalgebra h ⊂ sp2n . Choose simple roots α1, . . . ,αn ∈ h∗ such that αi ⊥ αi+1 for i < n and αn is
the long root. Let ε1, . . . , εn be the basis of h∗ such that αi = εi − εi+1 for i < n and αn = 2εn . The
corresponding fundamental weights are ωi = ε1 + · · · + εi . This is the setting as used by Bourbaki [2].
We identify a weight λ with the n-tuple (λ1, . . . , λn) of its coefficients with respect to the basis
ε1, . . . , εn . Then dominant integral weights correspond to weakly decreasing n-tuples of nonnegative
integers. Given a dominant integral weight λ, Berenstein and Zelevinsky define an sp2n-pattern of
highest weight λ to be a filling of the board in Fig. 5 with nonnegative integers, such that every
number is bounded from above by its upper left neighbor and bounded from below by its upper right
neighbor (if any). They show that dim V (λ) is the number of such patterns [1, Theorem 4.2].

Let O(P , A)(λ,0) and C(P , A)(λ,0) be the marked order and chain polytopes determined by the
marked Hasse diagram given in Fig. 6. Note that Fig. 6 is obtained from Fig. 5 by a clockwise rotation
by 90◦ and apposition of the zeroes. From the definitions it is immediate that the sp2n-patterns of
highest weight λ are the integral points in O(P , A)(λ,0) . This suggests the following:

Conjecture 1. The lattice points in C(P , A)(λ,0) parametrize a PBW basis of V (λ) for the symplectic Lie alge-
bras, as described in Section 2 and in [3, Theorem 3.11].

Indeed, this conjecture is proved in a forthcoming article by Feigin, Fourier, and Littelmann [4].

4.3. Type B

For the odd orthogonal Lie algebra o2n+1, the situation is a bit more complicated. Fix a Cartan
subalgebra h ⊂ o2n+1. Choose simple roots α1, . . . ,αn ∈ h∗ such that αi ⊥ αi+1 for i < n and αn is
the short root. Let ε1, . . . , εn be the basis of h∗ such that αi = εi − εi+1 for i < n and αn = εn . The
corresponding fundamental weights are ωi = ε1 + · · · + εi for i < n and ωn = 1

2 (ε1 + · · · + εn). This
is the setting as used by Bourbaki [2]. We identify a weight λ with the n-tuple (λ1, . . . , λn) of its
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coefficients with respect to the basis ε1, . . . , εn . Then dominant integral weights correspond to weakly
decreasing n-tuples in 1

2 Z�0 such that either all or none of the components are integers. Given a
dominant integral weight λ, Berenstein and Zelevinsky [1] define an o2n+1-pattern of highest weight
λ to be a filling of the board in Fig. 5 with elements of 1

2 Z�0 such that every number is bounded
from above by its upper left neighbor and bounded from below by its upper right neighbor (if any),
and such that all numbers which possess an upper right neighbor are congruent to λ1 modulo Z. Let
R(λ) be the set of o2n+1-patterns of highest weight λ.

As in type C , let O(P , A)(λ,0) be the marked order polytope defined by the marked Hasse diagram
in Fig. 6. Then R(λ) ⊂ O(P , A)(λ,0) , but R(λ) does not consist of the integral points, but of the points
determined by more complicated congruence conditions. Namely, decompose

P − A = P ′ ∪ P ′′ ∪ P ′′′,
where P ′ , P ′′ , and P ′′′ consist of all elements in P of height 1, 2, and � 3, respectively, that are not
contained in A. Then R(λ) consists of all x ∈ O(P , A)(λ,0) ∩ ( 1

2 Z)P−A such that xp + λ1 ∈ Z for all
p ∈ P ′′ ∪ P ′′′ . Hence S(λ) = ϕ̃(R(λ)) consists of all

y ∈ C(P , A)(λ,0) ∩
((

1

2
Z
)P ′∪P ′′

× ZP ′′′
)

such that

max {yq: p 	 q} + yp + λ1 ∈ Z

for all p ∈ P ′′ . From the point of view taken in this article, S(λ) appears to be the most natural
candidate to parametrize a PBW basis of [3] in type C . Note that the elements of S(λ) cannot appear
directly as exponent vectors of a PBW basis, as their components are not necessarily integral, so we
are missing at least a change of coordinates in this case.

Question 4.1. Is there a way to modify S(λ) so that it parametrizes a PBW basis of V (λ) for the odd
orthogonal Lie algebras, as described in Section 2 and in [3, Theorem 3.11]?

4.4. Type D

Some of the inequalities defining the generalized Gelfand–Tsetlin polytopes [1] for the even or-
thogonal Lie algebras o2n involve several summands, so these polytopes are not marked order poly-
topes. Also, as for type B , the lattice used to define the integral points is not the canonical lattice.
Hence our methods do not apply here directly. It would be interesting to find either a suitable mod-
ification of our results to this case, or a suitable change of coordinates to represent the polytopes as
marked order polytopes.
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