
Physics Letters B 706 (2011) 82–85

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Gauge invariant two-photon exchange contributions in e−π+ → e−π+

Hai Qing Zhou

Department of Physics, Southeast University, Nanjing, 211189, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 October 2011
Received in revised form 2 November 2011
Accepted 2 November 2011
Available online 6 November 2011
Editor: W. Haxton

Keywords:
Two-photon exchange
Form factor
Gauge invariant

The gauge invariant two-photon exchange (TPE) contributions in e−π+ → e−π+ are discussed at
hadronic level. The contact term is added to keep the full amplitude gauge invariant by two methods:
one is to multiply form factors with the amplitude for point-like particles and another is to construct a
gauge invariant Lagrangian. The practical calculations show the TPE contributions by these two methods
are almost the same, while the later method is favored when extending the discussion to processes
including two charged finite-size particles like ep → enπ+.

© 2011 Elsevier B.V. Open access under CC BY license.

1. Introduction

It has been shown the two-photon exchange (TPE) contributions in unpolarized elastic ep scattering play an important role in extracting
the electromagnetic form factors of the proton from the angle dependence of cross section. It is natural to expect that similar effects may
exist in the unpolarized ep → enπ+ , which is also used to extract the electromagnetic π form factor or σL from the angle dependence
of cross section [1]. In the literature, many model dependent calculations [2] and model independent analyses [3] have been made to
study TPE contributions in elastic ep scattering, while the TPE contributions in ep → enπ+ are much more complex and the discussion
on such TPE contributions is deficient. Formally, how to keep gauge invariance in hadronic level for such processes [4] is a non-trivial
problem, since two finite-size charged particles play their roles. Before discussing the gauge invariant TPE contributions in ep → enπ+ , it
is a good basis to study the gauge invariant TPE contributions in e−π+ → e−π+ . The TPE contributions in the latter process have been
studied in [5,6], while the contact term is usually neglected. This leads to manifest breakdown of gauge invariance. For the processes with
charged non-point-like particles, the usual way to keep the full amplitude gauge invariant is to multiply form factors with the amplitudes
for point-like particles. In this Letter, we introduce a gauge invariant Lagrangian to treat the TPE contributions in e−π+ → e−π+ . Such
a method can also be applied to treat the TPE contributions in ep → enπ+ directly. We arrange our discussion as follows: in Section 2,
the TPE contributions in the literature are reviewed and the way to restore gauge invariance at the amplitude level is discussed; in
Section 3, a simple gauge invariant Lagrangian is constructed to describe the electromagnetic interactions of π and the TPE contributions
are discussed by this Lagrangian; in Section 4, the numerical results are presented.

2. Gauge invariant TPE contributions in e−π+ → e−π+: A

For a charged point-like pseudoscalar particle, the electromagnetic interaction to the lowest order can be described as

L0 = (Dμφ)∗Dμφ − 1

4
Fμν F μν, (1)

with Fμν = ∂μ Aν − ∂ν Aμ , Dμ = ∂μ + ieQ Aμ and eQ being the charge of pseudoscalar particle. To keep the gauge invariance, a contact
term may be introduced by the minimal coupling. This is different with point-like spin- 1

2 particle where contact term is not necessary.
For finite-size charged pseudoscalar particles such as π+ with eQ = −e = |e|, higher order interactions are needed to described its

electromagnetic structure. In Refs. [5,6], to describe such structure a form factor is directly multiplied with the point-like particle vertex.
This corresponds to the following replacement for the vertex:
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Fig. 1. Two-photon exchange diagrams with elastic intermediate state: (a) box diagram, (b) cross-box diagram and (c) contact term diagram.

ie(p1 + p2)μ → ie(p1 + p2)μFπ

(
q2), (2)

with p1, p2, q ≡ p2 − p1 the momentum of incoming π+ , out coming π+ and photon. By such replacement, it is easy to check that the
sum of amplitudes corresponding to TPE diagrams 1(a) and 1(b) is not gauge invariant. To restore the gauge invariance, the contact term
should be considered as the point-like particle case, with the simple replacement is (we named it Method A):

i2e2 gμν → i2e2 gμν Fπ

(
k2

1

)
Fπ

(
k2

2

)
, (3)

with k1, k2 the momentum of (incoming) photons and the diagram 1(c) due to contact term is included. The amplitudes corresponding to
the three diagrams in Fig. 1 in Feynman gauge by this method read as

M A,(a)
γ γ = −i

∫
d4k1

(2π)4

ūe(p3)(−ieγμ)(/p1 − /k1 + me)(−ieγν)ue(p1)

[(p1 − k1)2 − m2
e + iε][(p2 + k1)2 − m2

π + iε]
[ieFπ (k2

2)(2p4 − k2)
μ][ieFπ (k2

1)(2p2 + k1)
ν ]

(k2
1 + iε)(k2

2 + iε)
,

M A,(b)
γ γ = −i

∫
d4k1

(2π)4

ūe(p3)(−ieγμ)(/p1 − /k1 + me)(−ieγν)ue(p1)

[(p1 − k1)2 − m2
e + iε][(p2 + k2)2 − m2

π + iε]
[ieFπ (k2

1)(2p4 − k1)
ν ][ieFπ (k2

2)(2p2 + k2)
μ]

(k2
1 + iε)(k2

2 + iε)
,

M A,(c)
γ γ = −i

∫
d4k1

(2π)4

ūe(p3)(−ieγμ)i(/p1 − /k1 + me)(−ieγν)ue(p1)

[(p1 − k1)2 − m2
e + iε]

(−)[i2e2 Fπ (k2
2)Fπ (k2

1)gμν ]
(k2

1 + iε)(k2
2 + iε)

, (4)

where M A,(a)
γ γ and M A,(b)

γ γ are the same as in [5]. Now it is easy to check the full amplitude is not dependent on the gauge parameter in
the photon’s propagators.

With such a method based on the amplitudes directly, in principle that is not the case. And it is also not easy to extend it to processes
with two finite-size charged particles in a unitary way. In the following, we construct a simple gauge invariant Lagrangian to discuss the
TPE contributions.

3. Gauge invariant TPE contributions in e−π+ → e−π+: B

Differently from using direct replacements as above, higher order terms can be added to describe the structure formally, one simple
form being

L = L0 + L1, (5)

with

L1 = ieQ Dμφ∗φ∂ν f
(−∂ρ∂ρ

)
F μν + h.c.

Based on this Lagrangian the electromagnetic form factors of π at tree level can be written as

〈p2| Jμ|p1〉 = (
1 + q2 f

(
q2))(p1 + p2)μ. (6)

Comparing with the general form of electromagnetic form factor of the π

〈p2| Jμ|p1〉 = Fπ

(
q2)(p1 + p2)μ, (7)

the following relation is obtained

Fπ

(
q2) = 1 + q2 f

(
q2). (8)

In principle, the Lagrangian equation (5) is not the most general one, while it is the simplest one to keep the gauge invariance in a
manifest way. With Lagrangian equation (5), the amplitudes in Feynman gauge for the three diagrams in Fig. 1 can be expressed as

M B,(a)
γ γ = −i

∫
d4k1

(2π)4

ūe(p3)(−ieγμ)(/p1 − /k1 + me)(−ieγν)ue(p1)

[(p1 − k1)2 − m2
e + iε][(p2 + k1)2 − m2

π + iε]
Γ μ(p4, p4 − k2)Γ

ν(p4 − k2, p2)

(k2
1 + iε)(k2

2 + iε)
,

M B,(b)
γ γ = −i

∫
d4k1

(2π)4

ūe(p3)(−ieγμ)(/p1 − /k1 + me)(−ieγν)ue(p1)

[(p1 − k1)2 − m2
e + iε][(p2 + k2)2 − m2

π + iε]
Γ μ(p4, p4 − k1)Γ

ν(p4 − k1, p2)

(k2
1 + iε)(k2

2 + iε)
,

M B,(c)
γ γ = −i

∫
d4k1

(2π)4

ūe(p3)(−ieγμ)i(/p1 − /k1 + me)(−ieγν)ue(p1)(−)Λμν(k1,k2)

[(p − k )2 − m2 + iε](k2 + iε)(k2 + iε)
, (9)
1 1 e 1 2
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Fig. 2. Two-photon exchange contributions: the left panel is for δ(a)+(b) − δMT vs. ε and the right panel is for δA
(c) × 102 vs. ε both with Q 2 = 0.01,0.1,1,3 GeV2.

Table 1
Numerical results for δA

(c)/δ
B
(c) with Q 2 = 0.01,0.1,1,3 GeV2.

Q 2 = 0.01 GeV2 Q 2 = 0.1 GeV2 Q 2 = 1 GeV2 Q 2 = 0.3 GeV2

δA
(c)/δ

B
(c) 1.0002 1.0014 1.0103 1.0280

with

Γ μ(p f , pi) = ie
[(

1 + f
(
q2)q2)(p f + pi)

μ − f
(
q2)(p2

f − p2
i

)
qμ

]
,

Λμν(k1,k2) = 2ie2[gμν + f
(
k2

1

)(
k2

1 gμν − kμ
1 kν

1

) + f
(
k2

2

)(
k2

2 gμν − kμ
2 kν

2

)]
. (10)

4. Results

To show the TPE contributions, we define

δ
A/B
(a)/(b)/(c) = 2 Re{M∗

0 M A/B,(a)/(b)/(c)
γ γ }

|M0|2 , (11)

with M0 the one photon exchange amplitude, A/B refer to Method A/B and (a)/(b)/(c) refer to corresponding diagrams, respectively. In
Feynman gauge, we can prove the sum δA

(a)+(b)
is equal to δB

(a)+(b)
with any form factors as input though δA

(a)/(b)
are not equal to δB

(a)/(b)
,

respectively. Generally such equivalence is not true for other gauge parameters. And the contributions from diagrams (c) are not equivalent
by the two methods.

To show the detail, we take the same form of Fπ (q2) with [5]

Fπ

(
q2) = −Λ2

q2 − Λ2
, (12)

with Λ = 0.77 GeV.
With this monopole form factor as input the TPE contributions can be calculated directly. And we subtract the IR divergence in the same

way as [5]. The left panel of Fig. 2 shows δ(a)+(b) − δMT (≡ δ
A/B
(a)+(b)

− δMT ) vs. ε in Feynman gauge where ε = (1 + 2(1 + τ ) tan2 (θ/2))−1,

τ = Q 2/4m2
π , Q 2 = −(p4 − p2)

2, θ the scattering angle and δMT denotes the correction from the box diagrams in the soft photon
approximation given by the standard treatment of Mo and Tsai [7]. The right panel of Fig. 2 shows δA

(c) vs. ε. The practical calculation

shows the corrections δ
A/B
(c) in Feynman gauge are about 10−5–10−6 in almost all ε region by both two methods for Q 2 from 0.01 GeV2

to 3 GeV2. The relative magnitudes δA
(c)/δ

B
(c) are shown in Table 1. An interesting property is that δA

(c)/δ
B
(c) are independent on ε. They

are very small when Q 2 < 1 GeV2 and increase with Q 2. The small δ
A/B
(c) result in almost the same full TPE contributions by the two

methods. This means the main results by [5] are kept, while this does not mean the contact term can be neglected in other processes or
other gauges. When extending the calculation to ep → enπ+ , the contributions from such term need to be considered more carefully and
Method B is favored because of the manifest gauge invariance.
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