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Abstract

A new stability preserving model reduction algorithm for discrete linear SISO-systems
based on a least squares approach is proposed. Similar to the Padé approximation, an equation
system for the Markov parameters involving a high dimensional Hankel matrix is considered.
It is proved that approximate solutions, computed via the Moore–Penrose pseudo-inverse,
give rise to a stability preserving reduction scheme. Furthermore, the proposed algorithm is
compared to the balanced truncation method, showing comparable performance of the reduced
systems.
© 2003 Published by Elsevier Inc.
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1. Introduction

Generally the problem of model reduction lies in the replacement of a given math-
ematical description � of a natural process by a description �̂, which is much smaller
than the ν-dimensional system �, but still, guarantees the main properties of the
original process. For discrete linear systems

� : xk+1 = Axk + Buk

yk = Cxk
, x0 = o, A ∈ Cν×ν, B,CT ∈ Cν (1)
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it makes sense to call an n-dimensional system �̂ smaller than �, if the inequality
n < ν is satisfied. A typical property, which should be preserved by changing over
to the reduced system, is stability. A discrete system � is said to be stable, if �
has all its eigenvalues inside the open unit disc D. Clearly, the reduced system �̂
should moreover fulfil certain approximation requirements. For discrete systems it
is natural to demand the similarity of their impulse responses. More precisely, we
are interested in the solution of the following problem: let a ν-dimensional stable
discrete linear single-input-single-output-system (SISO) (1) be given, we then are
looking for an n-dimensional stable system �̂, such that n < ν, and the quantity

ε := ‖G − Ĝ‖2

‖G‖2
, ‖G‖2 :=

(
1

2π

∫ 2π

0 |G(eiω)|2 dω
)1/2

, (2)

is smaller than a prescribed error bound ε0. Here, G and Ĝ denote the transfer func-
tions of � and �̂. Similar impulse responses are reflected by a small ε. A huge number
of papers exists which deal with approximation problems of this nature. Two key-
words are Padé approximation and balanced truncation. A good source to obtain an
overview of the first topic is [9], and concerning balanced model reduction we refer
the reader to [33,35]. It would be desirable to estimate the appropriate size n of �̂
a priori, such that the resulting approximation error ε, defined by (2), turns out to
be smaller than a prescribed ε0. We are aware, that this problem will not be solved
here. In order to determine the appropriate dimension for the reduced system, we
are only able to compute a sequence of stable systems (�̂n)

ν−1
n=1 and to observe the

corresponding decreasing number sequence (‖G − Ĝn‖2)
ν−1
n=1.

For the discrete time case the Padé approximation problem reads as follows: let a
strictly proper rational function G of degree ν be given. Then the nth Padé approx-
imation problem of order N is to find a rational function Ĝ of degree n < ν, such
that in a neighbourhood of ∞ the difference G − Ĝ admits the representation

G(s) − Ĝ(s) =
∞∑

k=N

dks
−(k+1).

The context to the model reduction problem is based on the following two facts:

• the impulse response of (1) is given by the Laurent coefficient sequence (hk)
∞
k=0

of its transfer function G(s) := ∑∞
k=0 hks

−(k+1) := C(sI − A)−1B, and
• the dimension of a minimal realization and the degree of a rational function Ĝ

coincide.

Consequently, Ĝ admits an n-dimensional realization by a system with the same
impulse response as � up to the N th time step. In particular, the numbers hk are
called the Markov parameters of �. The nth Padé approximation problem of order N

is equivalent to the partial realization problem: let a finite complex number sequence
h := (hk)

N−1
k=0 be given. The problem is to find a matrix triple �̂ := (A, B, C), A ∈

Cn×n, B, CT ∈ Cn, such that for k = 0, . . . , N − 1 the equation hk = CAkB holds.
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One deals with the minimal partial realization (MPR) problem if one is interested
in solutions with minimal state space dimension n. For details we refer the reader to
[1,5,8,11–13,16,17,21,23,24,27,30,31,32,34].

In connection with model reduction problems the sequence h is defined by the
first N Markov parameters of �, abbreviated by h(�, N). For non-stable minimal
systems, i.e. A is not an iteration matrix, for large N the calculation of h(�, N)

turns out to be impossible, because the sequence (CAkB)∞k=0 is non-convergent.
Even for small N , if the associated Hankel matrix

Hn
N :=

 h0 · · · hn−1
...

...

h�−1 · · · hN−2

 ∈ C�×n, � + n = N, (3)

exists, it then is frequently ill conditioned. These numerical difficulties can be avoided
by exploiting the connection between Padé approximants and the Lanczos process
(Padé approximation via Lanczos process, PVL). For details confer [7,18,19], and
the references therein.

An important drawback of Padé approximation methods is that they generally do
not preserve stability. That means one cannot ensure that all poles of Ĝ are again
in the open left half plane or in the open unit disc even if this holds for G. For the
continuous time case an illustrating example can be found in [6], and for the discrete
time case, we demonstrate this disadvantage with Example 1. One possibility to over-
come this problem consists in the reduction of the order N of the Padé approximation
problem to obtain a solution family of non-minimal partial realizations for h(�, N)

containing more than one element. The gained freedom then can be used to try to find
a stable one. For example, one starts with an arbitrary stable denominator polynomial
of degree n, and computes the corresponding numerator polynomial such that at least
the first n members of h(�, N) are matched. For details see [9], Section 12, and the
references therein. Our reduction method is inspired by Padé approximation as well,
however we overcome the stability problem by allowing small deviations between ĥk

and hk for all indices. For compensational reasons, we however try to approximate a
large number N of Markov parameters hk .

The nth Padé approximation problem of order N for G is solved, if one is able to
compute a vector ξ ∈ Cn, such that

Hn
Nξ = hn

N, hn
N := [hn, . . . , hN−1]T. (4)

Then the denominator polynomial of a fraction representation of Ĝ is given by

Qn(s) := sn − [s0, . . . , sn−1]ξ. (5)

However for n � N it cannot be expected, that the vector hn
N belongs to the subspace

span Hn
N ⊂ C�. In that case, it seems natural for us to set

ξ := Hn
N

†
hn

N, (6)

where F † denotes the Moore–Penrose pseudo-inverse of the matrix F . Our main
result (Theorem 2) concerns the stability of the polynomial (5) for
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ξ = lim
N→∞ Hn

N
†
hn

N .

To measure the “similarity” of the impulse responses, the quantity ‖G − Ĝ‖2 is
appropriate. For its estimation, the identification of the residual vector

En := Hn∞ξ − hn∞
as �2-sequence is useful, since there holds:

‖G − Ĝ‖2 � ‖En‖2(1 − r�̂)−n.

Here, r�̂ denotes the maximum of the moduli of the zeros of Qn.
The above mentioned stability problems do not arise if one reduces � via the

balanced truncation method. The crucial step in this approach is the transformation
of � into a balanced form, which requires the solution of two ν-dimensional Stein
equations. This step however is computationally quite expensive for large ν and addi-
tionally often turns out to be ill conditioned. For details confer [29], and [35, Chapter
21.8]. The advantage of our method is the avoidance of those ν-dimensional matrix
equation problems. We therefore are able to solve high dimensional problems. For
example for original state space dimension ν := 1000, reduced state space dimension
n := 30, and N := 500 used Markov parameters one obtains Fig. 1.

In the upper part the Nyquist plot of G (solid line) is compared to the Nyquist
plot of Ĝ (dotted), and in the lower part the eigenvalues of � (dots) and �̂ (stars) are
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Fig. 1. [r�, ν, n, N] = [0.9, 1000, 30, 500].
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Fig. 2. [r�, ν, n, N] = [0.95, 20000, 30, 500].

shown. To avoid numerical problems, the moduli of the eigenvalues of the system
� are bounded by r� := 0.9. For [r�, ν, n, N] = [0.95, 20 000, 30, 500] one obtains
for example Fig. 2.

In both examples, the Moore–Penrose pseudo-inverse Hn
N

† has been computed
via

(Hn
N

∗
Hn

N)−1Hn
N

∗
.

For the case where r� is almost 1, this approach does not lead to satisfying numerical
results. Thus it is natural to ask for numerical algorithms, which compute Hn

N
† by

exploitation of its Hankel structure. In the literature the Toeplitz structure is exploited
in two different directions: one approach leads to algorithms of low complexity (fast
and superfast algorithms), and a second approach to algorithms, which take care for
accuracy and stability (high performance algorithms). For fast and superfast algo-
rithms confer among others [2–4,10,14,15,28], and for high performance algorithms
confer [20,22,25]. The paper [26] of Gu goes in both directions.

The paper is organised as follows. First we repeat the solution procedure for the
MPR-problem. Then, the difference of the Markov parameter sequences of � and its
reduction �̂ is studied, where �̂ is obtained via the polynomial (5) with coefficient
vector (6). In Section 4 the proof of Theorem 2 is prepared. Then we proceed with its
formulation and discussion of certain consequences. In Section 6 a reduction exam-
ple is given and in Section 7 the transfer functions of �̂ and of the corresponding
system �trunc obtained by balanced truncation are compared.
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2. The MPR-problem

A solution of the MPR-problem can be found by considering the Hankel matrix
sequence H := (H�,n)

N
n=1, � + n = N + 1:

H�,n =
 h0 · · · hn−1

...
...

h�−1 · · · hN−1

 ∈ C�×n.

Here, the polynomial spaces

Hn := {ψ(s, n)ξ : ξ ∈ ker H�,n, � + n = N + 1} ⊂ C[s],
HN+1 := {p(s) ∈ C[s] : deg p � N},

are of special interest, where ψ(s, n) := [s0, . . . , sn−1]. The Hankel structure of the
members of H implies

sHn ⊆ Hn+1, H1 ⊂ H2 ⊂ · · · ⊂ HN+1.

In [27] the following is proved.

Proposition 1. For any non-zero sequence h := (hk)
N−1
k=0 there exist two integers

d1, d2 with d1 � d2, d1 + d2 = N + 1 and two monic polynomials q1 ∈ Hd1+1,

q2 ∈ Hd2+1, such that for all n = 1, . . . , N + 1:
Hn = {q1p1 + q2p2 | pi ∈ C[s], deg pi < n − di, i = 1, 2}.

Here we have to set pi ≡ 0 if n � di.

The polynomial system {q1, q2} is called a fundamental system and the two inte-
gers d1, d2 are called the characteristic degrees for h. Theorem 1, taken from [27],
relates the characteristic degrees of h to the dimension of its minimal partial realiza-
tions (MPRs).

Theorem 1. Let d1, d2 be the characteristic degrees, {q1, q2} be a fundamental sys-
tem, and ν be the state space dimension of a MPR of h. Then

1. If deg q1 = d1, then ν = d1, else ν = d2.

2. If ν = d1 < d2, then h has a unique MPR up to similarity.
3. If ν = d2, then h has infinitely many MPRs with diagonalisable main operator A.

Starting with

Q(s) := sν −
ν−1∑
k=0

ξks
k :=

{
q1(s), if deg q1 = d1,

q2(s), if deg q1 < d1,

ξ := [ξ0, . . . , ξν−1],
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a MPR �̂ of h is constructed as follows: to the polynomial Q a polynomial P is
assigned according to P(s) := sν−1pν−1 + · · · + p0, where

[pν−1, . . . , p0]T := T (h, ν)[1, −ξν−1, . . . , −ξ1]T,
(7)

T (h, ν) :=
 h0

...
. . .

hν−1 · · · h0

 .

The polynomial P is said to be the residual polynomial of Q with respect to h,
and the vector res(Q, h) is defined by res(Q, h) := [p0, . . . , pν−1]. Now, the matrix
triple

�̂ := (CT
Q, eν, res(Q, h)), CQ :=

[
0 . . . 0

Iν−1

∣∣∣∣ ξ]
, eν := [0, . . . , 0, 1]T

(8)

represents a MPR of h, and is known as the controller form realization of the rational
function P/Q. The matrix CQ is referred to as the companion matrix of Q. As
already mentioned above, the Padé approximation may lead to non-stable model
reduction results, even if the original system is stable. This disadvantage is shown in
Example 1.

Example 1. For all α ∈ (0, 1) the three-dimensional system

�(α) : A = diag(α, 0, −α), B = [2, −1, −1]T, C = [1, 1, 1]
is stable. With respect to the above described solution procedure, for certain α ∈
(0, 1) we compute a two-dimensional MPR �̂ of h(�(α), 4), which turns out to be
non-stable and unique up to similarity. Hence, for the transfer function Gα of �(α)

no stable Padé approximant Ĝ exists, which fulfils G(s) − Ĝ(s) = ∑∞
i=4 h̃is

−i−1,
and can be realized by a system with state space dimension less than 3. Obviously,
h0 = 0, h1 = 3α, h2 = α2, h3 = 3α3, and the solution of the equation system

H 2
4 ξ = h2

4, H 2
4 =

[
h0 h1
h1 h2

]
, h2

4 =
[
h2
h3

]
,

is given by ξ := [8α2/9, α/3]T, where in particular for α 
= 0 the Hankel matrix H 2
4

is regular. Consequently, the first characteristic degree d1 of h is equal to 2, and the
first characteristic polynomial q1 is given by

q1(s) := s2 − ψ(s, 2)ξ = s2 − (α/3)s − (8/9)α2

with the zeros (
√

33±1)
6 α. Due to 1 < (

√
33 + 1)/6, one is able to choose α ∈ (0, 1),

such that 1 <
√

33+1
6 α is fulfilled, namely α ∈ (6/(

√
33 + 1), 1). For these α the

matrix Cq1 is non-stable, which is equivalent to the non-stability of the system
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�̂ := (CT
q1

, e2, res(q1, h)). Finally, we have 2 = ν = d1 < d2 = 3. Hence, Theorem
1 states the uniqueness of �̂ up to similarity.

To overcome the stability problem in all that follows we loosen the demand for
exact coincidence between hk and ĥk for k = 0, . . . , N − 1. For compensational rea-
sons, we however try to approximate a large number N of Markov parameters.

3. Projection of hn
N on span Hn

N

The condition Qn ∈ Hn+1, deg Qn = n is equivalent to the existence of a solu-
tion for

Hn
Nx = hn

N,

where Hn
N and hn

N are defined as in (3) and (4). In the case where hn
N 
∈ span Hn

N ,
and one is satisfied with a vector ξ , such that

En
N := Hn

Nξ − hn
N, ‖En

N‖2 ≈ 0,

we will show that the system �̂ := (CT
Qn

, en, res(Qn, h)), Qn(s) := sn − ψ(s, n)ξ ,
becomes stable, if ξ is chosen to be

ξ := lim
N→∞ Hn

N
†
hn

N .

Moreover, due to the properties of the Moore–Penrose pseudo-inverse, supposed that
the columns of Hn

N are linear independent, the residual vector En
N satisfies the rela-

tion

‖En
N‖2 = minx∈Cn‖Hn

Nx − hn
N‖2,

where ‖ · ‖2 denotes the Euclidean norm in C�. Theorem 1 implies ‖En
N‖2 = 0, if

ν � n, and 0 < ‖En
N‖2, if n < ν, where ν denotes the dimension of the MPRs of

h(�, N). The following Proposition relates the chosen state space dimension n < ν

to the differences of the Markov parameters from �̂ and �.

Proposition 2. Let h be the Markov parameter sequence of a ν-dimensional system
�. Consider for n < ν the monic polynomial Q and the system �̂, defined by Q(s) :=
sn − ψ(s, n)Hn

N
†hn

N and �̂ := (CT
Q, en, res(Q, h)). Then the differences dk = ĥk −

hk, k = 0, . . . , N − 1, can be represented via the residual vector En
N of the projec-

tion of hn
N on span Hn

N. More precisely they are given by the output of the system

xk+1 = CT
Qxk + enεk

dk = eT
nxk

, x0 = o, (9)

with respect to the input E = [ε0, . . . , εn−1, (E
n
N)T]T ∈ CN, defined by

ε0 = · · · = εn−1 = 0, En
N = Hn

NHn
N

†
hn

N − hn
N .



S. Feldmann, P. Lang / Linear Algebra and its Applications 381 (2004) 141–163 149

Proof. Because the third component of �̂ is defined by res(Q, h), for k < n we have
hk = ĥk , which means d0 = · · · = dn−1 = 0. To prove for n � k the validity of (9),
we consider the equation system ĥn

...

ĥN−1

 =
 ĥ0 · · · ĥn−1

...
...

ĥ�−1 · · · ĥN−2


 ξ0

...

ξn−1

 ,

 ξ0
...

ξn−1

 := H
n†
N hn

N, � + n = N,

which follows immediately by the definition of ĥk . Replacement of ĥk by hk + dk

yields

ĥn+k =
n−1∑
i=0

ĥk+iξi =
n−1∑
i=0

(hk+i + dk+i )ξi =
n−1∑
i=0

hk+iξi +
n−1∑
i=0

dk+iξi

= (hn+k + εk) +
n−1∑
i=0

dk+iξi ,

which means that the differences dn+k fulfil the recurrence relation

dn+k =
n−1∑
i=0

dk+iξi + εk, d0 = · · · = dn−1 = 0,

which is equivalent to (9). �

To prove the stability of �̂, for n < ν we associate the vector ξ with the solution
of a certain symmetric Stein-type displacement equation.

4. The associated symmetric Stein-type displacement equation

Let � = (A,B,C) be a ν-dimensional stable system, h := h(�, ∞) be its Mar-
kov parameter sequence, and let the n-dimensional system �̂ be defined by

�̂ := (CT
Qn

, en, res(Qn, h)), Qn(s) := sn − ψ(s, n)ξ,
(10)

ξ := lim
N→∞ Hn

N
†
hn

N .

The polynomial Qn exists, because � is supposed to be stable. In the following
for n = ν − 1 we use the term single-step-reduction, and for n < ν − 1 the term
multi-step-reduction. It turns out, that for a convenient vector W ∈ Cν , the
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coefficient vector ξ of Qn can be represented as a linear combination of the columns
of a matrix M , which solves the symmetric Stein-type displacement equation

X − CuXC∗
u = WW ∗, Cu ∈ Cν×ν, u(s) = det(sIν − A). (11)

Here Cu denotes the companion matrix of u(s) as defined in (8).

Proposition 3. For the ν-dimensional, stable, minimal system � = (A,B,C) and
n < ν, let the polynomial Qn and the matrix M be defined by

Qn(s) = sn − ψ(s, n)Hn∞
†
hn∞ ∈ Cn[s], M = (Hν∗∞ Hν∞)−1 ∈ Cν×ν .

If M is partitioned according to M = [Mij ]2
ij=1, M11 ∈ Cn×n, then Qn and M are

related by

Qn(s) = ψ(s, ν)M

[
on

µ

]
, µ = M−1

22 e1. (12)

Here, e1 denotes the vector [1, 0, . . . , 0]T ∈ Rν−n.

Proof. Using the abbreviations Mn := (Hn∗∞ Hn∞)−1 ∈ Cn×n, and cn := (eT
nMnen)

−1

one obtains M = Mν and the recurrence relation

Mn+1 =
[

M−1
n Hn∗∞ hn∞

hn∗∞Hn∞ hn∗∞hn∞

]−1

.

Consequently,

Mn+1en+1cn+1 =
[−MnH

n∗∞ hn∞
1

]
=

[−Hn∞†hn∞
1

]
,

Qn(s) = ψ(s, n + 1)Mn+1en+1cn+1.

Let the vector τ , the matrices Nij , and the constant c be defined by

τ := M

[
on

µ

]
,

[
M−1

n+1 N12

N21 N22

]
:= M−1, c := eT

1 µ.

Then [M−1
n+1, N12]τ = en+1c, and because τ is of the form

τ =
[
ϑ

o

]
∈ Cν, ϑ :=

[
µ

1

]
∈ Cn+1,

one obtains M−1
n+1ϑ = en+1c. Hence, Mn+1en+1 = ϑc−1, and

Qn(s) = ψ(s, n + 1)Mn+1en+1cn+1

= ψ(s, n + 1)ϑc−1cn+1

= ψ(s, ν)τc−1cn+1.

By definition Qn is monic, and the last component of ϑ is equal to 1. Hence cn+1 =
c. �
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Assuming M solves an equation of the form (11), then Proposition 4 ensures the
stability of polynomials of the form (12).

Proposition 4. Let u be a stable monic polynomial, and the solution M of

X − CuXC∗
u = WW ∗ (13)

be positive definite. Let M be partitioned according to M = [Mij ]2
ij=1, M11 ∈ Cn×n,

and the polynomial Qn be defined by

Qn(s) := ψ(s, ν)τ, τ := M�, � :=
[
on

µ

]
, µ := M−1

22 e1.

Then σ(Qn) ⊂ D.

Proof. Assume that Qn(δ) = 0, u(δ) /= 0, and η ∈ Cν is defined by η :=(
δI − C∗

u

)−1
�. We show that η and τ are orthogonal. With the abbreviations

S := CT
sν , ũ(s) := u(s−1)sν, e(s) := s0 + · · · + sν−2,

the equation

(δI − Cu)
−1 = ũ(S)ψ(δ−1, ν)Tδν−1u(δ)−1ψ(δ, ν) − Se(δS)

holds, and hence together with �∗ = [o∗
n, µ

∗] one obtains

η∗ = �∗(δI − Cu)
−1

= �∗ũ(S)ψ(δ−1, ν)Tδν−1u(δ)−1︸ ︷︷ ︸
=:ϕ∈C

ψ(δ, ν) − [o∗
n, µ

∗]Se(δS)︸ ︷︷ ︸
=:[o∗

n+1,ω
∗]

= ϕψ(δ, ν) − [o∗
n+1, ω

∗].

Because τ is of the form τ =
[
ϑ

o

]
, ϑ ∈ Cn+1, the orthogonality of η and τ follows:

η∗τ = (ϕψ(δ, ν) − [o∗
n+1, ω

∗])τ = ϕψ(δ, ν)τ = ϕQn(δ) = 0.

The equations WW ∗ = M − CuMC∗
u , η∗Cu = δη∗ − �∗ and the definition of the

positive real number κ := η∗Mη now imply

0 � κ − η∗CuMC∗
uη = κ − (δη∗ − �∗)M(δη − �)

= κ(1 − |δ|2) + 2 Re(δ η∗τ︸︷︷︸
=0

)−�∗M� = κ(1 − |δ|2)−�∗M�︸ ︷︷ ︸
>0

<κ(1 − |δ|2).

Consequently, δ ∈ D. �

In the following corollary we use Matlab notation. When M = [mij ]k,�
i,j=1, then

M(n1 : n2, m1 : m2) := [mij ]n2, m2
i=n1,j=m1

,

M(n1 : n2, m) := M(n1 : n2, m : m).
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Corollary 1. Let h = (hk)
N
k=1, hN /= 0, be a finite complex number sequence, and

let for n ∈ {1, . . . , N − 1} the polynomial Qn be defined by Qn(s) = sn − ψ(s, n)ξ,

where

ξ = H�(1 : N, 1 : n)†H�(1 : N, n + 1), H� =
h1 · · · hN

... ..
.

hN

 .

Then σ(Qn) ⊂ D.

Proof. It is sufficient to show that M := (H ∗
�H�)−1 satisfies for appropriate sta-

ble polynomial u and vector W the symmetric Stein-type displacement equation
(13). Then by Propositions 3 and 4 the statement follows. We set u(s) = sN , eN =
[0, . . . , 0, 1]T ∈ RN , and W = H−1

� eN . Then H�Cu = C∗
uH� and

M − CuMC∗
u = (H ∗

�H�)−1 − Cu(H
∗
�H�)−1C∗

u

= H−1
� (I − H�CuH

−1
� H−∗

� C∗
uH ∗

�)H−∗
�

= H−1
� (I − C∗

uCu)H
−∗
�

= H−1
� eNe∗

NH−∗
�

= WW ∗. �

If one defines Z(h) := ⋃N−1
n=1 {σ(Qn)}, then Corollary 1 implies Z(h) ⊂ D.

Example 2. Fig. 3 visualises Z(h) for h := (
cos

( 2kπ i
N

))N

k=1, and N = 70.

For the proof our main result it remains to construct a vector W , such that the
matrix M as defined in Proposition 3 solves Eq. (13). For the sake of simplicity
we assume that the main operator of � possesses ν pairwise distinct eigenvalues
{α1, . . . , αν} ⊂ D. We define

u(s) :=
ν∏

i=1

(s − αi), û(s) :=
ν∏

i=1

(1 − αis), u′(s) := du(s)

ds
,

r(s) := û(s)

u′(s)
, α := [α1, . . . , αν]T, r(α) := [r(α1), . . . , r(αν)]T,

D(r(α)) := diag(r(α)), V := [αj−1
i ]νi,j=1, e := [1, . . . , 1].

Proposition 5. Let for the minimal system � = (A,B,C), σ (A) = {α1, . . . , αν} ⊂
D, A ∈ Cν×ν, the matrix M be defined by M = (Hν∗∞ Hν∞)−1 ∈ Cν×ν . Then M

satisfies

M − CuMC∗
u = WW ∗, W := V −1D(g)−1D(r(α))e. (14)
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k=1
.

Here,
∑ν

i=1
gi

s−αi
represents the transfer function of �, and

D(g) := diag(g), g := [g1, . . . , gν]T.

Proof. In order to prove (14), depending on σ(A) ⊂ D the Cauchy matrix

� := [(1 − αiαj )
−1]νi,j=1 ∈ Cν×ν

is introduced. Since all eigenvalues of A are pairwise distinct, � is regular. The non-
negativity of �−1 − D(α)�−1D(α)∗ is responsible for the definition (14) of W . To
make that evident, let � := [(1 − αiαj )

−1]νi,j=1. Then �−1 = D(r(α))�D(r(α))∗,
and together with the displacement equation

� − D(α)�D(α)∗ = eeT,

one concludes

�−1 − D(α)�−1D(α)∗ = D(r(α))(� − D(α)�D(α)∗)D(r(α))∗
(15)= D(r(α))eeTD(r(α))∗.

Since G(s) = C(sI − A)−1B = ∑ν
i=1

gi

s−αi
, gi /= 0, the Markov parameters of �

take the form hk = ∑ν
i=1 giα

k
i . Hence, the matrix Hν∗∞ Hν∞ (= M−1) admits the fac-

torisation

Hν∗∞ Hν∞ = V ∗D(g)∗�D(g)V, (16)
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which makes it easy to check (14), namely by virtue of V Cu = D(α)V , and (15) one
gets

M−CuMC∗
u = (V ∗D(g)∗�D(g)V )−1 − Cu(V

∗D(g)∗�D(g)V )−1C∗
u

= V −1D(g)−1�−1D(g)−∗V −∗ − CuV
−1D(g)−1�−1D(g)−∗V −∗C∗

u

= V −1D(g)−1�−1D(g)−∗V −∗

− V −1D(α)D(g)−1�−1D(g)−∗D(α)∗V −∗

= V −1D(g)−1(�−1 − D(α)�−1D(α)∗)D(g)−∗V −∗

= V −1D(g)−1D(r(α))e︸ ︷︷ ︸
=W

eTD(r(α))∗D(g)−∗V −∗︸ ︷︷ ︸
=W ∗

= WW ∗. �

As usual let �2 be the normed vector space of all square-summable complex num-
ber sequences, and L2(T) be the normed vector space of all Lebesgue square-inte-
grable functions on T := �D, more precisely

a := (ak)
∞
k=0 ∈ �2 ⇔ ‖a‖2 :=

( ∞∑
k=0

|ak|2
)1/2

< ∞,

G ∈ L2(T) ⇔ ‖G‖2 :=
(

1

2π

∫ 2π

0
|G(eiω)|2dω

)1/2

< ∞.

For stable systems it is not difficult to show, that the �2-distance between hn∞ and
span Hn∞ is finite. Therefore the residual vector En := Hn∞ξ − hn∞ can be used to
define an L2(T)-function, which is then appropriate to estimate ‖G − Ĝ‖2, where
G and Ĝ denote the transfer functions of � and �̂.

5. The main theorem

The Propositions 2–5 lead us to our main theorem.

Theorem 2. Let � = (A,B,C) be a minimal ν-dimensional system, where σ(A) =
{α1, . . . , αν} ⊂ D. Then the system (10) is again stable. In particular,

‖G − Ĝ‖2 � ‖En‖2

mins∈T |Qn(s)| � ‖En‖2

(1 − r�̂)n
,

where En := Hn∞ξ − hn∞ ∈ �2 and r�̂ is defined by the maximum of the moduli of the
zeros of Qn.

Proof. By virtue of Propositions 3–5 we know that Qn is stable.
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To prove the inequalities, we first note that due to (16) the columns of Hn∞ as well
as hn∞ can be interpreted as elements of �2. Consequently the residual vector En,
is interpretable as �2-element, too. Let d(s) = Ĝ(s) − G(s) = ∑∞

k=0 dks
−(k+1), and

E(s) := ∑∞
k=n εks

1−k , where En =: (εk)
∞
k=n. Due to En ∈ �2, the relation E(s) ∈

L2(T) can be stated. With respect to Proposition 2 one obtains

d(s) = eT
n (sI − CT

Qn
)−1enE(s) = sn−1Qn(s)

−1E(s).

Hence,

‖G − Ĝ‖2 = ‖Q−1
n E‖2 � max

s∈T
|Qn(s)

−1|‖En‖2 = ‖En‖2

mins∈T |Qn(s)| .
Finally, mins∈T |Qn(s)| = mins∈T |s − α̂1| · · · |s − α̂n| � (1 − r�̂)n. �

Remark 1. It is natural to ask for the minimality of �̂. The following example
shows, that a single-step-reduction does not necessarily lead to a minimal system.
As example we consider the degenerated case where the transfer function of � is of
the form

G(s) =
ν−1∑
k=0

(s − αk)
−1, αk = r�ei 2π

ν
k, r� < 1.

Then the transfer function Ĝ of �̂ is equal to ν/s, which means Ĝ can be realized by
the one-dimensional system �̃ := (0, 1, ν). Whereby the made assumption leads to

hk =
{

0, if k 
∈ νN0,

νrk
�, if k ∈ νN0.

Consequently, for every non-vanishing component of hν−1∞ the corresponding row of
Hν−1∞ vanishes and vice versa, every non-vanishing row of Hν−1∞ corresponds with
a zero component of hν−1∞ . Therefore, hν−1∞ ∈ (span Hν−1∞ )⊥, which is equivalent to

ξ = Hν−1∞
†
hν−1∞ = o. Thus, Q(s) = sν−1, and res(Q, h) = νeT

ν−1. Finally

Ĝ(s) = res(Q, h)(sI − CT
Q)−1eν = νsν−2/sν−1 = ν/s.

Remark 2. It is natural to ask for the similarity of the systems �cons and �̃, where
the first one is obtained by two consecutive single-step-reductions, whereas the sec-
ond one is obtained by a two-step-reduction. The following example shows, that, in
general, non-similar systems are obtained. Let � be given by:

A = r� diag(1, i, −i), r� = 0.99, B = CT, C = [1, 1, 1].
Then hk = rk

�(1 + ik + (−i)k) and consecutive single-step-reduction leads to the
systems

�2 := (A, B, C), A =
[

0 1
−0.4852 0.4899

]
, B = [0, 1]T,

C = [−0.4798, 3],
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�cons := �1 := (α, 1, h0), α := H̃ 1†∞ h̃1∞ =
h̃0

h̃1
...


† h̃1

h̃2
...

 = 0.2501,

h̃k := CAkB.

On the other side, the two-step-reduction leads to

�̃ = (̃α, 1, h0), α̃ := H 1†∞ h1∞ =
h0

h1
...


† h1

h2
...

 = 0.3236.

Since α /= α̃, �cons and �̃ are non-similar.

6. Comparison of consecutive single-step-reductions to multi-step-reductions

According to Theorem 2 for every stable, diagonalisable system � a (ν − 1)-
dimensional stable system �̂ exists with Markov parameters, which are “similar” to
the original ones. In particular, �̂ generically again fulfils the reduction assumptions,
such that �̂ itself can be reduced. Thus one obtains a sequence of stable systems
with descending state space dimensions and similar impulse responses. Based on the
Nyquist plots, we now compare the approximation quality related to consecutive sin-
gle-step- versus multi-step-reductions for one concrete example. For stable discrete
systems the complex number set

G(T) = {G(eiω) : ω ∈ [0, 2π]} ⊂ C

relates the output (yk)
∞
k=1 to an input of the form (uk)

∞
k=0, uk = cos(ωk), according

to

yk ≈ |G(eiω)| cos(ωk + ϕ(ω)), ϕ(ω) = arg G(eiω).

Therefore, the quantity ‖G − Ĝ‖2 yields a measure for the preservation of the IO-
behaviour by the passage from � to �̂.

Example 3. Let ν = 40, r� = 0.93, A = diag(αk)
ν−1
k=0 ∈ Cν×ν , αk = r�e

2π i
ν

k B =
[1, . . . , 1]T ∈ Rν , and

C = [g1, g2, . . . , g20, g21, g20, . . . , g2],
[g1, . . . , g21] := [8, 8, 2, 6, 5, 5, 3, 8, 8, 8, 6, 7, 2, 6, 8, 10, 4, 4, 10, 3, −9].

Then G(s) = ∑ν
k=1 gk(s − αk)

−1, and Fig. 4 (Nyquist plot) compares G(T) (solid
line) to Gcons(T) (dotted line), where Gcons represents the transfer function of the
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10-dimensional system �cons, obtained after 30 consecutive single-step-reductions.
In every reduction step N := 500 Markov parameters have been used.

Fig. 5 compares Gcons(T) (dotted line) to Ĝ(T) (solid line), where Ĝ represents
the transfer function of the system �̂, obtained by reduction of 30 state space dimen-
sions in one step.

Obviously both reduction procedures lead to a satisfying reproduction of the ori-
ginal Nyquist plot. By virtue of the second figure it seems that some of the small
loops are better preserved by the consecutive single-step-reductions. Such phenom-
ena will be investigated by the authors in a future article.

7. Comparison of multi-step-reductions to reductions obtained by balanced
truncation

A stable discrete system � = (A,B,C) is said to be balanced, if a non-negative
diagonal matrix X =: diag(σ1, . . . , σν), σ1 � · · · � σν � 0 exists, which simulta-
neously solves the Stein equations
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Fig. 6. G(T), Ĝ(T), Gtrunc(T), σ(A), σ(CQn), σ(A11), gk , σk .
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X − AXA∗ = BB∗, X − A∗XA = C∗C.

The decreasingly ordered numbers σi are called the singular values of �. For every
stable system a transformation matrix T exists, such that

�bal := (Abal, Bbal, Cbal) := (TAT −1, TB,CT −1)

is balanced. To find T , assume that � is minimal, and that P and Q satisfy

P − APA∗ = BB∗, Q − A∗QA = C∗C.

Then P = ∑∞
k=0 A

kBB∗(A∗)k , and Q = ∑∞
k=0(A

∗)kC∗CAk , which means that
P and Q are positive definite, and the transformation matrix T is given by T :=
X̂1/4U∗R−∗. Here, R is obtained by the Cholesky decomposition of P =: R∗R. The
diagonal matrix X̂ and the unitary matrix U are obtained by the diagonalisation of
the product RQR∗ =: UX̂U∗. In particular, the singular values of � are the square
roots of the eigenvalues of RQR∗: X = X̂1/2. Now, truncation of �bal yields a stable
system �trunc := (A11, B1, C1), where

[Aij ]2
i,j=1 := Abal, [BT

1 , BT
2 ]T := Bbal, [C1, C2] := Cbal,

A11 ∈ Cn×n, CT
1 , B1 ∈ Cn.

Fig. 7. [r�, ν, n, N] = [0.986, 400, 5, 1000].
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Estimates for maxω∈[0,2π] |G(eiω) − Gtrunc(eiω)| can be found in [29], and in [35,
Chapter 21.8].

To transform � into balanced form one has to solve two ν-dimensional matrix
equations and to realize two decompositions. On the other hand for our multi-step-
reduction procedure one has to determine the Markov parameter sequence
(CAkB)N−1

k=0 , and to invert the n-dimensional Hankel matrix product Hn
N

∗Hn
N for

sufficient large N . Hence, for n � ν our approach avoids the numerical solution of
ν-dimensional matrix problems. The following example tries to illustrate, that the
obtained reduction results are very similar despite their very different computational
efforts.

Example 4. For the 40-dimensional system of Example 3 one obtains Fig. 6.
Fig. 6.1.1 displays the Nyquist plots of the original system � (solid) together

with the plots of the reduced systems �̂ (stars) and �trunc (circles). Obviously, both
reduced model curves are in good accordance with the reference curve. In Fig. 6.1.2
the distribution of the points αk ∈ D (dots), the poles of Ĝ (stars), and the poles of
Gtrunc (circles) are depicted, showing similar distributions for both reduced models.
In Fig. 6.2.1 the distribution of the partial fraction coefficients gk of G(s) is shown,
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and in Fig. 6.2.2 the decreasing sequence of the singular values σk of � in “semi-
logy”-style. The plot of the sequence σ1, . . . , σ40 hereby supports the observation
derived from Fig. 6.1.1, that in the considered case a 10-dimensional reduced system
allows a reasonable approximation of the original one.

In the case where r� tends to 1 the system � becomes instable, and in particular
for r� ≈ 1 numerical difficulties are to be expected. To illustrate the case, where r�

is almost 1, we set [r�, ν, n, N] = [0.986, 400, 5, 1000], and for k = 1, . . . , ν

αk := r� exp(2π ik/ν),

gk := cos(1 + 3πk/ν) + cos(3 + 4πk/ν) + cos(2 + 6πk/ν).

Then for

� := (diag(αk)
ν
k=1, [1, . . . , 1]T, [g1, . . . , gν]), (17)

one obtains Fig. 7.
Fig. 7.1.1 shows the sets G(T), Ĝ(T), Gtrunc(T) (solid line, stars, circles), Fig.

7.1.2 the poles of G, Ĝ, Gtrunc, Fig. 7.2.1 the distribution of the partial fraction coef-
ficients gk of G, and Fig. 7.2.2 the singular values σk in “semilogy”-style. Obviously,
reduction dimension n = 5 already is sufficient.

–40 –20 0 20 40
–40

–20

0

20

40

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

0 100 200 300 400
10

–20

10
–10

10
0

10
10
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Let now the parameters αk, gk ∈ D of the system (17) be generated at random. For
[r�, ν, n, N] = [0.9, 600, 20, 1000], for example one obtains Fig. 8. Finally we con-
sider the case where the eigenvalues of the system (17) are clustered in three regions.
For [r�, ν, n, N] = [0.93, 360, 30, 500], for example one obtains Fig. 9. Here, in
every cluster 200 eigenvalues of A are located. In virtue of Fig. 9.1.2 the question
for the distribution of the poles of Ĝ (stars) depending on the distributions of the
poles of G (dots) arise. Problems of this kind will be considered by the authors in a
forthcoming paper.
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