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Summary

To refine the location of a disease gene within the bounds
provided by linkage analysis, many scientists use the
pattern of linkage disequilibrium between the disease
allele and alleles at nearby markers. We describe a
method that seeks to refine location by analysis of “dis-
ease” and “normal” haplotypes, thereby using multi-
variate information about linkage disequilibrium. Under
the assumption that the disease mutation occurs in a
specific gap between adjacent markers, the method first
combines parsimony and likelihood to build an evolu-
tionary tree of disease haplotypes, with each node (hap-
lotype) separated, by a single mutational or recombi-
national step, from its parent. If required, latent nodes
(unobserved haplotypes) are incorporated to complete
the tree. Once the tree is built, its likelihood is computed
from probabilities of mutation and recombination.
When each gap between adjacent markers is evaluated
in this fashion and these results are combined with prior
information, they yield a posterior probability distri-
bution to guide the search for the disease mutation. We
show, by evolutionary simulations, that an implemen-
tation of these methods, called “FineMap,” yields sub-
stantial refinement and excellent coverage for the true
location of the disease mutation. Moreover, by analysis
of hereditary hemochromatosis haplotypes, we show
that FineMap can be robust to genetic heterogeneity.

Introduction

Demonstrating linkage between a disease gene and a
marker is only one step on the often long road to cloning
the gene. After demonstration of linkage, further recom-
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binant mapping usually can refine the critical region,
especially for simple genetic disorders. Rarely, however,
has recombinant mapping enjoyed much success once
the critical region has been reduced to one or two me-
gabases. This bottleneck is caused by the improbability
that recombinants will be observed in extant family ma-
terial (Boehnke 1994). For these cases, researchers have
turned to other methodologies. For simple genetic dis-
orders, one successful approach has been to infer a crit-
ical subinterval, from the fact that ancestral recombinant
breaks can produce a predictable pattern of linkage dis-
equilibrium between the disease gene and a set of mark-
ers spanning the critical region (Kerem et al. 1989; Häst-
backa et al. 1992, 1994).

Indeed, the analysis of linkage disequilibrium in var-
ious guises is now widely used for fine mapping and has
enjoyed much success (for review, see Devlin and Risch
1995; Jorde 1995; de la Chapelle and Wright 1998). Yet
there remain open questions about how to use optimally
the information from linkage disequilibrium. As far as
we are aware, three general analyses are applied for link-
age-disequilibrium mapping: simple disequilibrium map-
ping, by which the pattern of pairwise disequilibrium
between the disease gene and each of a set of markers
is examined (e.g., see Kerem et al. 1989; Feder et al.
1996); likelihood-based analyses, which use the same
information (e.g., see Hästbacka et al. 1992; Kaplan et
al. 1995; Devlin et al. 1996); and haplotype fine map-
ping, which is the focus of this report.

Devlin and Risch (1995) examine the properties of
simple disequilibrium mapping, providing theoretical
support for the empirical success of this approach. Like-
lihood-based methods that use the same information are
complementary and more-rigorous approaches to infer-
ence. When the information from multiple markers
spanning the critical region is to be integrated, both
methods rely on a multinomial distribution of recom-
binant breaks in intervals between markers. When only
a small number of recombinants are available for sam-
pling—as will often be the case for small critical regions
and relatively recent disease mutations—the distribution
is inaccurately estimated, and information from a sample
of disease chromosomes will be unreliable (Devlin et al.
1996). Other methods, which rely on haplotype infor-
mation, may be more useful in these settings.

Unlike pairwise disequilibrium methods, methods us-
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Figure 1 Homologous portions of a chromosome. The colored blocks represent adjacent markers, and matching colors represent matching
alleles. a, Illustration of how, under the assumption that the disease mutation lies in gap 4, between markers 4 and 5, observed haplotypes A–E
might be arranged with A as the root. In the tree, and are unambiguous recombinations, whereas the other edges could beA r D L1 r E
caused by either recombination or mutation. Notice that, although haplotypes A and E are similar, they cannot be directly connected by a single
edge. It appears that a haplotype is missing from the sample (or the population). Thus a latent haplotype (L1) is required for completion of
the tree. The topology is approximately star shaped, with most haplotypes directly connected to the root, as would be expected from evolutionary
theory for rapidly growing populations. b, Same scenario under the assumption that three more haplotypes (F–H) are observed. Of haplotypes
A–E, F is most similar to D. To connect this pair, two latent haplotypes are required. Consequently, when the haplotypes are fit into a single
tree, the tree is spindly rather than star shaped. If, however, two trees are fit to these data, then haplotypes A–E and F–H will split into separate
clusters.

ing haplotypes to fine-map disease genes are relatively
undeveloped. Most researchers use approaches that are
analogous to simple disequilibrium mapping in that they
evaluate the pattern of haplotype-sharing without for-
mal statistical analysis. Recently, both McPeek and
Strahs (1999) and Service et al. (1999) have provided
statistically based methods. In this article we propose a
different statistical method for haplotype fine mapping
and make available a computer program (FineMap) to
implement it. The data for FineMap are a sample of
disease and normal chromosomes, each chromosome in
which is typed for a set of polymorphic genetic markers.

With the assumptions (a) that the disease mutation

falls within a specified gap between adjacent markers
and (b) that a single ancestral mutation gave rise to all
disease haplotypes (the homogeneous case), the first
stage of the analysis combines parsimony and likelihood,
to build an evolutionary tree of disease haplotypes with
each node (haplotype) separated, by a single mutational
or recombinational step, from its parental node. The
guiding principle for connecting nodes is that the disease
mutation must be preserved in the assumed gap for all
haplotypes. If more than one mutational or recombi-
national step is required to connect some nodes, latent
nodes (unobserved haplotypes) are incorporated to com-
plete the tree. An illustration of this process is given in
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figure 1a. Once the tree is built, its likelihood can be
calculated on the basis of the probability model for mu-
tations and recombinations as well as on the basis of
prior information about the shape of the tree. On the
basis of the likelihood model, each gap is assigned a
posterior probability that the disease mutation is located
within the interval.

For the heterogeneous case, only subsets of haplotypes
can be organized into coherent evolutionary trees, and
the number of such clusters is unknown. For each disease
location and specified number of clusters, the algorithm
organizes the data into (approximately) homogeneous
clusters and fits separate trees to each cluster (fig. 1).
The algorithm now compares the fit of the data to mod-
els with varying numbers of clusters. On the basis of a
diagnostic, the data analyst chooses how many clusters
to fit, and then inference will be based on the biggest
cluster only.

Although our proposed method is likelihood based,
it does not attempt to evaluate the full likelihood. We
deliberately chose simplicity, for several reasons. First,
we believe that the results of this method are easy for
the user to interpret. Second, because of its simplicity,
our method requires only a simple assumption regarding
the evolutionary process. Third, our method is very flex-
ible and should be extensible (with modifications) to
settings more complex than those described herein. We
believe that such flexibility will be critical for haplotype
fine mapping of complex disease genes, for which disease
chromosomes may not be identifiable and which are
linked to a particular region in only a fraction of cases.
Our method is designed to fine-map a gene in its critical
region, on the basis of the information from haplotype-
sharing; if a researcher were to attempt to fine-map a
nonexistent gene, the method’s behavior would be
unpredictable.

In our section on “The Probability Model,” we de-
velop the probability model underlying our approach to
fine mapping. After the overview are descriptions of each
component of the probability model, such as the recom-
bination likelihood and the mutation likelihood. In the
next section, “Inference about d,” we describe methods
of inference that are based on the previously developed
probability model. Inference for a single ancestral hap-
lotype is presented, then a sketch of the tree-building
algorithm (full details are in Appendix B), and, finally,
we revisit inference while outlining our treatment of mul-
tiple ancestral haplotypes. In the third section,
“FineMap Performance,” we describe the performance
of the method, on the basis of evolutionary simulations,
and the analysis of some data on hereditary hemochro-
matosis (HH) haplotypes. Readers may wish to look
ahead to this last subsection, which makes the meth-
odological developments concrete by the analysis of HH
data.

The Probability Model

Let the sample space be the population of disease hap-
lotypes consisting of ordered markers labeled from “1”
to “ .” We index the gaps between adjacent markersL
from left (proximal) to right (distal) on a haplotype, with
d being the gap containing the mutation and beingD

the set of gaps under consideration. Let be the spaceT

of rooted-tree topologies, which describe the ancestor-
descendant relationships between haplotypes, and let t

represent a particular topology. The parameter of inter-
est is . Let be a random sample from the sam-l = (d,t) Y
ple space, and let be the unique haplo-′Y = (S , ) ,S )0 n

types in , with evolutionary time advancing from theY
root and radiating outward through the branches ofS0

the tree.

Overview

Given the topology of the directed tree and a diseaset

located in gap d, the likelihood of observing Y reduces,
by the Markovian property of such trees, to

L(d,t) = P(Y d d,t) = P (S is root) #� P (S d S ) , (1)l 0 l j i

where the product is taken over all edges in the graph.
In the spirit of parsimony, a simple likelihood is obtained
by assuming that each edge represents a single evolu-
tionary change. Thus means that is a descendantT d S T
of via either a single mutation or recombination.S
Through this assumption time drops out of the likeli-
hood, as described below. For any empirical fine-map-
ping effort, this single-change assumption is satisfied by
imputing any missing nodes. Latent nodes are restricted
to those haplotypes that differ from their predecessor by
a single marker. This restriction is imposed to control
the influence of latent haplotypes on inference. Given a
set of observed and latent haplotypes, the likelihood of
the tree is computed as the product of edges (see eq. [1]),
without regard for whether the nodes are observed or
latent.

A priori, it is unclear whether an edge represents a
mutation or a recombination, so we average over the
uncertainty between the two possibilities to form a
mixed likelihood. Let andP(mut d mut or rec) P(rec d

be the relative probabilities that a mutationmut or rec)
or a recombination occurred, given that, at most, a single
mutation or recombination occurred. Then the edge like-
lihood is P (T d S) = P (T d S,mut)P(mut d mut or rec) �l l

If and differ at moreP (T d S,rec)P(rec d mut or rec). S Tl

than one locus, then is 0, and it is clearP (T d S,mut)l

that a recombinational event occurred. The edge likeli-
hood then simplifies to P (T d S) = P (T d S,rec)P(rec dl l

. If and differ at exactly one locus, thenmut or rec) S T
both terms contribute to the likelihood.
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To compute the relative probability of a single mu-
tation, , we require an estimate ofP(mut d mut or rec)
the probability of observing either exactly one muta-
tional (A) or one recombinational event (B). Then it
follows that . Let beP(mut d mut or rec) = A/(A � B) gk

the probability of a mutation at locus . The probabil-k
ity of one mutation during a given meiosis is then A =

. Analogously, let be the probabil-S g P (1 � g ) vk k i(k i j

ity of a recombination in gap . The probability of re-j
combination during a given meiosis is then B =

.S v P (1 � v )j j i(j i

There is little information available from which to
model the root probability; is estimated byP (S is root)l 0

the proportion of the haplotype in , given that olderS Y0

disease haplotypes are expected to be more numerous
than their younger descendants (Donnelly 1986). It will
become clear shortly that this estimate has little impact
on the likelihood.

Recombination Likelihood

Suppose that S and T appear to be related through a
recombination and that the two haplotypes are identical
by state (IBS) proximal to gap and differ distal to gapk0

. (We define “IBS” here as any identical pair of hap-k0

lotypes regardless of descent relations, following Lange
[1997; Elandt-Johnson 1971], and define “IBS*” to
mean that, although the haplotypes are identical, a por-
tion, at most, of the haplotype is identical by descent
[IBD].) Let be the gap number of the point of recom-R
bination. The point of recombination could be anywhere
between the disease location and ; hence the like-d k0

lihood for a recombination edge of the evolutionary-tree
topology is

k0

P (T d S,rec) = P (T d S,rec,R = k)P(R = k) . (2)�l l
k=d

Let be the fragment of spanned by markersm : nS S
. Focus on the first term on the right sidem,m � 1, ) ,n

of the equation above. If is directly connected toT S
and the edge is determined by a recombinant break in
gap , then must be IBD to and is a1 : k 1 : k (k�1) : Lk T S T
partial haplotype obtained via recombination. There-
fore,

P (T dS,rec,R = k)l

1 : k 1 : k (k�1) : L 1 : k 1 : k= P (T IBD to S ,T dT IBS to S )l

1 : k 1 : k 1 : k 1 : k (k�1) : L= P (T IBD to S dT IBS to S ) # P (T ) .l l

(3)

By an application of Bayes’s theorem,

1 : k 1 : k 1 : k 1 : kP (T IBD to S dT IBS to S )l

1 : k 1 : k= P (T IBD to S )l

1 : k 1 : k/[P (T IBD to S )l

1 : k ∗ 1 : k�P (T IBS to S )l

1 : k 1 : k ∗ 1 : k#P (T dT IBS to S )] . (4)l

To complete the likelihood, we require a model for
, the probability of obtaining a given hap-(k�1) : LP (T )l

lotype such as through the process of re-(k�1) : LT
combination. Our approach is described below, un-
der “Nonparametric Haplotype Probabilities.”

In equation (2), by summing over recombinant loca-
tion from , our model allows for cryptic re-k = d, ) ,k0

combinations—that is, recombinations that extend from
over to even if and are IBS proximal to .L d S T k0

Although probabilistically correct, this likelihood re-
quires a good model for . Unless a very largek : LP (T )l

number of normal haplotypes have been sampled, ac-
curate estimates of haplotype frequencies are unlikely.
To compensate, we replace equation (2) with the non-
cryptic recombinant model, which presumes the occur-
rence of the shortest possible recombination consistent
with the data: P (T d S,rec) = P (T d S,rec,R = k )P(R =l l 0

. This likelihood is more conservative than equationk )0

(2), because it underestimates the probability of the re-
combination and hence provides a somewhat broader
credible interval for location of the disease mutation.

Throughout the discussion above, we assume that a
single recombination has occurred. Implicitly, we write

to mean . If we let andP(R = k) P(R = k d no. rec = 1) b
denote the probability of a recombination in the entirebk

interval and in the th gap, respectively, thenk

g(1 � b) b bk kP(R = k d no. rec = 1) = = ,g(1 � b) b b

where , the number of generations until recom-g � 1 S
bines to form , conveniently cancels out of theT
equation.

In practice, other terms in the likelihood must be spec-
ified. For example, we might assume, a priori, that

. This11 : k 1 : k 1 : k ∗ 1 : kP (T IBD to S ) = P (T IBS to S ) =l l 2

noninformative prior favors neither of the hypotheses.
Making the IBD hypothesis less probable has the effect
of diminishing the chances of falsely connecting hap-
lotypes in an evolutionary tree. Thus, for a given prob-
lem, we might choose a prior favoring either hypothesis,
using this term as a tuning parameter. The quantity

appearing in equation (4)1 : k 1 : k ∗ 1 : kP (T d T IBS to S )l

can most easily be computed empirically as the frequency
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of in a reference sample of haplotypes, as described(1 : k)T
below under “Nonparametric Haplotype Probabilities.”

Another difficulty with practical implementation is
that it can be impossible to estimate recombination frac-
tions between markers separated by relatively small
physical distances. In this instance, it seems reasonable
to assume that is proportional to the length of gapv /vk

, and, because interest lies in small critical regions, tok
take 1 cM = 1 Mb. Rough estimates of physical distance
separating markers are usually available for fine-map-
ping efforts, and these estimates should be sufficient (see
below, under “HFE and HH”).

Mutation Likelihood

There are many kinds of genetic markers that could
prove useful for fine mapping. Of these, the most com-
monly used markers are short tandem repeats (STRs).
Arguably, in the near future, single-nucleotide polymor-
phism (SNP) markers may be favored. The latter are
believed to have a very small probability of mutation,
on the order of – . Thus, mutation probabilities�6 �810 10
for SNPs will have very little influence on the likelihood,
and most changes in SNP-based haplotypes will be be-
cause of recombination. STRs are a different matter;
their mutation rates appear to vary between and�210

(for polymorphic repeats). Thus, this section fo-�410
cuses on the case of STR markers, although the method
(and FineMap) accommodate any kind of genetic
marker.

If two haplotypes, S and T, in the evolutionary tree
are related through a mutation, then the two haplotypes
must differ at exactly one marker position. In this case,
time drops out of the likelihood, for the same reason
that it drops out of the recombinant likelihood. Let M
be the marker position at which they differ, let be theL
length of the haplotype, and let denote haplotype(�m)S

excluding position .S m
Define to be the size of the mu-m : m m : mD = FS � T Fm

tation change between and at marker (i.e., theS T m
difference between the number of repeating units of the
STR), and suppose that for some probabilityD ∼ mm m

distribution . If S and T differ at position ,m M = mm 0

then the likelihood for a mutation edge of the evolu-
tionary tree topology is P (T d S,mut) = P (T d S,mut,M =l l

. Focus on the first factor on the right sidem )P(M = m )0 0

of the equation above. If is connected by an edge toT
and the edge is determined by a mutation at positionS
, then must be IBD to , and is(�m ) (�m ) m : m0 0 0 0m T S T0

obtained through a mutation of size . Therefore,dm0

P (T dS,mut,M = m )l 0

(�m ) (�m ) (�m ) (�m )0 0 0 0= P (T IBD to S ,D = d dT IBS to S )l m m0 0

(�m ) (�m ) (�m ) (�m )0 0 0 0= P (T IBD to S dT IBS to S )l

#P (D = d ) .l m m0 0

In practice, mutation rates for the marker loci and the
distribution of mutational changes are required. Mu-
tation rates and the distribution of size changes for STRs
can be estimated directly from population data (Chak-
raborty et al. 1997; Rannala and Slatkin 1998), although
it is unclear how effective these estimation methods are
for individual loci. In any case, the method and FineMap
can readily accommodate differential mutation rates and
sizes of mutations, however they are derived.

One simple solution is to assume that mutation rates
are constant across loci and to glean both the mutation
rate and the distribution of mutational changes from the
literature. Weber and Wong’s empirical study (1993)
suggests .001 with one-step mutations at rate = 10/gm

11. Alternatively, one might allow mutation rates to vary
across loci by estimating locus-specific rates while keep-
ing a simple model for mutation size. We present such
an analysis in Appendix A and apply these rates to the
HH data (see below, under “HFE and HH”).

Nonparametric Haplotype Probabilities

Throughout this section, it is assumed that a sample
of haplotypes is available from which the frequency of
partial haplotypes may be empirically estimated. In
equations (3) and (4) estimates of terms such as

are required. If a large reference sample of hap-1 : mP (T )l

lotypes is available, this quantity would ideally be ap-
proximated by the frequency of in the sample.1 : mT
However, even for a large reference database, the ob-
served frequency of the partial haplotype in the sample
may be 0. Consequently, we approximate the required
probability when necessary, as described below.

The probability of observing the partial haplotype
can be written as)[x x x ]1 2 m

)P(x x x ) = P(x )P(x d x )P(x1 2 m 1 2 1 3

) )d x x ) P(x d x x x ) . (5)1 2 m 1 2 m�1

The simplest approach to estimating this quantity as-
sumes independence between the markers and estimates
equation (5) by the product of allele frequencies. An-
other simple approach assumes a first-order Markov
model; however, the Markov model may not be very
accurate, because dependencies can extend much farther
than neighboring markers. To account for the positive
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dependencies between alleles, we can base the condi-
tional probabilities on the highest possible level of
“haplotype dependence” in the reference database. Sup-
pose that the longest observed haplotype matching

and including is . Then we)[x x x ] x [x x x ]1 2 j j j�2 j�1 j

define

P(x x x )j�2 j�1 j)P(x d x x x ) = P(x d x x ) = .j 1 2 j�1 j j�2 j�1 P(x x )j�2 j�1

When the partial haplotype of interest is observed in the
database, this estimator is simply the observed frequency
of the haplotype.

In general, the haplotype database used in this analysis
would be derived from “normal” chromosomes. If the
reference database consists of multilocus genotypes
rather than haplotypes, then gene-counting approaches,
such as those developed by Hawley and Kidd (1995)
and Xie and Ott (1993), could be used to obtain esti-
mates of haplotype frequencies. To avoid haplotype fre-
quency estimates of 0, a modified version of the method
described above could be implemented to obtain partial
haplotype frequencies.

Prior Distributions and Penalized Likelihood

We note that any valid prior information can be in-
corporated into the probability model (and into
FineMap). Here we describe priors that are automati-
cally implemented by FineMap on the basis of prior
information about d and t. Prior information can also
be incorporated into a likelihood analysis via a penalty
function.

Priors.—Unless the markers were specifically devel-
oped with a particular gene in mind, the disease muta-
tion is more likely to fall within a larger gap than in a
smaller one. Thus, with no extra prior information, a
simple but sensible choice for the prior over the possible
disease locations places mass in the th gap, pro-p dD

portional to the relative physical length of the th gap.d
As for the prior over the tree space , we note thatpT

many human populations have experienced exponential
growth during the past several hundred generations, and
such growth has the impact of creating approximately
star-shaped trees in which much of the branching occurs
at or near the root (Slatkin 1996). To incorporate this
feature into the likelihood, we formulate a prior for tree
topologies that favors trees that are approximately star
shaped. To formalize this idea, given a tree topology ,t

let be the number of extra edges required to connectZj

to the root. This value is 0 if is directly connectedS Sj j

to the root; otherwise, it is equal to the number of nodes
separating from the root. The total number of extraSj

edges in the tree is . is assumed to follow anC = S Z Cj=1 j

distribution, in which can be interpretedPoisson (nf) f

as the expected number of extra edges required to con-
nect an observed haplotype to the root, or the mean
depth of the tree topology. Set . Pro-p (t) = P(C(t) d f)T

vided that a fairly small value for is chosen, this priorf

favors trees that are approximately star shaped. For ex-
ample, for this prior gives equal weight to pathsf = 1
with 0 or 1 extra edges and considerably less weight to
trees with paths having an average of �2 extra edges.
We have found (2) to be a sensible choice forf = 1
mutations of about ∼100 (∼200) generations old.

Penalized likelihood.—For a given gap location , ifd
we perform a direct maximization of the likelihood to
find , we ignore the fact that the data most likely aret̂

generated by evolutionary processes favoring star-
shaped trees, as noted above. We can improve our model
selection by performing a penalized likelihood analysis
(see Good and Gaskins 1971), in which the optimal tree
maximizes the penalized log likelihood, log P(Y d d,t) �

. In the tradition of penalized likelihood, thepenalty(l)
purpose of the penalty is to down-weight trees that are
overly complex, with branching occurring far away from
the root. A natural choice for the penalty function is

, as it has the desired properties.� log p (t)T

It is more convenient to work with the negative of the
penalized log-likelihood, because log probabilities are
negative. This quantity can be interpreted as the weight
of, or the cost to explain, the observed haplotypes in the
topology. To summarize, for a given subset of haplo-
types, , the objective is to find to minimize the quan-S t

tity . Because of thew (t) = � log P(S d d,t) � log p (t)d T

choice of the penalty function, this function is also the
negative-log joint posterior distribution of .(d,t)

Inference about d

Single Ancestral Haplotype

We wish to determine which gap between adjacent
markers actually contains the disease mutation. If all that
is desired is a point estimate for its location, then, given
the probability model, we can calculate the maximum-
likelihood estimate by finding , such thatˆ ˆˆ ˆd l = (d,t)

ˆ ˆL(d,t) = max L(d,t) = max P(Y d d,t) .
d�D,t�T d�D,t�T

Alternatively, we could consider a Bayesian analysis that
is based on the marginal posterior distribution of ,d
rather than on the likelihood:

P(d d Y) ∝ p (d) P(Y d d,t)p (t) (6)�D T
t�T

= p (d)P(Y d d) . (7)D

The random variable takes on a finite set of values;d
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thus, the proportionality constant can be computed di-
rectly. In the Bayesian analysis, a natural point estimator
for is the mode of the posterior distribution of .d d
Likewise, a natural interval estimate for is a %-cred-d g

ible interval, which is the Bayesian analogue to a con-
fidence interval and is the smallest continuous interval
containing � % of the posterior probability (Lee 1989).g

In practice, direct computation of the marginal pos-
terior is infeasible, because we cannot truly perform the
summation in expression (6). Unlike the tree spaces en-
countered in certain phylogeny problems, the possible
presence of latent nodes in the tree topologies creates an
infinite number of trees to consider. A convenient ap-
proximation to in expression (7) for our pur-P(Y d d)
poses is , where mini-ˆ ˆ ˆ ˆexp {�w (t )} = P(Y d d,t )p (t ) td d d T d d

mizes . This is simply the largest term of the sumw (t)d

in expression (6). Bounds on the approximation can be
computed by following the approach of Liu et al. (1999).

Maximization over the Tree Space

Inferences based on , whether maximum-likelihoodd
estimates or posterior distributions, ultimately rely on
maximizing some given function over . However, thisT

task is quite difficult, because has infinite cardinalityT

and is without an algorithmically useful mathematical
definition, which makes it difficult to search in a sys-
tematic way. A way around this problem is to use heu-
ristics to construct a tree that lies within a small neigh-
borhood of the optimal tree in and to use theT

constructed tree as an approximation to the optimal tree.
Our chosen heuristics favor trees with fewer latent
nodes, because fewer latent nodes implies fewer edges
to multiply together when the likelihood is computed.
When we do impute latent nodes between ancestral and
descendant haplotypes, we choose them to maximize the
total probability of edges from the ancestor to the
descendant.

Suppose that we are given a disease location . Thed
idea is to build trees iteratively by joining larger and
larger clusters of haplotypes. Clades, the smallest clusters
of haplotypes where each edge represents a single-locus
change, should join first. We want to merge clusters that
“best” merge together, meaning that, at a given iterative
step, the two haplotype clusters with the highest prob-
ability path between them should be merged together.
We stop when only a single cluster remains. The details
of the tree-building algorithm can be found in Appen-
dix B.

Multiple Ancestral Haplotypes

There are several scenarios under which the observed
haplotypes cannot be organized into a single evolution-
ary tree: (i) the disease mutation evolved from a single
ancestral haplotype, but the early history of the tree has

been lost; (ii) the disease mutation arose more than once
in the population, each time on a different ancestral
haplotype; (iii) more than one type of disease mutation
is present in the gene under study; and (iv) some diseased
individuals do not have a mutation in the gene under
study. In this subsection, we lay out an approach to
treating such heterogeneous data. This methodology re-
quires that at least a cluster of disease haplotypes has
evolved from a common ancestral chromosome. The ob-
jective is to find this cluster, , and to analyze it as∗S

described in the previous subsection. Clearly, the effec-
tiveness of the analysis increases as the fraction of the
sample descending from a common ancestor increases.

The method of building trees described in the previous
section can be used easily to find appropriate clusters of
haplotypes, because, given a fixed disease location , wed
can choose when to stop the iterative clustering process
by conditioning on the existence of weakly connecteda
components. These subsets may be found for each a-
and-d value. Define to be the largest of these subsetsSad

of haplotypes, given a and d. We focus our interest only
on this largest subset, since it is unlikely that a sample
of observed haplotypes will be large enough to yield
useful information concerning the smaller remaining
clusters of haplotypes.

To select our desired subset from∗S {S : a � 1,1 �ad

, whose elements are likely to be of varying sizes,d � L}
we need a size-independent metric. Let be the num-FS Fad

ber of unique observed haplotypes in . Then one suchSad

metric is , where is the evolution-W = [w (t )]/ FS F tad d ad ad ad

ary tree for found during the clustering process.Sad

may be interpreted as the average weight of a pathWad

from the root to an observed haplotype.
The following outlines our algorithm to find the best

subset of data:
1. Fix , and, for each disease location , find .a d Sad

2. For each , find that minimizes as a∗a d = d (a) Wad

function of .d
3. Plot as a function of .W a∗ad (a)

4. Choose as the point that gives a dramatic∗a = a
decrease in .W ∗ad (a)

5. Declare and use it for inference as de-∗S = S ∗ ∗a d

scribed above, under the heading “Single Ancestral
Haplotype.”
The metric is nonincreasing in , because it isW a∗ad (a)

always possible to obtain a reduction in the overall av-
erage path weight by removing the heaviest path weight
from the tree topology. For this reason, we look for a
dramatic drop in the criterion, rather than aiming for
the absolute minimum. This approach is akin to a model-
selection criterion for the number of principal compo-
nents and for the number of dimensions in multidimen-
sional scaling (Jobson 1992). Because step 4 is not based
on a strictly objective criterion, the choice of is not∗a
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Table 1

Achieved Coverage and Length of the
Credible Interval for Evolutionary
Simulations

SETTING

NOMINAL COVERAGE

(# 105 bp)

.90 .95 .99

Ia:
Coverage .970 .985 1.000
Length 5.140 5.350 5.880

IIb:
Coverage .980 .990 .995
Length 6.420 6.680 7.290

IIIc:
Coverage .965 .975 .990
Length 4.020 4.190 4.700

IVd:
Coverage .980 .985 .995
Length 5.570 5.840 6.520

a Disease mutation arose 100 generations
before present (GBP), in the center of the crit-
ical region (gap 9 of 17 gaps).

b Mutation arose 100 GBP, in gap 5.
c Mutation arose 200 GBP, in gap 9.
d Mutation arose 200 GBP, in gap 5.

Table 2

Achieved Coverage and Length of Interval for
Design I Simulations (Table 1) for Different Priors
on Tree Topologies (i.e., Different f)

f

NOMINAL COVERAGE

(# 105 bp)

.90 .95 .99

.2:
Coverage .98 .98 1.000
Length 5.03 5.25 5.710

.5:
Coverage .98 .99 1.000
Length 5.05 5.26 5.780

2.0:
Coverage .95 .98 .995
Length 5.14 5.46 6.130

determined automatically (i.e., the user of FineMap must
make this choice).

Note that may be 2, even when the smaller subset∗a
of haplotypes does not share a common evolutionary
history. This observation follows because the metric

depends only on the largest subset of haplotypes.W ∗ad (a)

If this subset is correctly selected in the first split, it is
unlikely to change very much as a grows.

Choice of the appropriate subset of haplotypes exerts
a great deal of influence on the analysis. Thus, we suggest
some additional informal diagnostics. Define two ob-
served haplotypes as adjacent if they are either directly
connected by an edge or connected via a series of edges
defined by one or more latent nodes. Define the adjacent
path weight as the sum of the weights corresponding to
the edges connecting two adjacent haplotypes. The key
indicators of a poor tree are (i) an unbalanced (i.e., not
star-shaped) tree, (ii) heavy paths with multiple latent
nodes between adjacent haplotypes, and (iii) only small
shared segments between adjacent haplotypes. In gen-
eral, if one is in doubt, the analysis should be performed
without the haplotypes that are difficult to connect to
the tree (as defined by ii and iii above). A more formal
implementation of this idea would involve performing
a jackknife resampling approach to locate haplotypes of
high influence (Davison and Hinkley 1997). In our ex-
perience, choosing too large a value for tends to in-∗a
crease the size of the credible interval. Within reasonable
limits, it will not bias the results in any other manner.
If excluding a haplotype changes the results dramatically,

the investigator should interpret the results with great
caution.

FineMap Performance

Simulations

Methods.—The evolutionary program mimicked fea-
tures of natural populations as closely as possible by
using direct simulation methods. Diploid individuals
paired at random in their generation, mated, and pro-
duced a random number of children. The expected num-
ber of progeny per couple was determined by an ex-
ponential growth rate, and the variance in progeny
number was binomial (i.e., Fisher-Wright model [King-
man 1982]). Each population was founded by 1,000
individuals and remained at that size for 50 generations.
This initialization, together with small population
growth in early generations, generated random linkage
disequilibrium among alleles on normal chromosomes.
After 50 generations, a disease mutation was introduced
on one chromosome and the population grew exponen-
tially for 100 or 200 generations, to a final size of 50,000
individuals. If the disease mutation was lost at any gen-
eration, or if its relative frequency became too common
(1.015), the simulation was reinitiated.

Sixteen STR markers were simulated, covering a 2-
Mb critical region, with spacings (in Mb) between mark-
ers as follows: – .25 – – .25 – – .011 – –m m m m1 2 3 4

.011 – – .011 – – .011 – – .011 – – .011m m m m5 6 7 8

– – .011 – – .011 – – .011 – – .011 –m m m m9 10 11 12

– .011 – – .25 – – .25 – . This unevenm m m m13 14 15 16

distribution yields two views of FineMap’s performance.
When all the markers are taken together, FineMap shows
the power of haplotypes to refine a fairly large critical
region. Alternatively, imagine that the outer,
more–widely spaced markers were excluded by linkage
analysis. In this case, the simulations give a conservative
view of the information available from an evenly spaced
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Figure 2 Tree structure for a homogeneous subset of 31 unique
HH haplotypes. Circles signify the five inferred, latent haplotypes.

Table 3

Weight Metric for Differing Subsets of
Haplotypes

a W ∗ad (a) Drop

1 9.41
2 7.87 1.54
3 7.39 .48
4 6.61 .78

NOTE.—a indexes the number of subsets
of haplotypes; is the value of theW ∗ad (a)

metric for the largest of the a subsets.

grid of markers plus additional, external markers that
help to determine recombinants. (In fact, we recommend
the inclusion of proximate markers in the analysis, even
if the analysis will eliminate them, because they con-
tribute substantial information regarding the origins of
haplotypes. An option in FineMap allows the user to
designate excluded regions.)

The median number of repeats per marker initially
was 50; the initial distribution was roughly bell shaped,
with a range of 47–53 and 80% heterozygosity. To pro-
duce the founder population, alleles were randomly as-
signed for each of the 16 markers, to produce a chro-
mosome, and chromosomes were randomly assigned to
individuals. We took to be a unit-shifted geometricm

distribution, with , and tookD � 1 ∼ geometric (10/11)m

to have a discrete uniform distribution on .M {1, ) ,L}
There were no restrictions on size changes. The mutation
rate was .001. The recombination process was a no-
interference Poisson model based on the assumption that
1 cM = 1 Mb.

Populations were generated for each of four condi-
tions: for designs I and III, the disease mutation was
located in the middle of the critical interval (gap 8); for
designs II and IV, the disease mutation was proximal
(gap 4). The disease allele occurred 100 (designs I and
II) or 200 generations (designs III and IV) generations
in the past. From each population, a random sample of
100 disease and normal chromosomes were chosen for
analysis.

Results.—Simulation results suggest that FineMap’s
posterior distribution is an excellent guide for the lo-
calization of the disease mutation. In fact, FineMap’s
coverage always exceeded the nominal coverage (table
1). The results also show substantial refinement of the
localization of the disease mutation, with greater re-
finement for older and more–centrally located mutations
(table 1).

For the simulation analyses, we used ( ) forf = 1.0 2.0
the Poisson prior on tree topologies. These priors agree
roughly with the average tree obtained from simulation
results: when trees were built conditional on the mu-
tation being placed in its true location, the average depth
( ) was 0.96, 0.94, 1.75, and 1.73, for 100 generationsC/n
symmetric, 100 generations asymmetric, 200 genera-
tions symmetric, and 200 generations asymmetric, re-
spectively. To evaluate the impact of a range of reason-
able values for , we evaluated the design I simulationsf

with of 0.2, 0.5, and 2.0 (table 2). Clearly, coveragef

results were relatively insensitive to plausible choices of
.f

For the simulation analyses we used the true mutation
model, with mutation rate .001. To evaluate the impact
of improper choice of mutation rate, we reanalyzed the
design I simulations with a 10-fold-lower mutation rate.
Misconstruing the mutation rate had only a minor im-
pact on the analysis.

HFE and HH

HH, which occurs in ∼1/300 Europeans, is a reces-
sively inherited disease resulting from imbalanced iron
metabolism. Approximately 90% of cases are caused by
a single mutation, in HFE (Feder et al. 1996), that maps
to the HLA region on chromosome 6p. To evaluate the
effectiveness of linkage disequilibrium in fine mapping
of HFE, Thomas et al. (1998) analyzed 43 STR loci from
101 patients of European ancestry who were affected by
HH and from 64 Centre d’Étude du Polymorphisme Hu-
main (CEPH) controls, all grandparents of European
ancestry. CEPH control chromosomes were phased by
genotyping of additional individuals from the parental
generation. Only a portion ( ) of the patients withn = 20
HH were phased, because the authors’ analysis did not
require haplotypes. Instead, the authors used the phased
chromosomes to identify the ancestral haplotype on
which the predominant mutation arose and then used
an algorithm based on the transition from homozygosity
to heterozygosity to infer ancestral recombinant breaks.

On the basis of these data, we present a worked ex-
ample to make the development of FineMap concrete.
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Figure 3 Observed and latent haplotypes corresponding to figure 2. “ANC” denotes the inferred most recent ancestor, “Weight” denotes
the negative log likelihood of the edge connecting the haplotype to ANC, and “[L]” denotes a latent haplotype. The portion of the haplotype
that differs from ANC is color-coded green for single-marker differences and red for differences occurring in blocks.

Our analyses use only phased chromosomes derived
from two sources: all disease and normal chromosomes
presented by Thomas et al. (1998) and the small set of
eight chromosomes from individuals with disease that
are presented by Feder et al. (1996, table 1). The latter
set does not carry the predominant mutation in HFE.
Using the authors’ map of the HFE critical region, we
select 14 contiguous markers from D6S2243 (proximal)
to D6S2234 (distal) for analysis. This limited set of
markers allows us to phase more disease chromosomes,
because they are completely homozygous across the re-
gion or are heterozygous at only one marker. The final
count of disease chromosomes is 133 (one chromosome
being eliminated because of presumed overlap between
the Feder et al. and Thomas et al. data sets); the count
of normal chromosomes is 128.

Analysis of a homogeneous subset.—To keep the in-

itial presentation simple, we analyze a homogeneous
subset of disease haplotypes obtained by excluding all
haplotypes carrying the 103 allele at D6S2240 (this will
be justified shortly). Of the disease haplotypes, 39 are
unique. Elimination of those bearing the 103 allele at
D6S2240 reduces the number of unique haplotypes to
31. Placing the disease mutation in its true location of
gap 8, between D6S2238 and D6S2239, FineMap builds
a largely star-shaped tree (fig. 2) consistent with that
expected from evolutionary theory for a recent mutation
and a rapidly growing population (Slatkin 1996). To
build the tree, connecting nodes by one-step changes
requires five latents (fig. 3, latents end-labeled by “L”).
The color of the haplotypes depicted in figure 3 indicates
the differences between haplotypes connected by an
edge. Exactly the same tree is built when the disease
mutation is placed in gap 9, whereas more-spindly (less
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Figure 4 Tree structure for the entire set of 39 unique HH hap-
lotypes, plus latents (circles).

Table 4

Heterozygosities and Mutation Rates for Selected STR and VNTR Loci

Range of
Heterozygositya Mutation Rates Overall Rate

50–65 0/714,b 0/714,b 1/714,b 1/714,b 0/714b 2/3,570 = .00056
65–70 0/969,c 0/1033,c 1/850,c 3/714,b 1/714,b 0/714b 2/4,820 = .00047
70–75 2/714,b 1/714,b 0/714,b 0/714b 3/3,570 = .00084
75–80 0/2008,c 4/2013,c 2/714,b 1/714,b 1/714,b 0/714b 8/7,591 = .00106
80–85 1/562,c 1/714,b 1/714,b 1/714,b 0/714,b 0/714,b 0/714,b 0/714b 4/5,560 = .00072
85–90 1/557,c 5/1246,c 5/714,b 0/714,b 0/986d 11/4,217 = .00261
90–99 11/1608,c 2/986,d 1/986,d 0/986d 14/4,566 = .00307

a Range boundaries overlap, because no heterozygosity was equal to any boundary.
b Weber and Wong (1993).
c Brinkmann et al. (1998).
d Smith et al. (1990).

star-shaped) trees are required for all other locations for
the disease mutation. When the likelihoods for these
trees are evaluated and combined with sensible prior
information as described previously, almost all proba-
bility for location is focused on two gaps, 8 and 9.

Analysis of the full sample.—Approximately 90% of
all HH cases can be attributed to an HFE mutation
(Feder et al. 1996). Thus, a sample of HH haplotypes
is expected to be somewhat heterogeneous. Even so, we
supplement the data from Thomas et al. (1998) with an
additional eight haplotypes known not to carry the pre-
dominant HFE mutation, thereby ensuring heterogeneity
and, presumably, raising the difficulty of the analysis.

FineMap’s approach to heterogeneity is to find a ho-
mogeneous subset of the haplotypes, for further analysis.
To find such a subset for the HH data, we applied the
algorithm described in our section on “Multiple Ances-
tral Haplotypes” (table 3). From those results, we chose

and based our inferences on , the best sub-∗a = 2 S = S2,7

set for . These haplotypes match the set of 31 dis-a = 2
tinct haplotypes that defined our homogeneous subset
presented in figures 2 and 3. Remarkably, the eight ex-
cluded haplotypes are precisely of the form of the eight
supplementary haplotypes obtained from Feder et al.
(1996), which do not carry the predominant HFE mu-
tation. Contrast figures 2 and 4, which display, for the
selected subset and the entire set of haplotypes, respec-
tively, the best topologies found for . From the spin-d = 8
dly nature of the tree in figure 4, it is clear that the
excluded haplotypes do not share a common evolution-
ary history with the subset of 31 haplotypes: the hap-
lotypes labeled 37–57 in figure 4 constitute the set of 8
excluded haplotypes along with the associated latent
haplotypes required in order to connect these haplotypes
to the rest of the tree (fig. 5). With the exception of this
extremely lengthy clade, however, the trees depicted in
figures 2 and 4 share a nearly identical structure.

Substantial haplotype sharing among disease chro-
mosomes makes it apparent that the predominant HFE
mutation is of recent origin. In fact, Thomas et al. (1998)
estimate its age at slightly less than 100 generations. For
these reasons, we used for our prior distribution.f = 1
Post hoc analysis suggests that it was a good choice,
because the constructed evolutionary tree had average
depth . Results based on analysis of all theC/n = 0.87
haplotypes match those generated by the homogeneous
subset described above: 99.8% of the posterior proba-
bility is split evenly between gaps 8 and 9, whereas gap
10 obtains 0.2% of the posterior probability, with the
remaining gaps ruled out.

It may seem surprising that gap 10 does not merit a
larger fraction of the posterior probability, given that
only haplotype 23 indicates a distal recombination span-
ning marker 10 (fig. 3). The portion of the haplotype
replaced by the recombination has allele 67 at D6S2241,
rather than allele 69; this difference could be explained
by a one-step mutation. Mutations, however, appear to
be extremely uncommon at this locus, as is evidenced
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Figure 5 Twenty observed and latent haplotypes corresponding to figure 4 but not reported in figure 3. Combining the observed haplotypes
depicted here and in figure 3 yields the entire sample of haplotypes.

by the fact that, in both the cases and the controls, only
two types of alleles are found. Moreover, in the sample
of control haplotypes, allele 67 at D6S2241 is frequently
found linked with allele 39 at D6S2236. In this analysis,
our mutation model accounts for differential mutation
rates by using a logistic model described in Appendix
A. A separate analysis using a constant mutation rate of
.001 obtains a slightly flatter posterior probability, with
∼3.4% of the mass on gap 10 and with the remainder
divided evenly between gaps 8 and 9.

These analyses are based on intramarker distances es-
timated from Feder et al.’s (1996) figure 1. To examine
the impact that uncertainty in intramarker distances and
recombination fractions has on the analyses, we retained
the (presumably) correct marker order but set the mark-
ers to be equidistant across the 2-Mb region and thus
set the recombination fractions to be equiprobable.
Again FineMap’s analysis was robust to this misspeci-
fication, placing ∼1% of the posterior probability on
gap 10 and dividing the remainder evenly between gaps
8 and 9.

Discussion

Since the pioneering work of Kerem et al. (1989), the
past decade has seen an amazing surge in the use of
linkage disequilibrium to fine-map disease genes. Recent
efforts have targeted the use of haplotypes to infer an-
cestral recombinations, largely on the basis of observed

similarities among haplotypes. Despite their limited the-
oretical basis, such empirical approaches often have
proved successful, which demonstrates the power of the
data. In this article, we have built a theoretical frame-
work for haplotype fine mapping, have described a com-
puter program to implement these methods (FineMap),
and, by both evolutionary simulations and analysis of
HH haplotypes, have evaluated FineMap’s performance.

Our method attempts to extract complete information
about linkage disequilibrium, by evaluating both disease
and normal haplotypes. The frequency of the latter plays
a critical role in determining the likelihood of potentially
recombinant portions of disease chromosomes. This fea-
ture is often neglected by nonstatistical methods, which,
predictably, has led to incorrect inference (see the work
of van Schothorst et al. [1996] and Baysal et al. [1999]).
Of course, statistically based methods can also lead to
incorrect inference, and our method is not an exception.

Our results show that FineMap performs quite well
in analysis of both simulated and real data. Performance
with the HH data is notable: FineMap bounds the HFE
mutation within two gaps between three adjacent mark-
ers—the true location for the disease mutation. Fur-
thermore, it places almost all of the posterior probability
for location on these two gaps, dividing it equally be-
tween them. Remarkably, FineMap provides more ac-
curate results than does Risch’s method of homozygosity
fine mapping (presented by Feder et al. [1995]), even
though his method targets disequilibrium associated
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with mutations of recent origin. It also performs better
than Terwilliger’s (1995) multiple two-point method for
fine mapping (Thomas et al. 1998).

Some caveats about our method are in order. Clearly,
our method is not robust to errors in marker order; it
seems unlikely that any fine-mapping method that in-
tegrates information over multiple markers can be ro-
bust to this kind of error, but multiple two-point meth-
ods may be more robust than haplotype methods.
Although our (unpublished) simulation results suggest
that the method is relatively robust to limited infor-
mation on haplotype frequencies, there are clearly limits,
and these will depend on the peculiarities of the data.
The method assumes that there is a disease gene in the
region to be fine-mapped. Even if this is not the case, it
still attempts to infer where one might be. Thus, should
a user attempt to fine-map a nonexistent gene, FineMap
will produce results that will require careful attention if
they are to be deciphered.

Another critical caveat springs from the observation
that linkage disequilibrium arises from an evolutionary
process of tens to hundreds to thousands of generations.
Long-range evolutionary dynamics generate error struc-
ture peculiar to genomic regions, and this error structure
is not regular in the statistical sense, unlike that of nor-
mal models. Thus, fine-mapping analysis of any kind
should be treated carefully. A particular concern for our
proposed method is homoplasy, whereby both disease
and normal chromosomes are IBS at multiple markers.
In general, the probability of IBS should decline with
increasing marker density, ameliorating the problem;
however, when a disease mutation occurs on a common
haplotype background and the identity of the disease
chromosome is uncertain, even genotyping of additional
markers may not solve the problem.

Given the vagaries of evolution, how can researchers
who wish to clone genes ensure success? Although noth-
ing is certain, our approach would be to analyze data
by use of a set of different methods, such as two-point
(Hästbacka et al. 1992; Kaplan et al. 1995; Rannala and
Slatkin 1998), multipoint (Terwilliger 1995; Devlin et
al. 1996), and haplotype (McPeek and Strahs 1999; Ser-
vice et al. 1999) analyses, and to look for consistent
results. If all methods indicate the same results, those
results are probably correct. If different methods indicate
different results, it is important to evaluate the structure
of the data, how it influences the results, and which
results therefore are more believable.

In this regard, we have designed FineMap to be an
efficient, user-friendly, and flexible tool that allows users
to explore their data. In terms of efficiency, the entire
HH analysis takes ∼1.5 h on a J200-series HP9000/770
(running at 100 MHz). The user interface is transparent
for anyone familiar with genetic software. Moreover,

FineMap implements all options and analyses described
in this report, allowing the user to extract key features
of the data and thus to make informed decisions about
the likely location of the disease mutation.

We expect that our method will prove useful for fine
mapping of genes underlying complex diseases, because
it builds trees by joining simpler subtrees. Thus, it ac-
commodates multiple subtrees, each with its own unique
mutation, and we can choose to stop the iterative clus-
tering process at any time. Particular subtrees can then
be evaluated while others are ignored. This feature
should be useful for complex diseases, for which only a
subset of the affected individuals carry a liability mu-
tation at a particular locus. Although, ideally, FineMap
can be adapted to the more complex setting, its per-
formance in this setting and extensions to improve its
performance are the subject of ongoing research.
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Appendix A

Use of Locus Heterozygosity to Model Mutation Rates

STR mutation rates vary by locus (Brinkmann et al.
1998, and references therein). Hence, researchers at-
tempting to fine-map disease genes will be more suc-
cessful if they incorporate this variation into their anal-
ysis. FineMap allows the user to specify locus-specific
mutation rates.

For loci of the same repeat size, recent studies suggest
that mutation rates increase with both the mean number
of repeats and the homogeneity of repeat composition
(Brinkmann et al. 1998). Homogeneity appears to be the
more important factor. Because few studies will have
detailed information on repeat homogeneity, and be-
cause many will not have information on exact repeat
number, we sought a different method of estimation of
locus-specific mutation rates. Regardless of the exact
process that is generating mutations, a mutational pro-
cess has one obvious effect on STR loci: heterozygosity
is expected to increase with mutation rate (e.g., see Crow
and Kimura 1970). To our knowledge, no study has
examined in a systematic fashion the predictive value of
heterozygosity.

We partly filled this gap by gleaning locus-specific mu-
tation rates and heterozygosities from two articles re-
porting STR data (Weber and Wong 1993; Brinkmann
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et al. 1998) and from one article reporting VNTR data
(Smith et al. 1990 [data from MS1 were excluded, be-
cause of its extremely high mutation rate]). The esti-
mated heterozygosities, expressed in percentiles, and
mutation rates (table 4) were then related, by use of
logistic regression. The parameter estimates for the re-
gression were and , fromb = �11.8199 b = 0.06380 1

which the probability of mutation was estimated as
; for example, for 75% heterozygos-b �b X b �b X0 1 0 1e /(1 � e )

ity, the predicted mutation rate is .00088.

Appendix B

Tree-Building Algorithm to Approximate Maximization
over the Tree Space

Let be a directed graph with node set and an′G Y
empty edge set. Let be the gap containing the diseased
location. Let be the number of ancestral haplotypesA
on which we are conditioning. We seek , a for-{t , ) ,t }1 A

est of directed trees spanning the nodes of that max-G
imizes the likelihood (1) over the tree space .T

1. Maximally partition into clades ,)G C ∪ ∪ C1 K

such that, within clade , there is a directed edge fromCi

to if haplotypes S and T differ at exactly one locus.S T
A directed edge from to has weight .S T � log P (T d S)l

2. For each , find the path of nodesi,j � {1, ) ,K}
with , , and haplotypesP = [S,L , ) ,L ,T] S � C T � Cij 1 m i j

, possibly latents, such that has minimumL , ) ,L P1 m ij

weight.
a. Given S and T, let be the set of loci at which SI

and T differ, and let . Construct from byL = S L L0 i i�1

choosing and replacing m : mi im � I � {m , ) ,m } Li 1 i�1 i�1

with . If and differ at loci on one side ofm : mi iT L Ti

disease location , then let S,Td P = [S,L , ) ,L ,T].Am ,),m S 1 m1 i i

This step essentially mutates until it is of the ap-S
propriate form to allow a recombination change to .T
This enforces a constraint that there can be, at most,
one recombination in a path between two observed
nodes, to prevent two completely dissimilar haplotypes
from being connected, through an arbitrary latent node,
by recombinations on both sides of the latent.

b. Let S,TP = {P : S � C ,T � C ,m , ) ,m �ij Am ,),m S i j 1 i1 ik

Find such that∗ ∗I,1 � k � FIF}. P � P weight (P ) =ij

, where is the sum of themin weight (P) weight (P)P�Pij

weights of the edges connecting the nodes of . DeclareP
.∗P = Pij

3. Find such that, given a criterion func-k,l � {1, ) ,K}
tion , . Add the nodes andf f(P ,P ) = min {f(P ,P )}kl lk i,j ij ji

edges of to , and compute the number ofP ,P Gkl lk

weakly connected components of . If the desiredG
number of components has not been reached, thenA
repeat this step.

In this step, we add both and to , since, if weP P Gkl lk

only add one of them, we cannot guarantee that we will

be able to find directed trees in the next step. The cri-
terion function assigns a single number to represent the
combined weights of the two paths. Possible choices for
the criterion function include andf (p,q) = max {p,q}1

.f (p,q) = (p � q)/22

4. For each weakly connected component of , findH G
the directed tree that links together the observedtH

nodes:
a. For an observed node in , let be the directedSS H tH

tree that is rooted at and that minimizes the sum ofS
the path distances to the remaining nodes in . Dijk-H
stra’s algorithm (Weiss 1996) may be used to find .StH

b. Remove all the leaf nodes of that are also latentStH

nodes.
c. Try to remove internal latent nodes from byStH

regrafting the subtrees below a latent node onto another
part of the tree.

d. Find the tree, in , that maximizes theS{t : S � H}H

likelihood (1) and declare that tree to be .tH

5. Declare {tH: H is a weakly connected component of
G} to be the forest of trees that we seek.
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