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We obtain sufficient conditions for the oscillation of all solutions of the difference
equation

An+1_An+Z piAn~k,-=O; n=0, 1,2,...,

i=1

where the p,’s are real numbers and the k/s are integers. The conditions are given
explicitly in terms of the p/s and the ks.  © 1990 Academic Press, Inc.

1. INTRODUCTION AND PRELIMINARIES

Our aim in this paper is to obtain sufficient conditions for the oscillation
of all solutions of the difference equation

Apor—A,+ Y pd,_ =0, n=0,1,2,., (1.1)

i=1
where

p.eR—{0} and kieZ={.-10,1,..} for i=1,2, .., m.
(1.2)

The conditions will be given explicitly in terms of the p;s and the &s.

A solution {4,} of Eq.(1.1) is called oscillatory if the terms A, of the
sequence {A,} are neither eventually positive nor eventualy negative.
Otherwise, the solution is called nonoscillatory.

* This paper was presented at the special session on “Differential and Difference Equations”
at the AMS Meeting in Claremont, CA, November 12-13, 1988.
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One may think of Eq. (1.1) as being a discrete analogue of the differential
equation with deviating arguments

x()+ i p.x(t—1,)=0, (1.3)
i=1

where
p,» T, €R for i=1,2,..,m.

By analogy to Eq. (1.3), Eq. (1.1) is said to be of the delay, advanced, or
mixed type provided that the k/’s are all nonnegative, all nonpositive, or
some nonnegative and some nonpositive, respectively. More precisely, let

k=max{0,k, ... k,} and I=max{l, —k, .., —k,,}.

Then Eq. (1.1) is a difference equation of order (k+/). If k20 and /=1,
we will say that Eq. (1.1) is a delay difference equation. When k=0 and
/22, Eq. (1.1) will be called an advanced difference equation. When k> 1
and /> 2, then Eq. (1.1) is of the mixed type.

By a solution of Eq. (1.1) we mean a sequence {A,} which is defined for
n>2 —k and which satisfies Eq. (1.1) for n>0. Let a_,, .., a9, .., @,_; be
(k+17) given real numbers. Then Eq.(1.1) has a unique solution {4,}
which satisfies the initial conditions

A;=a; for i=-—k,.,[—1

It is interesting to note that no parallel to this existence theorem can be
stated for the mixed type differential equation (1.3). On the other hand, the
oscillation results which we will establish for Eq. (1.1) have a parallel for
Eq. (1.3) and vice versa.

For the general theory of solutions of difference equations the reader is
referred to [2] or [10]. From a detailed but elementary analysis of the
(k + I)-dimensional space of solutions of Eq. (1.1) one is led to the follow-
ing fundamental result for the oscillation of all solutions of Eq. (1.1). For
a proof see [11].

THEOREM 1.1. Assume that (1.2) is satisfied. Then the following
Statements are equivalent:
(a) Fvery solution of Eq. (1.1) oscillates.
(b) The characteristic equation of Egq. (1.1)

A=1+Y pak=0 (1.4)

i=1

has ro positive roots.



278 G. LADAS

For delay difference equations with positive coefficients, an elementary
proof of Theorem 1.1 was given in [8] which does not require any prior
knowledge of the structure of solutions of Eq. (1.1). One may use the
method of Z-transforms to establish a similar result for systems of
difference equations and for difference equations of higher order.

The following lemma will be useful in Section 4. For the proof of part (1)
see [4]. Part (b) has a similar proof.

LemMMA 1.1. Assume that pe (0, o) and ke {1,2, ...}. Then the following
statements hold.

(a) The delay difference inequality
Xy 1 — Xy +Ppx,_ 1 <0, n=0,1,2,..
has an eventually positive solution if and only if the delay difference equation
Vos1—VYut DV, =0, n=0,1,2, ..

has an eventually positive solution.
(b) The advanced difference inequality

Xpi1—Xp— DXy 20, n=0,1,2,..

has an eventually positive solution if and only if the advanced difference
equation

)’n+1—yn—Pyn+k=0, n=0, 1,2,...

has an eventually positive solution.

2. NECESSARY AND SUFFICIENT CONDITIONS FOR OSCILLATIONS

In this section we will obtain necessary and sufficient conditions for the
oscillation of all solutions of the difference equation

A, 1—A,+pA,_+qgA,_,=0, n=0,1,2, .., (2.1)
where
p,qeR, kel and le{—1,0}.

The conditions will be given explicitly in terms of p, g, k and L
The case =0 was examined in [3, 6] where the following result was
found.
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THEOREM 2.1.  Consider the difference equation
A,.,—A,+pA,_,=0, n=0,1,2, .., (22)
where
peR and keZ. (2.3)

Then every solution of Eq. (2.2) oscillates if and only if one of the following
conditions holds:

(i) k=—-landp<—1;
(ii) k=0and p=1,
(i) ke{..,—3, —2}u{l,2,..} and p((k + DRy > 1.

One should recall, see, for example, [9], that every solution of the
differential equation

X(8)+ px(t—1)=0, (2.4)
where p, T € R oscillates if and only if
pte> 1. (2.5)

Now observe that condition (iii) of Theorem 2.1 can be written in the form

k+1)
e+ 1) ;:k) >1 (2.6)
and that
(k + 1) 1\
o =<1+E> Te as k- oo.

Therefore one can think of (2.6) as being the discrete analogue of (2.5) with
the “delay” of (2.2) being (kK +1).

Necessary and sufficient conditions for the oscillation of all solutions of
Eq. (2.1) where

p,qeR— {0}, kel, le{—-1,0}, and k#1
(2.7)

are given, whenever such conditions exist, in Table I. In this table K is
defined to be

(k+1)k+l
K=T.
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TABLE 1
p q k ! Necessary and sufficient conditions for oscillations
1 + + + -1 Pl +q)K>1
2 + + 0 —1 p=1
3 + + <=2 -1 There exist nonoscillatory solutions
4 + + + 0 g= —lorqge(0,1)and pK> (1 —g)<+!
5 + o+ <=2 0 g=1
6 + — + -1 g>—1landp(1+g)*K>1
7 + — 0 —1 p=—lorg=lor{(p+1}g—1)>0
8 + - <=2 -1,0 There exist nonoscillatory solutions
9 + - + 0 pK>(1+¢q)+!
10 — + +,0 —1 There exist nonoscillatory solutions
11 - + <=2 -1 p(l+g) k<1
12 - + + 0 There exist nonoscillatory solutions
13 - +- <=2 0 pK<(1—q)*!
4 - - +,0 -1 g<—1
15 - - <=2 -1 g<—lorg>—landp(l+q)fk<1
16 - - 0 There exist nonoscillatory solutions

As we can see from the table, in Cases 3, 8, 10, 12, and 16 there exist
nonoscillatory solutions. This is because in each of these cases the
characteristic equation

FA)=)—1+pi*4+gi~'=0 (2.8)

has a positive root. This can be easily seen by computing F(0+ ), F(1), and
F(c0) and by using the intermediate value theorem.

In each of the remaining cases the given condition is necessary and
sufficient for the oscillation of all solutions. The proof can be obtained by
computing the extreme value of F(4), as given by (2.8) and by applying
Theorem 1.1. For example, we will give the details in Case 1 where

p>0, qg>0, ke{l,2,..}, and I=—1. 29)
In this case (2.8) becomes
F(A)=(1+q)A—1+pi*=0.
We have
F'()=(1+q)—pki=%+V
and

F'(A)=pk(k + 1A% +D50  for 1>0.
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The only critical point of F(4) in (0, o0) is

( pk )1/(k+1)
)v0= D
1+g¢

and F(A) has a minimum at A=4,. Also F(0+)=o and F(c0)=c0.
Therefore F(A) has a global minimum in (0, co) at the point 4,.

In view of Theorem 1.1, if (2.9) holds, Eq. (2.1) oscillates if and only if
F(4,)>0. But

FAgy=(1+q)Ae—1+pis*

1
=10 (1+q)—)—+p/lo‘(k+”:|
L v0

[ 1 1+4g¢
1o 1+ -5+
0

| k

K k+1 1
=Aol (1 + )—-——].

0_ q & R

Hence F(4y) >0 if and only if 43> (k/(k+ 1))(1/(1 + ¢g)) if and only if

pk ka1 k k+1 1 . ' k
m=lo > k+1 (1+q)k+1 1fand0nly1fp(1.+_q) K>1

which completes the proof in Case 1. The proofs in the other cases are
similar and will be omitted.

3. SUFFICIENT CONDITIONS FOR OSCILLATIONS

In this section we wil obtain sufficient conditions for the oscillation of all
solutions of the difference equation

An+1_An+ Z piAnmk,-=0> n=0’ 1’2’ eey (31)
i=1

where either
p:€(0, 0) and k;e{0,1,2,..} for i=1,2,..m (3.2)

or
pi:€(—o00,0) and kie{., =3 -2, —1} for i=1,2, ..,

(3.3)
Throughout this paper we will use the convention that 0° = 1.
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THEOREM 3.1. Assume that either (3.2) or (3.3) holds and suppose that

m (k, + 1)k,+ 1
i=1 i
Then every solution of Eq. (3.1) oscillates.
Proof. Tt suffices to prove that the characteristic equation
FA)=A—-1+4Y p,i~"=0 (3.5)
i=1

has no positive roots. First, assume that (3.2) holds. Then Eq. (3.5) has no
roots in [1, c0). Observe that for i=1,2,..,m

ifk,' k 1 ki+1
min (1 /1>=( ’+k"") if ke{l,2..}

O0<i<l1
1
inf {— =1
O<n}<l(1—/1> l

Hence for 0 <A <1 we have
Ak
1 Pi 1 _/1>

(k1+ 1)k,+1
piT

while

F(/1)=(1—,1)<—1+

i

N ERINSE

>(1-1)[—1+

>0

which completes the proof when (3.2) holds.
Next, assume that (3.3) holds. Then Eq. (3.5) has no roots in (0, 1].
Observe that for i=1,2,..,m

min(i‘ﬂ (ke 1yl
i>1\A—1 N k:(' )

Hence for A >1 we have

m l—k,
A== (14 % pi—)

(N BN
R
=
+
x|
=
+
—

su—l)[l—

<0

which completes the proof of the theorem.
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The case of Theorem 3.1 where (3.2) holds was established by different
techniques in [1].
For delay differential equations of the form

X0+ Y pix(t—1)=0, (3.6)
i=1
where
p:» T:€(0, 00) for i—1,2,..m

it has been proved by Hunt and Yorke [5] that every solution oscillates
provided that “the sum of the torques p;t, is greater than 1/e,” that is,

m 1
Y piti>—. (3.7)

i=1 €

If we rewrite condition (3.4) in the form

m k,+1)%
Z pitk;+ I)L‘];;;_}‘>1
i=1 i
and if we observe that
(k,+ 1)

TTE as k,-—>OO,
i

then we can interpret (3.4) as the discrete analogue of (3.7).
Another condition, independent of (3.7), which implies that every
solution of Eq. (3.6) oscillates is, see [9],

m 1/m m
(H p,-> 2 r,~>é- (3.8)

i=1

This has motivated the following result.

THEOREM 3.2. Assume that either (3.2) or (3.3) holds and suppose that

m (11 m-n)”m

i=1

(k+1)k+1

o[> 1. (3.9)

where

k= k..

1

gkl

1
m i

Then every solution of Eq. (1) oscillates.
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Proof. We will prove the theorem when (3.2) holds. The proof when
(3.3) holds is similar and will be omitted. In view of Theorem 1.1 it suffices
to prove that the characteristic equation (3.5) has no positive roots.
Clearly, Eq. (3.5) has no roots in [1, o). On the other hand, for 0 <1 <1,
by employing the arithmetic mean—geometric mean inequality we find

n Aﬁh
A=(-0(-1+ % pi=)

m 1/m l~k
ST P P R
i=1 -
l/m(k+1)k+l

oo en(fp) "

>0

and the proof is complete.

4. OSCILLATION IN EQUATIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS

In [7] we established the following sufficient condition for the oscillation
of all solutions of the difference equation with positive and negative coef-
ficients

Ap—A,+pA, _—qA4,_,=0, n=0,1,2, .., 4.1)
where

p,geR™ and k,leN.

THEOREM 4.1A. Assume that

p>q=0, k=120, gqk-NH<1 (4.2)
and that
kk
P—9>——1 I k=1
k4 1)<+
(k+1) (4.3)
p—q=>1 if k=0.

Then every solution of Egq. (4.1) oscillates.
The next result is the dual of Theorem 4.1A.
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THEOREM 4.1B. Assume that

0<p<gq, 1<k<l pll-k)<1 (4.4)
and that
[—1)1
q—p>( l,) if 122
(4.5)
g—p=1 if I=1.

Then every solution of the difference equation
An+l_An+pAn+k_qAn+1:O (46)
oscillates.

Proof. The case k=/ reduces to Theorem 2.1. So suppose k </
Assume, for the sake of contradiction, that Eq.(4.6) has an eventually
positive solution {A4,}. Set

n+i—1
C,,=A,,—p( Y A,->. (4.7)
j=n+k
Then
Cn+1_Cn=(An+l—An)_p(An+l_An+k)=(q_p)An+1>0' (48)

Thus {C,} is eventually strictly increasing and either

lim C, =0 (4.9)
or
lim C,=IeR. (4.10)

Assume that (4.10) holds. Then from (4.8) and (4.7) we see that

lim A,=0= lim C,.

n— oc n— oo
Hence, there exists an index n; such that
C, <0 and A,=2A4,>0 for nzn,.

Then (4.7) yields
n+1-1

0>C,,1=A,,|—p< Y Aj>>A,,1[1—p(l—k)]>0

Jj=n+k
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which is a contradiction. Therefore (4.9) holds. From (4.8) and (4.7) we
find

Cor1=Co=(g=p)C, 4, 20.
Also
C,>0.
In view of Lemma 1.1(b) this implies that the difference equation
Yyo1-Y,—(q—p)Y,,,=0

has an eventually positive solution. This contradicts (4.5) and completes
the proof.

By combining the results in Theorems 3.1, 4.1A, 4.1B, we obtain Table II
which gives sufficient conditions for the oscillation of all solutions of the
difference equation

Ay — A, +pA,_+q4, =0, n=0,1,2,.., (4.11)
where
p,qeR— {0}, k,leZ— {0, 1}, and k>1
In Table II, X and L are defined to be

K=—"% r

TABLE 11

Sufficient conditions for oscillation

]
£
bl

+ pK+qlL>1

— pK>1

- There exist nonoscillatory solutions
+ 1+qgk—)>20and (p+¢g)K>1
— There exist nonoscillatory solutions
1—pk—1)z0and (p+q)L>1

+ There exist nonoscillatory solutions
There exist nonoscillatory solutions
— There exist nonoscillatory solutions
+ There exist nonoscillatory solutions
- glL>1

- pK+qL>1

O 00~ P W=
I+ + 4+ + + +
I+ + +

1
[+ + + |

L+ + | ++ | ++ 1 ++
|
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