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Abstract

We generalize the classical construction of crossed product algebras defined by finite Galo
extensions to finite separable field extensions. By studying properties of rings graded by gro
we are able to calculate the Jacobson radical of these algebras. We use this to determine w
analogous construction of crossed product orders yield Azumaya, maximal, or hereditary ord
local situation. Thereby we generalize results by Haile, Larson, and Sweedler.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

Recall that ifL/K is a finite Galois field extension with Galois groupG, then the
crossed product algebra(L/K,f ) is defined as the additive group

⊕
α∈G Luα with multi-

plication defined by theK-linear extension of the rule

xuαyuβ = xα(y)fα,βuαβ (1)

for all x, y ∈ L and allα,β ∈ G, wheref is a cocycle, that is, a map fromG × G to L

satisfying
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fα,βγ α(fβ,γ ) = fαβ,γ fα,β (2)

for all α,β, γ ∈ G and

fα,β = 1 (3)

wheneverα = 1 orβ = 1. It is well known that iff is invertible, that is, iffα,β is nonzero
for all α,β ∈ G, then the crossed product algebra is central and simple as an algebr
K (see, e.g., [17]). Iff is not invertible, then the crossed product algebra is still centra
but not simple. In fact, Haile, Larson, and Sweedler [12] have shown the following re

Theorem 1. The ring(L/K,f ) is central as an algebra overK. Furthermore, ifH denotes
the set ofα ∈ G such thatfα,α−1 is nonzero, thenH is a subgroup ofG,

⊕
α∈H Luα

is central and simple as an algebra overLH , and the Jacobson radical of(L/K,f ) is⊕
α∈G\H Luα .

If K is the field of quotients of a Dedekind domainR, S is the ring of algebraic integer
in L overR, andf is an invertible cocycle taking its values inS, then the crossed produ
order(S/R,f ) is defined as the additive group

⊕
α∈G Suα with multiplication induced by

the corresponding crossed product algebra. A lot of work has been devoted to study
question of when crossed product orders are Azumaya, maximal, or hereditary (se
9,11,13,17,20]). IfL/K is unramified andS andR are local rings, then this question c
be analyzed by calculating the Jacobson radical of the crossed product order. In fac
[11] has obtained an arithmetical version of Theorem 1.

Theorem 2. Let L/K be unramified and assume thatS and R are local rings. If H
denotes the set ofα ∈ G such thatfα,α−1 is a unit in S, then H is a subgroup ofG
and

⊕
α∈H Suα is Azumaya as an order overSH . Furthermore, the Jacobson radical

(S/R,f ) is m(
⊕

α∈H Suα) ⊕ (
⊕

α∈G\H Suα), wherem is the maximal ideal ofR.

Haile loc. cit. then uses Theorem 2 to prove the following result.

Theorem 3. Let L/K be unramified and assume thatS and R are local rings. Then
(S/R,f ) is Azumaya if and only iffα,β is a unit in S for all α,β ∈ G. Furthermore,
(S/R,f ) is maximal if and only if it is hereditary if and only if none of thefα,β , α,β ∈ G,
belong to the square of the maximal ideal ofS.

If L/K is a finite separable (not necessarily normal) field extension, then the cla
definition of crossed product algebras makes nosense. However, if we replace the Gal
group of L/K by the set of field isomorphisms between the different conjugatesL
in a normal closure ofL/K, then we can define an algebra structure (see below)
generalizes the classical crossed product construction. In general this gives us rings
by groupoids, and not just groups as in the classical case.

To be more precise, letN denote a normal closure ofL/K and letG denote the Galois
group ofN/K. If H is a subgroup ofG, then letLH denote the set ofx ∈ L that are
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fixed by all α ∈ H . Furthermore, letL = L1,L2 . . . ,Ln denote the different conjuga
fields of L under the action ofG. If 1 � i, j � n, then letGij denote the set of field
isomorphisms fromLj to Li . If α ∈ Gij , then we indicate this by writings(α) = j and
t (α) = i (s andt are abbreviations forsourceandtarget). If we let G be the union of the
Gij , 1� i, j � n, thenG is no longer a group, but instead a groupoid, that is, a cate
where all the morphisms are isomorphisms. IfH is a subcategory ofG closed under taking
inverses, then we say thatH is a subgroupoid ofG. We define the crossed product alge
(L/K,f ) as the additive group

⊕
α∈G Lt(α)uα with multiplication defined by theK-linear

extension of the rule (1) ifs(α) = t (β), andxuαyuβ = 0 otherwise, for allα,β ∈ G and
all x ∈ Lt(α), y ∈ Lt(β), wheref is a cocycle on the groupoidG. This means that (see
e.g., [18] for the details)fα,β is defined precisely whens(α) = t (β) and that it satisfies
fα,β ∈ Lt(α) and (2) for allα,β, γ ∈ G such thats(α) = t (β) ands(β) = t (γ ). We also
assume thatf satisfies (3) wheneverα or β is an identity map on some of the conjuga
fields ofL. Note that ifL/K is actually Galois, then(L/K,f ) coincides with the usua
crossed product algebra construction.

In Section 4, we prove the following generalization of Theorem 1.

Theorem 4. The ring (L/K,f ) is central as an algebra overLG. Furthermore, ifH
denotes the set ofα ∈ G such thatfα,α−1 is nonzero, thenH is a subgroupoid ofG,⊕

α∈H Lt(α)ut(α) is central and simple as an algebra overLH∩G and the Jacobson radica
of (L/K,f ) is

⊕
α∈G\H Lt(α)uα .

If K is the field of quotients of a Dedekind domainR, S (Si ) is the ring of algebraic
integers inL (Li ) over R (i = 1, . . . , n), andf is an invertible cocycle taking its va
ues in

⋃n
i=1 Si , then we define the crossed product order(S/R,f ) as the additive group⊕

α∈G St(α)uα with multiplication inducedby the corresponding crossed product algeb
In Section 5, we prove the following generalization of Theorem 2.

Theorem 5. LetL/K be unramified and assume thatS andR are local rings. IfH denotes
the set ofα ∈ G such thatfα,α−1 is a unit in St(α), thenH is a subgroupoid ofG and⊕

α∈H St(α)uα is Azumaya as an order overSH∩G. Furthermore, the Jacobson radical
(S/R,f ) is m(

⊕
α∈H St(α)uα) ⊕ (

⊕
α∈G\H St(α)uα), wherem is the maximal ideal ofR.

In the same section, we use Theorem 5 to prove the following result which gener
Theorem 3.

Theorem 6. Let L/K be unramified and assume thatS and R are local rings. Then
(S/R,f ) is Azumaya if and only iffα,β is a unit in St(α) for all α,β ∈ G such that
s(α) = t (β). Furthermore,(S/R,f ) is maximal if and only if it is hereditary if and only
none of thefα,β , α,β ∈ G, s(α) = t (β), belong to the square of the maximal ideal ofSt(α).

As indicated above, our generalization of crossed product algebras belong to th
egory of rings graded by groupoids. Therefore, in Section 2, we extend some resu
rings and modules graded by groups, to the groupoid graded case. Our proofs re
their group graded counterparts (from [9,14,15]). But for the convenience of the read
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have, nonetheless, included them in full detail. In Section 3, we state and prove a
about the Jacobson radical of algebras over commutative local rings. In Sections 4
we use the results of Sections 2 and 3 to prove Theorems 4–6. For more results con
group graded rings and modules see [4–7,10,16].

2. Graded rings and modules

In this section, we first recall the “folklore” definitions (see Definitions 1 and 2) of r
and modules graded by categories. Then we specialize these categories to be gr
and prove that then the components of strongly graded rings are invertible bimodule
Proposition 3). This is in turn used to prove a result (see Proposition 4) concerning t
separability of strongly groupoid graded rings and the trace function (see Definition
that we need in later sections. The section is ended by an application (see Corollar
this result to the separability of groupoid rings(see Example 1). This result is not need
in the sequel, but is interesting in its own right since it provides us with a simultan
generalization of known separability conditions (see Corollaries 3 and 4) for group rin
and matrix rings.

Let C be a category. Ifα is a morphism inC, then we will indicate this by writingα ∈ C.
The source and target of a morphismα in C will be denoteds(α) andt (α), respectively.
We let C0 denote the collection of objects ofC. An object ofC will often be identified
with its identity morphism. For the rest of this section, we assume thatC is small.

Let all rings be associative and equipped with multiplicative identities. We assum
ring homomorphisms respect the multiplicative identities. Furthermore, all modules (le
right and bimodules) are assumed to be unital. LetA be a ring. We let the category o
left A-modules be denoted byA-mod. The center ofA is denotedC(A). If M is a left
A-module andS andT are subsets ofA andM, respectively, thenST denotes the set o
all finite sums of products of the formst , s ∈ S, t ∈ T .

Definition 1. A ring A is graded if there is a set of additive subgroupsAα , α ∈ C, of A

such thatA = ⊕
α∈C Aα and for allα,β ∈ C, we have

AαAβ ⊆
{

Aαβ if s(α) = t (β),
{0} otherwise.

(4)

If there always is equality in (4), instead of just inclusion, thenA is called strongly graded
A morphism of graded ringsf : A → B is a morphism of rings satisfyingf (Aα) ⊆ Bα for
all α ∈ C.

Example 1. Let R be a ring. The category ring (or groupoid ring ifC is a groupoid)R[C],
of R overC, is defined to be the set of all formal sums

∑
α∈C rαα with rα ∈ R andrα = 0

for all but finitely manyα ∈ C. Addition is defined pointwise and multiplication is defin
by theR-linear extension of the rule

α · β =
{

αβ if s(α) = t (β),
0 otherwise,
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for all α,β ∈ C. The grading is, of course, defined byR[C]α = Rα, α ∈ C. We now con-
sider two special cases of interest:

(a) If C is a group, thenR[C] is the usual group ring ofR overC.
(b) If C = I × I , whereI is a finite set of cardinalityn, and C is equipped with the

operation(i, j) · (k, l) = (i, l) if j = k, thenR[C] is R-algebra isomorphic toMn(R),
the ring ofn × n matrices overR.

Definition 2. If A is a graded ring, then a leftA-moduleM is graded if there is a set o
additive subgroupsMα , α ∈ C, of M such thatM = ⊕

α∈C Mα and for allα,β ∈ C, we
have

AαMβ ⊆
{

Mαβ if s(α) = t (β),
{0} otherwise.

(5)

If there always is equality in (5), instead of just inclusion, thenM is called strongly graded
A morphism of gradedA-modulesf : M → N is a morphism ofA-modules satisfying
f (Mα) ⊆ Nα for all α ∈ C. Let A-gr denote the category of graded leftA-modules. It is
easy to see thatA-gr is a Grothendieck category.

LetA be a graded ring andM a graded leftA-module. Any nonzerom ∈ M has a unique
decompositionm = ∑

α∈C mα wheremα ∈ Mα and all but finitely many of themα are
nonzero. The nonzero elementsmα in the decomposition ofm are called the homogeneo
components ofm. Also putM0 = ⊕

α∈C0
Mα .

For the rest of this section, we assume thatC is a groupoid.

Proposition 1. LetA be a graded ring. Then the multiplicative identity ofA belongs toA0.
Furthermore, if we letD denote the set ofα ∈ C such that1s(α) and1t (α) are nonzero, then
D is a subgroupoid ofC with D0 finite andA = ⊕

α∈D Aα .

Proof. First we show that 1∈ A0. Let 1= ∑
α∈C 1α be the homogeneous decomposit

of 1 in A. Then we get that 1β = 11β = ∑
α∈C 1α1β for all β ∈ C. But since 1α1β ∈ Aαβ

for all α,β ∈ C, we get that 1α1β = 0 wheneverα /∈ C0. Hence, ifα /∈ C0, then 1α =
1α1 = ∑

β∈C 1α1β = 0.

Sinces(α−1) = t (α), t (α−1) = s(α), s(αβ) = s(β), t (αβ) = t (α) for all α,β ∈ C with
s(α) = t (β), we get thatD is a subgroupoid ofC. Also, by the fact that 1= ∑

α∈D0
1α , we

get thatD0 is finite.
Finally, takeα ∈ C \ D. Suppose that 1t (α) = 0. ThenAα = 1Aα = 1t (α)Aα = {0}. The

case when 1s(α) = 0 is treated similarly. �
Remark 1. By Proposition 1, it is now legitimate for us to assume for the rest of the ar
that C0 is finite and that 1= ∑

α∈C0
1α where 1α �= 0 for all α ∈ C0. In particular,Aα is

nonzero for allα ∈ C0.

Before we state the next proposition, we need a definition.
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Definition 3. Let i denote the inclusion map fromA0 to A. The graded restriction an
induction functors

i
gr
∗ : A-gr→ A0-mod and i∗gr : A0-mod→ A-gr

are defined byigr∗ (M) = M0, with the induced leftA0-module structure, for all graded le
A-modulesM, andi∗gr(N) = A ⊗A0 N , with the induced leftA-module structure, and
grading defined by(A ⊗A0 N)α = Aα ⊗A0 N for all α ∈ C and all leftA0-modulesN . It is
easy to check thatigr∗ is a right adjoint ofi∗gr. We let the corresponding unit and counit
denoted byε andδ, respectively.

Proposition 2. If A is a graded ring, then following three conditions are equivalent:

(i) The ringA is strongly graded.
(ii) Every graded leftA-module is strongly graded.
(iii) The natural transformationsε andδ are natural equivalences.

Proof. Let M be a graded leftA-module. Suppose first that (i) holds. Ifα,β ∈ C are
chosen so thats(α) = t (β), then we get thatAαMβ ⊆ Mαβ = At(α)Mαβ = AαAα−1Mαβ ⊆
AαMβ . Hence (ii) holds.

Now suppose that (ii) holds. By the assumption,δM is surjective. LetK denote the ker
nel of δM . ThenK0 coincides with the kernel of the isomorphism fromA0 ⊗A0 M0 to M0.
HenceK0 = 0, and therefore, again by the assumption,Kα = AαK0 = {0} for eachα ∈ C.
HenceδM is injective. AlsoεN is an isomorphism for all leftA0-modulesN . In fact, the
inverse ofεN is given by the multiplication map fromA0 ⊗A0 N to N . Thus (iii) holds.

If (iii) holds, then trivially (ii) and hence (i) holds. �
To state the next result, we need another definition.

Definition 4. For a graded leftA-moduleM andα ∈ C, let M(α), theα-suspension ofM,
beM as a leftA-module but with the new grading

M(α)β =
{

Mβα if s(β) = t (α),
{0} otherwise,

for all β ∈ C.

Proposition 3. LetA be a strongly graded ring.

(a) If M is a graded leftA-module andβ ∈ C, then the multiplication map fromA ⊗At(β)

Mβ to M(β) is simultaneously an isomorphism of graded leftA-modules andA-As(β)-
bimodules.

(b) If α,β ∈ C are chosen so thats(α) = t (β), then the multiplication map fromAα ⊗At(β)

Aβ to Aαβ is an isomorphism ofAt(α)-As(β)-bimodules.
(c) EachAα , α ∈ C, is an invertibleAt(α)-As(α)-bimodule.
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Proof. (a) follows from Proposition 2, (b) follows from (a) and (c) follows from (b) with
β = α−1. �

Recall that if a ringB is a subring of a ringC (assumed to have the same iden
elements), thenC is called separable overB if the multiplication map fromC ⊗B C to
C splits as aC-bimodule map. A ring is called Azumaya if it is separable over its c
ter.

Now we determine a necessary and sufficient condition for a strongly graded rA

to be separable overA0. To do that we need some more notations and a definition
Proposition 3(c) and general theory for invertible bimodules (see, e.g., [3]), there
eachα ∈ C a unique isomorphism of ringsfα from C(As(α)) to C(At(α)) such that

xa = fα(a)x (6)

for all x ∈ Aα and alla ∈ C(As(α)). By abuse of notation, we letfα be denoted byα.

Definition 5. Let A be a strongly graded ring withC finite. Then the trace ma
tr : C(A0) → C(A0) is defined by

tr(a) =
∑
α∈C0

∑
β∈C

s(β)=α

β(aα)

for all a ∈ C(A0).

Example 2. Let R be a ring andA = R[C] the associated groupoid ring ofR over a finite
groupoidC. If x = ∑

α∈C0
rαα ∈ C(A0), then

tr(x) =
∑
α∈C0

rα
∑
β∈C

s(β)=α

t (β). (7)

We now consider two special cases:

(a) If C is a group, then (7) reduces to

tr(x) = nx, (8)

wheren denotes the cardinality ofC.
(b) If C is the groupoid from Example 1(b), then (7) reduces to

tr(x) =
n∑

i=1

r(i,i). (9)

Thus tr is the restriction toC(A0) of the usual trace onMn(R).
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Proposition 4. If A is a strongly graded ring, thenA is separable overA0 if and only ifC
is finite and the image of the trace contains1.

Proof. Let the multiplication map fromA ⊗A0 A to A be denoted byµ.
First suppose that there is anA-bimodule mapν from A to A ⊗A0 A such that

µ ◦ ν = 1. (10)

We also put

s = ν(1). (11)

For future use, we note that, by (11), we get that

as = sa (12)

for all a ∈ A. SinceA is graded, we get that

A ⊗A0 A =
⊕

α,β∈C

Aα ⊗A0 Aβ
∼=

⊕
α,β∈C

s(α)=t (β)

Aαβ (13)

as additive groups. Therefore, by (10), we can assume that

s =
∑
α∈C

lα∑
k=1

aα,k ⊗ bα−1,k (14)

for someaα,k ∈ Aα , bα−1,k ∈ Aα−1 and some positive integerslα where
∑lα

k=1 aα,k ⊗
bα−1,k = 0 for all but finitely manyα ∈ C. By (10), (11), and (14), we get that 1=∑

α∈C cα,α−1, wherecα,α−1 = ∑lα
k=1 aα,kbα−1,k and

cα,α−1 = 0 for all but finitely manyα ∈ C. (15)

By (12) and (13), it follows that eachcα,α−1 ∈ C(A0). Takeα,β ∈ C such thats(β) = t (α).
Then, by (12) and (13) again, we get thatacα,α−1 = cβα,α−1β−1a for all a ∈ Aβ . SinceA is
strongly graded this implies, by (6), that

β(cα,α−1) = cβα,α−1β−1. (16)

Therefore, by (15), (16), and Remark 1, it follows thatC is finite. Now define an equiv
alence relation∼ on C0 in the following way. If α,β ∈ C0, then putα ∼ β if there is
γ ∈ C with s(γ ) = α and t (γ ) = β . Choose representativesα1, . . . , αr for the different
equivalence classes and putc = ∑r

i=1 c −1. Then tr(c) = 1.

αi,αi
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Now suppose thatC is finite and that there isc ∈ C(A0) such that tr(c) = 1. Since
A is strongly graded we can, for eachα ∈ C, choose a positive integermα and elements
aα,k ∈ Aα andbα−1,k ∈ Aα−1 for k = 1, . . . ,mα , such that

mα∑
k=1

aα,kbα−1,k = 1t (α). (17)

Now put

d =
∑
β∈C0

∑
α∈C

s(α)=β

mσ∑
k=1

aα,kcβ ⊗ bα−1,k

and defineν : A → A ⊗A0 A by ν(a) = ad , a ∈ A. Thenν is anA-bimodule map satisfy
ing (10). In fact, ifa ∈ Aγ , for someγ ∈ C, then, by (17), we get that

ad =
∑
β∈C0

∑
α∈C

s(α)=β

mα∑
k=1

aaα,kcβ ⊗ bα−1,k

=
∑
β∈C0

∑
α∈C, s(α)=β,

t (α)=s(γ )

mα∑
k=1

mγα∑
l=1

aγα,lbα−1γ −1,laaα,kcβ ⊗ bα−1,k

=
∑
β∈C0

∑
α∈C, s(α)=β,

t (α)=s(γ )

mα∑
k=1

mγα∑
l=1

aγα,lcβ ⊗ bα−1γ −1,laaα,kbα−1,k

=
∑
β∈C0

∑
α∈C, s(α)=β,

t (α)=s(γ )

mγα∑
l=1

aγα,lcβ ⊗ bα−1γ −1,la

= da

and

(µ ◦ ν)(1) = µ(d) =
∑
β∈C0

∑
β∈C

s(α)=β

mα∑
k=1

aα,kcβbα−1,k =
∑
β∈C0

∑
α∈C

s(α)=β

α(cβ)

= tr(c) = 1. �
Remark 2. Proposition 4 (and our proof) generalizes Proposition 2.1 (and its proof) in
from the group graded case to the groupoid graded situation. We have also correc
formulation of Proposition 2.1 in loc. cit. In fact, there it is claimed that a strongly gro
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graded ringA is separable precisely when the associated trace mapC(A0) → C(A0) is
surjective. This fails for all crossed product algebras defined by nontrivial Galois
extensions.

Definition 6. If C is finite andα ∈ C0, then letnα denote the number ofβ ∈ C with
s(β) = t (β) = α.

Example 3.

(a) If C is a finite group, thennα equals the order ofC for all α ∈ C0.
(b) If C is the groupoid from Example 1(b), thennα = 1 for all α ∈ C0.

Corollary 1. If A is a strongly graded ring such thatC is finite andnα is a unit inA for
all α ∈ C0, thenA is separable overA0.

Proof. By Proposition 4, we need to findc ∈ A such that tr(c) = 1. Choose represent
tives α1, . . . , αr ∈ C0 for the different equivalence classes of the equivalence relatio∼
introduced in the proof of Proposition 4. A straightforward calculation shows that if w
put c = ∑r

i=1 n−1
αi

1αi , then tr(c) = 1. �
Lemma 1. LetB ⊆ C ⊆ D be a tower of ring extensions.

(a) If C is a direct product of finitely many copies ofB, thenC is separable overB.
(b) If D is separable overC, andC is separable overB, thenD is separable overB.
(c) If D is separable overB, thenD is separable overC.

Proof. (a) is straightforward and (b) and (c) follow from a more general result conce
separable functors (see [14, Lemma 1.1]).�
Corollary 2. If R is a ring andC is a groupoid, thenR[C] is separable overR if and only
if C is finite andnα is a unit inR for all α ∈ C0.

Proof. Put A = R[C]. First note that, by Lemma 1(a),A0 is always separable overR,
sinceA0 is a direct product of finitely many (by Proposition 1) copies ofR. Therefore, by
Lemma 1(b)(c),A is separable overR if and only if A is separable overA0.

Assume thatA is separable overA0. Then, by Proposition 4, we get thatC is finite and
that the image of the trace contains 1. But since tr(C(A0)) = ∑

α∈C0
nαC(R)α, eachnα ,

α ∈ C0, must be a unit inR.
On the other hand, ifC is finite andnα is a unit inR for all α ∈ C0, then, by Corollary 1

A is separable overA0. �
By Corollary 2 and Examples 1–3, we immediately get the following two well-kn

results.
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Corollary 3 (Mascke’s theorem). LetR be a ring andG a group. ThenR[G] is separable
overR if and only ifG is finite and the order ofG is a unit inR.

Corollary 4 (DeMeyer and Ingraham [8]). LetR be a ring andn a positive integer. The
Mn(R) is separable overR.

3. The Jacobson radical

In this section, we calculate the Jacobson radical of algebras with a certain proper
Proposition 6). To do that we need a well-known result (see Proposition 5).

First we recall some definitions. LetA be a ring,I a two-sided ideal ofA anda an
element ofA. Recall thatI (or a) is called nilpotent if there is a positive integern such
thatIn = {0} (or an = 0); I is called nil if it consists of nilpotent elements. The nilradic
rad(I), of I is the set ofa ∈ A with the property thatam ∈ I for some positive integerm.
The Jacobson radical,J (A), of A is the intersection of the maximal left (or right) idea
of A.

Proposition 5. LetA andB be rings.

(a) If B is a subring ofA, andA is free as a leftB-module with a finite basis consisting
elementsx such thatxB = Bx, thenJ (B) = B ∩J (A). In particular,J (B)A ⊆ J (A).

LetC be a two-sided ideal ofA.

(b) If C ⊆ J (A), thenJ (A/C) = J (A)/C.
(c) If C is nil, thenC ⊆ J (A).
(d) If J (A/C) = {0}, thenJ (A) ⊆ C.

Proof. For proofs of (a), (b), (c), and (d), see Proposition 2.5.33, Proposition 2.5
Remark 2.5.4′, and Proposition 2.5.1′(ii) respectively in [19]. �
Proposition 6. Let A be a finitely generated algebra over a commutative local ringR

with maximal idealm. If there is anR-subalgebraB of A and a two-sided idealI of A

satisfying

(i) A = B ⊕ I as leftR-modules;
(ii) J (B/mB) = {0};
(iii) every element ofI is a sum of elements ofrad(mI),

thenJ (A) = mB ⊕ I .

Proof. By Proposition 5(a) withB = R, we get thatmA ⊆ J (A). Hence, by (i) and
Proposition 5(b) withC = mA, we can assume thatR is a field. Then, by (iii) and [19
Proposition 2.6.32],I is nilpotent and hence nil. Thus, by Proposition 5(c),I ⊆ J (A). On
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the other hand, since, by (ii),J (A/I) ∼= J (B) = {0}, we can, by Proposition 5(d), conclud
thatJ (A) ⊆ I . �

4. Crossed product algebras

In this section, we prove Theorem 4. We use the same notation as in Section 1. We
by showing that the center ofA := (L/K,f ) is LG. Takex = ∑

α∈G xαuα ∈ C(A), where
xα ∈ Lt(α), for all α ∈ G. Thenxuβ = uβx for all β ∈ G0. This implies that

∑
α∈G

s(α)=t (β)

xαuα =
∑
α∈G

t (α)=s(β)

β(xα)uα

for all β ∈ G0. From this it follows thatxα = 0 for all α ∈ G \ G0. Hence x =∑
α∈G0

xαuα ∈ A0. Takeα,β ∈ G0 andγ ∈ G such thats(γ ) = α and t (γ ) = β . Then
the relationxuγ = uγ x shows thatxβ = γ (xα) and hence that

x =
n∑

i=1

αi(xα1)uidLi
(18)

whereαi : L1 → Li , i = 1, . . . , n, are fixed field isomorphisms andα1 = idL1. It also
shows thatxα1 ∈ LG. Therefore,x can be identified with an element inLG. On the other
hand, it is easy to check that an element inA of the form (18) withxα1 ∈ LG belongs
to C(A).

Next we show thatH is a subgroupoid ofG. Takeα ∈ H. We show thatα−1 ∈ H. By
(2) we get that

fα,α−1αα(fα−1,α) = fα−1α,αfα,α−1.

Hence, by (3), we get thatα−1 ∈ H. Now takeα,β ∈ H with s(α) = t (β). We show that
αβ ∈ H. By (2) we get that

fα,α−1αβα(fα−1,αβ) = fαα−1,αβfα,α−1 and

fβ−1,ββ−1α−1α(fβ,β−1α−1) = fβ−1β,β−1α−1fβ−1,β .

Therefore, by (3) and the fact thatβ−1 ∈ H, we get thatfα,β and fβ,β−1α−1 are
nonzero. Hence, by (2) again, and the fact thatα ∈ H, we get thatfα,α−1α(fβ,β−1α−1) =
fαβ,β−1α−1fα,β , which, by (3), implies thatαβ ∈ H.

Now put B = ⊕
α∈H Lt(α)uα andI = ⊕

α∈G\H Lt(α)uα . To show thatC(B) = LH∩G

one can proceed exactly as above, so we leave out the details for this.
Next we show thatB is simple. Since, the center ofB is simple, we are, by Lemm

1(a)(b), done if we can show thatB is separable overB0. By Proposition 4, we need t
show that there is an element ofC(B0) = B0 with trace 1. But since the extensionsLi/K,
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i = 1, . . . , n, are separable, the usual trace maps tri : Li → K are surjective. Hence, by
straightforward calculation, we get that tr(B0) = ∑n

i=1 tri (Li)uidLi
= ∑n

i=1 KuidLi
which

obviously contains
∑n

k=1 uidLi
= 1.

Finally, we show thatJ (A) = I . By Proposition 6 we are done if we can show t
every element ofI is a sum of nilpotent elements. Hence, by (1), it is enough to show
uα is nilpotent for allα ∈ G \ H. Case 1:s(α) �= t (α). Thenu2

α = 0. Case 2:s(α) = t (α).
Since the set ofβ ∈ G with the property thats(β) = t (β) = s(α) form a finite group,
we can choose a positive integern such thatαn = α−1. Then, sincefα,αn = fα,α−1 = 0,

we get thatun+1
α = (

∏n−1
i=0 αi(fα,αn−i ))uαn+1 = 0. We have now completed the proof

Theorem 4.

5. Crossed product orders

In this section, we prove Theorems 5 and 6. We begin by recalling some definition
a well-known result (see Proposition 7) concerning orders and algebras. We use th
notation as in Section 1.

Recall that anR-orderΛ in a finite dimensionalK-algebraA is a subring ofA such
that Λ is a full R-lattice in A (that is, a finitely generatedR-submodule ofA such that
KΛ = A) containingR as a subring. AnR-orderΛ is called maximal if it is not containe
in a strictly largerR-order ofA and it is called left (right) hereditary if every left (righ
ideal of Λ is projective. It can be shown that an order is left hereditary if and only
is right hereditary (see, e.g., [17]). Hence, in our discussion of hereditary orders, w
omit the adjectives “left” and “right.” LetI be an ideal ofΛ. The left (or right) order ofI
is defined to be the set of alla ∈ A with the property thataI ⊆ I (or Ia ⊆ I ).

Let Λ̂ denote theR̂-order R̂ ⊗R Λ, whereR̂ denotes them-adic completion ofR.
Furthermore, letΛ denote theR-algebraR ⊗R Λ, whereR = R/m.

Proposition 7. LetΛ be anR-order in a central simpleK-algebra.

(a) The orderΛ is Azumaya(maximal, hereditary) if and only ifΛ̂ is Azumaya(maximal,
hereditary).

(b) The orderΛ is Azumaya ifΛ is Azumaya as anR-algebra.

LetR be a complete discrete valuation ring.

(c) The orderΛ is maximal if and only if it is hereditary andJ (Λ) is a maximal two-sided
ideal ofΛ.

(d) The orderΛ is hereditary if and only if the left(or right) order ofJ (Λ) equalsΛ.

Proof. (a) The part about Azumaya orders is proved in [8] and the part about maxim
and hereditary orders can be found in [17]; (b) is proved in [8]; (c) and (d) can be f
in [17]. �
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Now we prove Theorems 5 and 6. By Proposition 7(a), we can assume thatR andSi ,
i = 1, . . . , n, are complete discrete valuation rings with maximal idealsπR andπSi , i =
1, . . . , n, respectively. PutA = (L/K,f ) andΛ = (S/R,f ).

To prove Theorem 5 we have (at least) two possibilities. The first possibility
observe that Theorem 4 holds for theR-algebraΛ. Theorem 5 now follows from Propo
sition 7(b). The second possibility is to construct a direct proof, analogous to the proof
Theorem 4, with the use of Proposition 6.

Now we prove Theorem 6. The “Azumaya part” follows from Theorem 5. Next
Theorems 4 and 5, we get thatΛ/J (Λ) is simple. Therefore, by Proposition 7(c),Λ is
maximal if and only if it is hereditary. All that is left to show now is the “hereditary pa
of Theorem 6. LetΛl denote the left order ofJ (Λ).

Suppose first thatπ2 does not divide any of thefα,β , α,β ∈ G, s(α) = t (β). We claim
that Λl = Λ. If we assume that the claim holds, then, by Proposition 7(d),Λ is hered-
itary. Now we show the claim. SinceΛ ⊆ Λl always holds, it is enough to show th
Λl ⊆ Λ. Takex = ∑

α∈G xαuα ∈ Λl , wherexα ∈ Lt(α), α ∈ G. Sinceπ ∈ J (Λ), we get
thatπx = ∑

α∈H πxαuα + ∑
α∈G\H πxαuα ∈ J (Λ). Therefore, by Theorem 5,xα ∈ St(α)

for all α ∈ H. Hence, we can assume thatx = ∑
α∈G\H xαuα . Take β ∈ G \ H. Then

xuβ−1 ∈ J (Λ), which, by Theorem 5 again, implies thatxβfβ,β−1 ∈ πSt(β). Sinceπ2 does
not dividefβ,β−1, we get thatxβ ∈ St(β).

On the other hand, suppose thatπ2 divides somefα,β , α,β ∈ G, s(α) = t (β). We
claim thatΛl � Λ. If we assume that the claim holds, then by Proposition 7(d),Λ is not
hereditary. Now we show the claim.

Define a partial order� on G in the following way. Forα,β ∈ G, put α � β if uβ ∈
uαΛ. Note thatα � β holds if and only ift (α) = t (β) andfα,α−1β is a unit inSt(α). Choose
the largest positive integerN such that there isα ∈ G with πN dividing fα,α−1. Since� is
a partial order, we can fixα ∈ G with the property thatπN dividesfα,α−1 and ifπN divides
fβ,β−1 for someβ ∈ G with α � β , then alsoβ � α. We will show thatπ−1uα ∈ Λl . Since
π−1uα /∈ Λ, the claim will follow.

Takeβ ∈ G with s(α) = t (β). We consider three cases.

Case 1:β ∈ H. Thenπ−1uαπuβ = fα,βuαβ ∈ J (Λ), sinceαβ /∈ H.
Case 2:β /∈ H but αβ ∈ H. By (2), we get thatfα,α−1α(fβ,β−1α−1) = fαβ,(αβ)−1fα,β ,

which, sincefαβ,(αβ)−1 is a unit, implies thatπN , and thereforeπ2, dividesfα,β .

Henceπ−1uαuβ = π−1fα,βuαβ ∈ J (Λ).
Case 3:β /∈ H andαβ /∈ H. By the relationπ−1uαuβ = π−1fα,βuαβ it follows that we

need to show thatπ dividesfα,β . If πN does not dividefαβ,(αβ)−1, then we can
proceed exactly as in case 2.

Therefore we assume now thatπN dividesfαβ,(αβ)−1. Seeking a contradiction, suppo
that fα,β is a unit inSt(α). By the equalityfα,α−1αβ = fα,β we get thatα � αβ . But by
the choice ofα this implies thatαβ � α, that is, thatfαβ,(αβ)−1α = fαβ,β−1 is a unit also.
By (2), we get thatfα,βα(fαβ,β−1) = fβ,β−1. Since the left hand side of this equation i
unit and the right hand side is divisible byπ this gives us the desired contradiction. W
have now completed the proof of Theorem 6.
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