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Abstract

We generalize the classical construction of crossed product algebras defined by finite Galois field
extensions to finite separable field extensions. By studying properties of rings graded by groupoids,
we are able to calculate the Jacobson radical of these algebras. We use this to determine when the
analogous construction of crossed product orders yield Azumaya, maximal, or hereditary orders in a
local situation. Thereby we generalizssults by Haile, Larson, and Sweedler.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

Recall that if L/K is a finite Galois field extension with Galois grodp then the
crossed product algebtd /K, f) is defined as the additive groép,, . ; Lu with multi-
plication defined by th& -linear extension of the rule

xuayuﬁzxa(y)fa,ﬁuaﬁ (1)
forall x,y € L and alla, 8 € G, where f is a cocycle, that is, a map frofi x G to L
satisfying
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fa,ﬂya(fﬂ,y)zfaﬂ,yfa,ﬁ (2)

forall o, 8,y € G and

fa,ﬂ =1 (3)

whenevewr =1 or 8 = 1. Itis well known that iff is invertible, that is, iff,, g is nonzero

for all @, B € G, then the crossed product algebra is central and simple as an algebra over
K (see, e.g., [17]). Iff is not invertible, then the crosdgroduct algebra is still central,

but not simple. In fact, Haile, Larson, and Sweedler [12] have shown the following result.

Theorem 1. Thering(L/K, f) is central as an algebra ovek. Furthermore, ifH denotes
the set ofe € G such thatf, ,-1 is nonzero, therfl is a subgroup oiG, P,y Lua
is central and simple as an algebra ovef!, and the Jacobson radical GiL/K, f) is

Docc\u Ltta-

If K is the field of quotients of a Dedekind domatn S is the ring of algebraic integers
in L over R, and f is an invertible cocycle taking its values $h then the crossed product
order(S/R, f) is defined as the additive groép,, . ; Su, with multiplication induced by
the corresponding crossed product algebra. A lot of work has been devoted to studying the
guestion of when crossed product orders are Azumaya, maximal, or hereditary (see [1,2,
9,11,13,17,20]). IfL /K is unramified ands and R are local rings, then this question can
be analyzed by calculating the Jacobson radical of the crossed product order. In fact, Haile
[11] has obtained an arithmetical version of Theorem 1.

Theorem 2. Let L/K be unramified and assume th&tand R are local rings. If H
denotes the set af € G such thatf, ,-1 is a unit in S, then H is a subgroup ofG
and @, Su« is Azumaya as an order ovér’. Furthermore, the Jacobson radical of
(S/R, f)ism(Pycpy Sua) @ (@aeG\H Suy), wherem is the maximal ideal oR.

Haile loc. cit. then uses Theorem 2 to prove the following result.

Theorem 3. Let L/K be unramified and assume th&tand R are local rings. Then
(S/R, f) is Azumaya if and only iff.s is a unit in S for all «, 8 € G. Furthermore,
(S/R, f)is maximal if and only if it is hereditary if and only if none of tfigg, o, g € G,
belong to the square of the maximal idealSof

If L/K is a finite separable (not necessarily normal) field extension, then the classical
definition of crossed product algebras makesense. However, if we replace the Galois
group of L/K by the set of field isomorphisms between the different conjugatds of
in a normal closure of./K, then we can define an algebra structure (see below) that
generalizes the classical crossed product construction. In general this gives us rings graded
by groupoids, and not just groups as in the classical case.

To be more precise, |&f denote a normal closure @f/ K and letG denote the Galois
group of N/K. If H is a subgroup ofG, then letL” denote the set aof € L that are
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fixed by all« € H. Furthermore, let. = L1, L>..., L, denote the different conjugate
fields of L under the action of5. If 1 < i, j < n, then letG;; denote the set of field
isomorphisms fronL; to L;. If « € G;;, then we indicate this by writing(«) = j and
t(a) =i (s andz are abbreviations fasourceandtargel). If we let G be the union of the
Gij, 1<i, j <n, thenG is no longer a group, but instead a groupoid, that is, a category
where all the morphisms are isomorphismgH lis a subcategory @b closed under taking
inverses, then we say thitis a subgroupoid ofs. We define the crossed product algebra
(L/K, f) asthe additive grou@d,, .¢ L:()u« With multiplication defined by th& -linear
extension of the rule (1) if(«) = ¢(B), andxuyyug = 0 otherwise, for alk, 8 € G and
all x € L), y € Li(p), Where f is a cocycle on the groupoi@. This means that (see,
e.g., [18] for the details), g is defined precisely whes(o) = 7(8) and that it satisfies
fa,p € Li(«) and (2) for alla, 8, y € G such thats(e) = 1(8) ands(8) =t(y). We also
assume thay satisfies (3) whenever or 8 is an identity map on some of the conjugate
fields of L. Note that if L/K is actually Galois, thedL/K, f) coincides with the usual
crossed product algebra construction.

In Section 4, we prove the following generalization of Theorem 1.

Theorem 4. The ring (L/K, f) is central as an algebra ovek®. Furthermore, ifH
denotes the set af € G such thatf, ,-1 is nonzero, therH is a subgroupoid ofG,
@D, ch Lt (@) is central and simple as an algebra ove"¢ and the Jacobson radical
of (L/K, f) is ®OZEG\H L,(a)ua.

If K is the field of quotients of a Dedekind domaiy S (S;) is the ring of algebraic
integers inL (L;) overR (i =1,...,n), and f is an invertible cocycle taking its val-
ues in{Ji_; Si, then we define the crossed product or®fR, ) as the additive group
Do Si(@)ue With multiplication inducedy the corresponding crossed product algebra.

In Section 5, we prove the following generalization of Theorem 2.

Theorem 5. Let L /K be unramified and assume th&aeind R are local rings. IfH denotes
the set ofw € G such thatf, ,-1 is a unitin $;«), thenH is a subgroupoid of5 and
Dych St(@)ta IS Azumaya as an order ovér "¢ . Furthermore, the Jacobson radical of
(S/R, f)ism(Pyey St@)ta) ® (@aeG\H St (@)Ua), Wherem is the maximal ideal oR.

In the same section, we use Theorem 5 to prove the following result which generalizes
Theorem 3.

Theorem 6. Let L/K be unramified and assume th&tand R are local rings. Then

(S/R, f) is Azumaya if and only iff, g is a unit in S, for all «, 8 € G such that

s(a) =t(B). Furthermore(S/R, f) is maximal if and only if it is hereditary if and only if
none of thefy g, @, B € G, s(o) = ¢(B), belong to the square of the maximal idealag,).

As indicated above, our generalization of crossed product algebras belong to the cat-
egory of rings graded by groupoids. Therefore, in Section 2, we extend some results for
rings and modules graded by groups, to the groupoid graded case. Our proofs resemble
their group graded counterparts (from [9,14,15]). But for the convenience of the reader we



726 P. Lundstrém / Journal of Algebra 283 (2005) 723-737

have, nonetheless, included them in full detail. In Section 3, we state and prove a result

about the Jacobson radical of algebras over commutative local rings. In Sections 4 and 5,

we use the results of Sections 2 and 3 to prove Theorems 4—6. For more results concerning
group graded rings and modules see [4-7,10,16].

2. Graded ringsand modules

In this section, we first recall the “folklore” definitions (see Definitions 1 and 2) of rings
and modules graded by categories. Then we specialize these categories to be groupoids
and prove that then the components of strongly graded rings are invertible bimodules (see
Proposition 3). This is in turn used to proveesult (see Proposition 4) concerning the
separability of gbngly groupoid gradedimgs and the trace function (see Definition 5)
that we need in later sections. The section is ended by an application (see Corollary 2) of
this result to the separability of groupoid ringgee Example 1). This result is not needed
in the sequel, but is interesting in its own right since it provides us with a simultaneous
generalization of known separability conditis (see Corollaries 3 and 4) for group rings
and matrix rings.

LetC be a category. I& is a morphism irC, then we will indicate this by writing € C.

The source and target of a morphismn C will be denoteds(«) andz («), respectively.
We let Co denote the collection of objects @. An object ofC will often be identified
with its identity morphism. For the rest of this section, we assumeGhatsmall.

Let all rings be associative and equipped with multiplicative identities. We assume that
ring homomorphisms respect the multiplicatidentities. Furthermore, all modules (left,
right and bimodules) are assumed to be unital. Adbe a ring. We let the category of
left A-modules be denoted bhy-mod. The center ofA is denotedC(A). If M is a left
A-module andS andT are subsets of and M, respectively, theST denotes the set of
all finite sums of products of the forsm, s € S, r € T.

Definition 1. A ring A is graded if there is a set of additive subgroups « € C, of A
suchthatA = @, .c A« and for alle, 8 € C, we have

Ao if s(a) =1(B),
A“Aﬁg{{O} otherwise. 4)

If there always is equality in (4), instead of just inclusion, théeis called strongly graded.
A morphism of graded ringg : A — B is a morphism of rings satisfyingi(A,) € B, for
alla € C.

Example 1. Let R be a ring. The category ring (or groupoid ringdfis a groupoid)R[C],

of R overC, is defined to be the set of all formal suR§, .. rqa with r, € R andr, =0
for all but finitely manyx € C. Addition is defined pointwise and multiplication is defined
by the R-linear extension of the rule

a,ﬁ:{gﬁ it s(e) =1(8),

otherwise,
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for all @, B € C. The grading is, of course, defined BRYC], = Ra, @ € C. We now con-
sider two special cases of interest:

(a) If Cis agroup, themR[C] is the usual group ring ok overC.

(b) If C=1 x I, wherel is a finite set of cardinality:, and C is equipped with the
operation(i, j) - (k,l) = (i,1) if j =k, thenR[C] is R-algebra isomorphic td4, (R),
the ring ofn x n matrices oveRr.

Definition 2. If A is a graded ring, then a lef-moduleM is graded if there is a set of
additive subgroupg/,, o € C, of M such thatM = @, .c M, and for alle, p € C, we
have

Myp  if s() =1(B),
AcMp < { {0} otherwise. ()
If there always is equality in (5), instead of just inclusion, tiM1is called strongly graded.
A morphism of gradedd-modulesf : M — N is a morphism ofA-modules satisfying
f(My) C N, forall « € C. Let A-gr denote the category of graded ldftmodules. It is

easy to see that-gr is a Grothendieck category.

Let A be agraded ring an¥ a graded lefid-module. Any nonzere: € M has a unique
decompositionn = ), .c mq Wherem, € M, and all but finitely many of then, are
nonzero. The nonzero elementg in the decomposition of: are called the homogeneous
components ofr. Also putMo = P, cc, M-

For the rest of this section, we assume f@as a groupoid.

Proposition 1. Let A be a graded ring. Then the multiplicative identitysobelongs taAg.
Furthermore, if we leD denote the set af € C such thatl, ) and1; ) are nonzero, then
D is a subgroupoid o€ with Do finite andA = @, .p Aq-

Proof. First we show that & Ag. Let 1=, - 1, be the homogeneous decomposition
of 1in A. Then we getthatd=11g =} ", .c 1,1 forall g € C. But since 11 € Aug

for all «, B € C, we get that 115 = 0 whenever: ¢ Co. Hence, ifa ¢ Co, then 1, =
Le1=Ypclalp=0.

Sinces(a 1) =1(a), t(a™ 1) =s(a), s(@B) = s(B), t(aB) = t(«) for all «, B € C with
s(a) =t(B), we getthaD is a subgroupoid of. Also, by the fact that & ZaeDo 1., we
get thatDg is finite.

Finally, takea € C \ D. Suppose that;}y) = 0. ThenA, = 14, = 1;(4)A« = {0}. The
case when k) =0 is treated similarly. O

Remark 1. By Proposition 1, it is now legitimate for us to assume for the rest of the article
thatCo is finite and that =) 1, where 1, # 0 for all « € Cop. In particular,A, is
nonzero for alkx € Co.

aeCyp

Before we state the next proposition, we need a definition.
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Definition 3. Let i denote the inclusion map fromg to A. The graded restriction and
induction functors

id': A-gr— Ag-mod and igr: Ao-mod— A-gr

are defined by?' (M) = Mo, with the induced leftdg-module structure, for all graded left
A-modulesM, andié‘r(N) = A ®4, N, with the induced leftdA-module structure, and a
grading defined byA @4, N)o = Aa ®4, N for all « € C and all leftAg-modulesn. Itis
easy to check thaf' is a right adjoint ofig.. We let the corresponding unit and counit be
denoted by ands, respectively.

Proposition 2. If A is a graded ring, then following three conditions are equivalent

(i) TheringA is strongly graded.
(i) Every graded lefA-module is strongly graded.
(i) The natural transformations ands$ are natural equivalences.

Proof. Let M be a graded lefiA-module. Suppose first that (i) holds.df 8 € C are
chosen so that(a) = 1(B), then we getthatl, Mg C Mg = Aj)Map = AgAy-1Mup C
AqMg. Hence (i) holds.

Now suppose that (ii) holds. By the assumptidg,is surjective. Letk denote the ker-
nel of 8,7. ThenKq coincides with the kernel of the isomorphism frotg ® 4, Mo to Mo.
HenceKo = 0, and therefore, again by the assumptikip,= A, Ko = {0} for eacha € C.
Hencesdy, is injective. Alsoey is an isomorphism for all lefdg-modulesN. In fact, the
inverse ofey is given by the multiplication map fromo ® 4, N to N. Thus (iii) holds.

If (iii) holds, then trivially (ii) and hence (i) holds. O

To state the next result, we need another definition.

Definition 4. For a graded lefi-moduleM anda € C, let M («), thea-suspension oM,
be M as a leftA-module but with the new grading

| Mg, if s(B) =1(),
M) = { {0}  otherwise,

forall g € C.
Proposition 3. Let A be a strongly graded ring.

(a) If M is a graded leftA-module andB € C, then the multiplication map from ®4,,
Mpg to M () is simultaneously an isomorphism of graded Jeftnodules andi- A g)-
bimodules.

(b) If a, B € C are chosen so that(a) = (8), then the multiplication map from,, ®A4,p)
Ag 1o Agg is an i;omqrphism oA,(a)—As(ﬁ)—b!modules.

(c) EachAy, @ € C, is an invertibleA, q)-A ) -bimodule.
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Proof. (a) follows from Proposition 2, (b) follws from (a) and (c) follows from (b) with
B=a"1 O

Recall that if a ringB is a subring of a ringC (assumed to have the same identity
elements), thei€ is called separable ove® if the multiplication map fromC ® C to
C splits as aC-bimodule map. A ring is called Azumaya if it is separable over its cen-
ter.

Now we determine a necessary and sufficient condition for a strongly graded ring
to be separable ovetp. To do that we need some more notations and a definition. By
Proposition 3(c) and general theory for invertible bimodules (see, e.g., [3]), there is for
eacha € C a unique isomorphism of ringf, from C (A, () t0 C(A;(«)) such that

xa = fyla)x (6)
forall x € A, and alla € C(A4(«)). By abuse of notation, we let, be denoted by.

Definition 5. Let A be a strongly graded ring witlC finite. Then the trace map
tr: C(Ag) — C(Ap) is defined by

tr@= Y > Plas)

aeCqy BeC
s(B)=a
foralla € C(Ap).

Example 2. Let R be a ring andd = R[C] the associated groupoid ring &fover a finite
groupoidC. If x =) rqa € C(Ap), then

)= ra Y. tp). (7)

aeCq peC
s(B)=a

aeCq

We now consider two special cases:
(a) If Cis agroup, then (7) reduces to
tr(x) = nx, (8)

wheren denotes the cardinality &.
(b) If Cis the groupoid from Example 1(b), then (7) reduces to

n

tr(x) = Zr(i’i)' (9)

i=1

Thus tr is the restriction t@'(Ag) of the usual trace oM, (R).
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Proposition 4. If A is a strongly graded ring, theA is separable oveAy if and only ifC
is finite and the image of the trace contaihs

Proof. Let the multiplication map fromd ® 4, A to A be denoted by:.
First suppose that there is @nbimodule map from A to A ®4, A such that

pov=1 (10)
We also put

s=v(1). (11)
For future use, we note that, by (11), we get that

as =sa (12)

forall a € A. SinceA is graded, we get that

A®uA= P Ac®aoAp= P Aup (13)
,BeC ,BeC
e e ®)

as additive groups. Therefore, by (10), we can assume that

lo
s= Z Zaa,k ®by-1 (14)

aeCk=1

for someay x € Ag, by-1; € A,-1 @and some positive integefs where Zﬁf‘zla%k ®
by-1, = 0 for all but finitely manya € C. By (10), (11), and (14), we get that

> weC Ca.a-1s Wherec, ,—1 = Zﬁ{"zl g kby-1; and
Cqo-1 =0 forall but finitely manyx € C. (15)

By (12) and (13), it follows that eaah, ,-1 € C(Ao). Takea, # € C suchthak(8) =t ().
Then, by (12) and (13) again, we get that, ,-1 = cg, o-1p-1a foralla € Ag. SinceA is
strongly graded this implies, by (6), that

B(cyq-1) = Cpo q-1p-1- (16)

Therefore, by (15), (16), and Remark 1, it follows titais finite. Now define an equiv-
alence relation~ on Cyp in the following way. If«, 8 € Co, then puta ~ g if there is

y € C with s(y) =« andz¢(y) = 8. Choose representatives, ..., «a, for the different

equivalence classes and put > /_; €, o-1- Thentlc) =1.
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Now suppose tha€ is finite and that there is € C(Ag) such that tfc) = 1. Since
A is strongly graded we can, for eaghe C, choose a positive integet, and elements
agk € Ay andb,-1, € A, fork=1,...,mg, such that

My
Za%kbaﬁl,k =1w). a7
k=1

Now put

mg
d= Z Z Zaa,kcﬂ@’ba*l,k

BeCo weC k=1
s(a)=
and define: A > A®4, A by v(a) =ad, a € A. Thenv is anA-bimodule map satisfy-
ing (10). In fact, ifa € A,,, for somey € C, then, by (17), we get that

Mg
ad = Z Z Zaaa,kclg ®bo:—1,k

eC eC k=1
P OS(O&)=ﬂ

myg Mya

= Z Z Zaya’lba—ly—l)laaa’kclg ® ba—l’k

BeCo weC, s(a)=p, k=1 I=1
t(@)=s(y)

my Mya

= Z Z Z Zaya,lcﬁ ®ba_1y—1,laaa,kba—1’k

BeCo aeC, s(a)=8, k=1 I=1
t(a)=s(y)

Mmyq

= Z Z Zaya,lcﬂ ® ba—ly—l)la

BeCo weC, s(v)=4, =1
t(@)=s(y)

and

My

oW =pd)= ) > D darcpbyrp= ), Y alcp)

BeCo BeC k=1 BeCo «eC
s(a)=p s(a)=p

=trc)=1 O
Remark 2. Proposition 4 (and our proof) generalizes Proposition 2.1 (and its proof) in [14]

from the group graded case to the groupoid graded situation. We have also corrected the
formulation of Proposition 2.1 in loc. cit. Iratt, there it is claimed that a strongly group
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graded ringA is separable precisely when the associated trace @idp) — C(Ap) is
surjective. This fails for all crossed product algebras defined by nontrivial Galois field
extensions.

Definition 6. If C is finite anda € Cgp, then letn, denote the number g8 € C with
s(B)=t(B)=a.

Example 3.

(a) If Cis afinite group, themn, equals the order ot for all o € Co.
(b) If Cis the groupoid from Example 1(b), thep = 1 for all « € Co.

Corollary 1. If A is a strongly graded ring such th& is finite andn,, is a unitin A for
all « € Cy, thenA is separable oveAy.

Proof. By Proposition 4, we need to finde A such that tfc) = 1. Choose representa-
tivesas, ..., a, € Co for the different equivalence classes of the equivalence relation
introduced in the proof of Proposition 4. A sghtforward calculation shows that if we
pute=Y"7_;n 11, thentic)=1. O

Lemmal. Let B C C C D be atower of ring extensions.

(a) If C is a direct product of finitely many copies Bf thenC is separable oveB.
(b) If D is separable ove€, andC is separable oveB, thenD is separable oveB.
(c) If D is separable oveB, thenD is separable ove€.

Proof. (a) is straightforward and (b) and (c) follow from a more general result concerning
separable functors (see [14, Lemma 1.1}

Corollary 2. If R is aring andC is a groupoid, therR[C] is separable oveRr if and only
if C is finite andn, is a unitinR for all « € Co.

Proof. Put A = R[C]. First note that, by Lemma 1(a}\o is always separable oveR,
sinceAg is a direct product of finitely many (by Proposition 1) copiesRofTherefore, by
Lemma 1(b)(c)A is separable oveR if and only if A is separable ovetp.

Assume that is separable oveto. Then, by Proposition 4, we get th@tis finite and
that the image of the trace contains 1. But sin€€ tdg)) = Y nqeC(R)x, eachng,
a € Cp, must be a unitinR.

On the other hand, i€ is finite andn, is a unitinR for all « € Cg, then, by Corollary 1,
A is separable ovetg. O

aeCo

By Corollary 2 and Examples 1-3, we immediately get the following two well-known
results.
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Corollary 3 (Mascke’s theorem)_et R be a ring andG a group. TherR[G] is separable
overR if and only if G is finite and the order o is a unitinR.

Corollary 4 (DeMeyer and Ingraham [8]).et R be a ring andr a positive integer. Then
M, (R) is separable oveR.

3. The Jacobson radical

In this section, we calculate the Jacobson radical of algebras with a certain property (see
Proposition 6). To do that we need a well-known result (see Proposition 5).

First we recall some definitions. Let be a ring,/ a two-sided ideal ofA anda an
element ofA. Recall that/ (or a) is called nilpotent if there is a positive integesuch
that!" = {0} (ora" = 0); I is called nil if it consists of nilpotent elements. The nilradical,
rad(), of I is the set otz € A with the property that™ € I for some positive integern.
The Jacobson radical,(A), of A is the intersection of the maximal left (or right) ideals
of A.

Proposition 5. Let A and B be rings.

(a) If Bisasubring ofA, andA is free as a leftB-module with a finite basis consisting of
elements such thatt B = Bx, thenJ(B) = BN J(A). In particular, J(B)A C J(A).

Let C be a two-sided ideal od.

(b) fC CJ(A),thenJ(A/C)=J(A)/C.
(c) If Cisnil, thenC C J(A).
(d) If J(A/C)={0}, thenJ(A) C C.

Proof. For proofs of (a), (b), (c), and (d), see Proposition 2.5.33, Proposition 2.5.6(ii),
Remark 25.4', and Proposition 3.1'(ii) respectively in [19]. O

Proposition 6. Let A be a finitely generated algebra over a commutative local rihg
with maximal idealn. If there is anR-subalgebraB of A and a two-sided ideal of A
satisfying

(i) A=B@ ]I asleftR-modules
(i) J(B/mB)=/{0};
(iii) every element af is a sum of elements cdd(m 1),

thenJ(A)=mB & I.
Proof. By Proposition 5(a) withB = R, we get thatn A € J(A). Hence, by (i) and

Proposition 5(b) withC = m A, we can assume that is a field. Then, by (iii) and [19,
Proposition 2.6.32]] is nilpotent and hence nil. Thus, by Proposition 5{c¥ J(A). On
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the other hand, since, by (iiy,(A/I) = J(B) = {0}, we can, by Proposition 5(d), conclude
thatJ(A)CI. O

4. Crossed product algebras

In this section, we prove Theorem 4. We use the same notation as in Section 1. We begin
by showing that the center of := (L /K, f) is L¢. Takex = Y wec Xalta € C(A), where
Xq € Li(a), foralla € G. Thenxug = ugx for all 8 € Go. This implies that

Z Xollg = Z B(xa)ltg

aeG aeG
s(e)=t(B) t(a)=s(B)

for all B € Go. From this it follows thatx, = 0 for all @ € G \ Gg. Hencex =
Zaeeoxa”a € Ap. Takew, B € Gg andy € G such thats(y) = « andt(y) = 8. Then
the relationxu, = u, x shows thatg = y (x,) and hence that

X =) o (tay)tidy, (18)

i=1

wherew; : L1 — L;, i =1,...,n, are fixed field isomorphisms and = idz,. It also
shows that,, € LC. Thereforex can be identified with an element it’. On the other
hand, it is easy to check that an elementdirof the form (18) withx,, € LS belongs
toC(A).

Next we show thaH is a subgroupoid o6. Takea € H. We show thatr—! € H. By
(2) we get that

fa,a_laa(fa_l,a) = foz_la,oz fa,oz_l'

Hence, by (3), we get that—! € H. Now takew, 8 € H with s(a) = 7(8). We show that
af € H. By (2) we get that

fa,a_laﬂa(fa_l,aﬂ) = faa_l,aﬁfa,a_l and
fﬂ_l,ﬂﬂ_la_la(fﬂ,ﬂ_la_l) = fﬂ_lﬂ,ﬂ_la_lfﬂ_l,ﬂ‘

Therefore, by (3) and the fact thgt~! € H, we get that fo,p and fg g-1,-1 are
nonzero. Hence, by (2) again, and the fact tha H, we get thatf, ,10(fg g-1,-1) =
Jop,p-1a-1Ja,p, Which, by (3), implies tha&g € H.

Now put B = @B, ey Li(@yta aNAT = B, cq\n Li(@)ta- TO show thatC(B) = LH"G
one can proceed exactly as above, so we leave out the details for this.

Next we show thaiB is simple. Since, the center & is simple, we are, by Lemma
1(a)(b), done if we can show tha#t is separable oveBy. By Proposition 4, we need to
show that there is an element@f Bg) = Bg with trace 1. But since the extensiohg/ K,
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i=1,...,n, are separable, the usual trace mapsi; — K are surjective. Hence, by a
straightforward calculation, we get thatBy) = >, tr; (Liuid,, = g Kuid,, which
obviously containg "y _; uid,. = 1.

Finally, we show that/ (A) = 1. By Proposition 6 we are done if we can show that
every element of is a sum of nilpotent elements. Hence, by (1), it is enough to show that
ugy is nilpotent for alle € G \ H. Case 1s(«) # 1 (). Thenuﬁ =0. Case 25(x) =t ().
Since the set o8 € G with the property that(8) = #(8) = s(a) form a finite group,
we can choose a positive integesuch thaix” = o=, Then, sincefy o = Joa1=0
we get thatu'“rl (T2 1a’ (fo.an-i)ugni1 = 0. We have now completed the proof of
Theorem 4.

5. Crossed product orders

In this section, we prove Theorems 5 and 6. We begin by recalling some definitions and
a well-known result (see Proposition 7) concerning orders and algebras. We use the same
notation as in Section 1.

Recall that anR-order A in a finite dimensionak -algebraA is a subring ofA such
that A is a full R-lattice in A (that is, a finitely generateft-submodule ofA such that
K A = A) containingR as a subring. AmR-order A is called maximal if it is not contained
in a strictly largerR-order of A and it is called left (right) hereditary if every left (right)
ideal of A is projective. It can be shown that an order is left hereditary if and only if it
is right hereditary (see, e.g., [17]). Hence, in our discussion of hereditary orders, we may
omit the adjectives “left” and “right.” Lef be an ideal ofA. The left (or right) order of
is deflned to be the set of aile A with the property that! C I (orla CI).

Let A denote theR-order R ®x A, whereR denotes then-adic completion ofR.
Furthermore, letA denote theR-algebraR @ A, whereR = R/m.

Proposition 7. Let A be anR-order in a central simpl&K -algebra.

(a) The orderA is Azumayamaximal, hereditaryif and only if A is Azumayamaximal,
hereditary. _ B
(b) The orderA is Azumaya ifA is Azumaya as aR-algebra.

Let R be a complete discrete valuation ring.

(c) The orderA is maximal if and only if it is hereditary and(A) is a maximal two-sided
ideal of A.
(d) The orderA is hereditary if and only if the leftor right) order of J(A) equalsA.

Proof. (a) The part about Azumaya orders i©ped in [8] and the part about maximal
and hereditary orders can be found in [17]; (b) is proved in [8]; (c) and (d) can be found
in[17]. O
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Now we prove Theorems 5 and 6. By Proposition 7(a), we can assume tad S;,
i=1,...,n, are complete discrete valuation rings with maximal ideaksandr S;, i =
1,...,n, respectively. Pud = (L/K, ) andA = (S/R, f).

To prove Theorem 5 we have (at least) two possibilities. The first possibility is to
observe that Theorem 4 holds for tRealgebraA. Theorem 5 now follows from Propo-
sition 7(b). The second possibility is to constt a direct proof, analogous to the proof of
Theorem 4, with the use of Proposition 6.

Now we prove Theorem 6. The “Azumaya part” follows from Theorem 5. Next, by
Theorems 4 and 5, we get that/J(A) is simple. Therefore, by Proposition 7(c), is
maximal if and only if it is hereditary. All that is left to show now is the “hereditary part”
of Theorem 6. LetA; denote the left order af (A).

Suppose first that? does not divide any of theg, g, o, B € G, s(w) =1(B). We claim
that A; = A. If we assume that the claim holds, then, by Proposition 74d)s hered-
itary. Now we show the claim. Sincd C A; always holds, it is enough to show that
A C A Takex =), g Xalla € A7, Wherexy € Ly(q), @ € G. Sincer € J(A), we get
thatmx =3, ey TXalla + D _yeq\H TXalla € J(A). Therefore, by Theorem &, € Sy (a)
for all € H. Hence, we can assume that= ), g\ Xalta. Take g € G\ H. Then
xug-1 € J(A), which, by Theorem 5 again, implies thatf; 4-1 € 7 5;(). Sincer? does
not divide f; -1, we get thateg € S;(g).

On the other hand, suppose thed divides somefy g, o, B € G, s(a) =t(B). We
claim thatA; 2 A. If we assume that the claim holds, then by Proposition 74djs not
hereditary. Now we show the claim.

Define a partial ordex on G in the following way. Forx, 8 € G, puta < 8 if ug €
ug A. Note thatr < g holds if and only ift (@) =1 (8) andfa,a_lﬁ is aunitins; ). Choose
the largest positive intege¥ such that there ia € G with 7% dividing fa.a-1- Since< is
a partial order, we can fix € G with the property that ¥ divides f, ,-1 and if =" divides
I3 p-1 for someg € G with o < B, then alsg8 < «. We will show thatr ~1u, € A;. Since

7 luy ¢ A, the claim will follow.
TakepB € G with s(@) =¢(8). We consider three cases.

Case 1:8 e H. Thent Yugmug = fo pugp € J(A), sinceap ¢ H.

Case 2:8 ¢ H but e € H. By (2), we get thatf, ,-1a(fg g-14-1) = fop @p)-1Sa.p
which, sincef,s 4p)-1 is @ unit, implies thatrV, and thereforer?, divides fy 4.
Hencer tuqug = w71 fy puag € J(A).

Case 3:8 ¢ H andap ¢ H. By the relationt ~tuqup = 771 f, guqp it follows that we
need to show that divides f, . If =V does not dividef,g (4p)-1, then we can
proceed exactly as in case 2.

Therefore we assume now that’ divides Jap.p)-1- Seeking a contradiction, suppose
that fo g is a unit in S, ). By the equalityf, ,-1,5 = fo,p We get thatr < «f. But by
the choice ofx this implies thatg < «, that is, thatf,g )14 = fup -1 IS @ Unit also.
By (2), we get thatfy pa(fop s-1) = fp g-1. Since the left hand side of this equation is a
unit and the right hand side is divisible by this gives us the desired contradiction. We
have now completed the proof of Theorem 6.
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