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Abstract

We reconsider fluctuations of Affleck–Dine (AD) field in a D-term inflation model. Contrary to the previous analysis, we
find that the spectrum of the adiabatic fluctuations is almost scale invariant even if the AD field has a large initial value.
Furthermore, we study the isocurvature fluctuations of the AD field and estimate the ratio of the isocurvature to adiabatic power
spectrum. The dynamics of the inflaton and AD fields sets the upper bound for the value of the AD field, leading to a lower limit
for isocurvature perturbation. It is shown that the recent cosmic microwave background data give a constraint on the D-term
inflation and the AD field. 2001 Elsevier Science B.V.

1. Introduction

Minimal Supersymmetric Standard Model (MSSM)
have many flat directions, along which there are
no classical potentials. The flat directions are only
lifted by soft SUSY breaking mass terms and non-
renormalizable terms. Such flat directions have several
interesting consequences in cosmology such as baryo-
genesis and Q-ball formation. In Affleck–Dine mech-
anism for baryogenesis, a complex field along a flat
direction (AD field) has a large field value during in-
flation. After inflation the AD field starts to oscillate
when its mass becomes larger than the Hubble para-
meterH . At that time the AD field obtains velocity in
the phase direction because of the baryon number vi-
olating operator, and the baryon number is generated
very efficiently.
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For inflation models in which the accelerated cos-
mic expansion is caused by a F-term potential, the AD
field generally obtains an effective mass of the order
of H through supergravity effects during inflation. In
this case, the expectation value of the AD fieldΦ is de-
termined by the balance between mass termcH 2|Φ|2
and the non-renormalizable term wherec is order one
constant. If the mass term is positive (c > 0) as ex-
pected from minimal supergravity, the potential takes
minimum atΦ = 0 and the AD mechanism does not
work. Thus the supergravity effects must lead to nega-
tive mass term (i.e.,c < 0) for baryogenesis in F-term
inflation models.

Supersymmetric inflation models are also construct-
ed with use of D-term potential. In the D-term inflation
models supergravity effects do not induce O(H2)mass
terms and the AD field has only soft SUSY breaking
mass term of the order of weak scale. Thus, the
AD field can have a large expectation value during
inflation, which makes the AD baryogenesis work.
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Since the effective masses of the AD field in D-term
inflation models are much smaller than the Hubble pa-
rameter during inflation, the AD field has large fluctua-
tions which may give some contribution to the density
fluctuations of the universe. In the previous work [1,2],
the fluctuations of AD field was considered and it was
pointed out that the the fluctuations of the AD field
change the spectral index of the adiabatic fluctuations
produced in the D-term inflation, from which the ex-
pectation value of the AD field is constrained. The au-
thors in Refs. [1,2] also pointed out that the small ex-
pectation value of the AD field during inflation leads
to lager isocurvature (baryon) perturbations which are
induced by the fluctuations in the phase direction of
the AD field. However, their estimation of the adia-
batic fluctuations was too naive, and one needs careful
treatment for the multi-field dynamics.

In this Letter, we reconsider the AD field fluctua-
tions in the D-term inflation model. We find that the
spectrum of the adiabatic fluctuations is almost scale
invariant even if the AD field has a large initial value.
Furthermore, we study the isocurvature fluctuations of
the AD field and estimate the ratio of the isocurvature
to adiabatic power spectrum. It is shown that the re-
cent Cosmic Microwave Background (CMB) data give
a constraint on the model parameters of D-term infla-
tion and the AD field.

2. Dynamics of AD and inflaton fields

Let us discuss the dynamics of the AD and inflaton
fields in the D-term inflation model. The flat direction
corresponding to the AD field can be lifted by soft
SUSY breaking mass term and the non-renormalizable
term coming from the superpotential given by

(1)W(Φ)= λΦd

dMd−3
,

whereM ≡ 1/
√

8πG is the reduced Planck mass,λ
is an O(1) coupling constant, andΦ ≡ φeiθ/√2 is the
AD field. Then, the potential is written as [3]

V (φ)=m2|Φ|2 +
(
am3/2Φ

d

dMd−3 + h.c.

)

(2)+ λ2 |Φ|2(d−1)

M2(d−3)
,

wherem is the soft mass,m3/2 is the mass of gravitino,
and a is an O(1) complex constant. The dimension
d is an even number, and the cases ofd = 4,6 are
considered in this Letter. Note that the AD scalarφ
should be less than O(M), otherwise the potential
cannot be described as Eq. (2).

The tree-level scalar potential for D-term inflation
is given by [4]

V = |κ |2(|ψ+ψ−|2 + |Sψ+|2 + |Sψ−|2)
(3)+ g2

2

(|ψ+|2 − |ψ−|2 + ξ2)2
,

where κ is the coupling constant of the interaction
betweenS andψ±, ξ2 is the Fayet–Illiopoulos term,
and g is the U(1)FI gauge coupling. Though the
global minimum of this potential is atS = ψ+ = 0,
|ψ−| = ξ , the local minimum is atψ+ = ψ− = 0 for
|S|> Sc ≡ gξ/κ . We can takeS real using theU(1)FI
phase rotation. With use ofσ ≡ √

2S, for σ > σc =√
2gξ/κ , the potential ofσ up to a 1-loop correction

is given by [4]

(4)V (σ)= V0 + g4ξ4

16π2 ln

(
σ

Q

)
,

whereV0 = g2ξ4/2, andQ = σc is a renormalization
point. If the potential is dominated byV (σ), σ is
related to the number of e-folds (of inflation)N ,

(5)σ � gM

2π

√
N.

Assuming that the present scale crosses the Hubble ra-
dius atN = 50 during inflation, the COBE normaliza-
tion (V 3/2/V ′ = 5.3× 10−4) fixes

(6)ξ = 7.05× 1015 GeV.

If φ starts withφi ∼ O(M), the potential is domi-
nated by the F-term of the AD field. Then there arises
O(H 2) mass term for the inflaton due to supergravity
effects, and it rapidly rolls down to its true minimum.
Therefore inflation does not occur at all in this case. In
order to have a successful inflationary model,φi must
be less thanφc , which is given by

(7)φc = √
2

(
g√
2λ
ξ2Md−3

) 1
d−1

.
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Forφi � φc, the universe is dominated by the D-term
of the inflaton field.1 Thus the D-term driving inflation
accounts for the necessary O(50) e-folds. This gives
σi = O(gM). Then it is easy to show that the slow roll
condition forσ is satisfied,

(8)εσ � |ησ | �M2V (σ)
′′

V (σ)
� 1

2N
� 1,

whereεσ andησ are slow roll parameters [5]. Once the
inflation begins, the AD field rapidly oscillates with
a decreasing amplitude. When the amplitude of the
oscillation becomes small enough (φ � φsr), φ begins
to slow-roll. φsr is obtained by solvingηφ(φsr) =
M2V (φ)′′/V (σ)� 1:

(9)φsr =
(

2d−1M2d−8V0

(2d − 2)(2d − 3)λ2

) 1
2d−4

,

(10)=



( 2
15

)1/4
√
g
λ
ξ, d = 4,( 8

45

)1/8(g
λ

)1/4√
ξM d = 6.

Therefore, the expectation value of the AD fieldφ at
the horizon exit of the present scale is generally less
than O(φsr). Thus, we have an upper limit toφ,

(11)φ � φsr.

Note that this upper limit to the AD field value
is totally due to its dynamical property and the
requirement that an inflation should occur, not any
observational constraint.

3. Adiabatic fluctuations

Next, we calculate the fluctuations of the AD field
φ and inflatonσ . According to Ref. [6], the gauge-
invariant curvature perturbationΦH is given by

(12)

ΦH = −C1
Ḣ

H
+ C3

3V 2
total

(
V ′(σ )2V (φ)− V (σ)V ′(φ)2

)

1 Precisely speaking, the inflation can occur even ifφi � φc (say,
φi = 1.5φc , σi =M). In any case, the AD field value is set belowφsr
along the same argument, once the D-term driving inflation begins.

where2

(13)C1 = H

Vtotal

(
V (σ)

δσ

σ̇
+ V (φ)δφ

φ̇

)
,

is the growing adiabatic mode, and

(14)C3 = 1

2H

(
δσ

σ̇
− δφ

φ̇

)
,

is the isocurvature mode. Forφ < φsr, Vtotal is domi-
nated byV0, andσ̇ � φ̇. HenceC1 �Hδσ/σ̇ . In other
words, the main contribution to the adiabatic fluctua-
tion comes from the inflaton. Therefore the primordial
spectrum is almost scale-invariant as usual. With this
approximation, the primordial spectrum is given by

(15)k3/2ΦH(k)�
√

12π

5

(
ξ

M

)2
√

50− ln
k

k0
,

wherek−1
0 ≡ 3000 h−1 Mpc.

In order to check the above estimate, we also
solve the evolution of zero modes and fluctuations
of the AD and inflaton fields and the gauge-invariant
curvature perturbationΦH by numerical calculation,
following Ref. [7]. We present the evolution equations
in synchronous gauge as [7]

(16)κ ≡
(
k2

a2
R− 4πGδρ

)
H−1,

(17)δρcom≡ δρ − 3HΨ,

(18)Ṙ= 4πGΨ,

(19)

δρ̇com= − 3H

(
1+ 1

2
(1+ω)

)
δρcom

+ k2

a2

(
(ρ + p)R

H
+Ψ

)
,

(20)Ψ̇ = −3HΨ − δp,

(21)

δṗ= 1

3
δρcom+HΨ

+ 2

3

∑
j

(
φ̇j δφ̇j − 2

∂Vtotal

∂φj
δφj

)
,

δφ̈j + 3Hδφ̇j + k2

a2δφj +
∑
i

∂2Vtotal

∂φj∂φi
δφi − κφ̇j

(22)= 0,

2 As mentioned in [8], it is not so obvious how to distribute the
constantV0 into V (σ) and V (φ) in Eq. (13). We have checked
Eq. (13) by numerical calculation as shown in Fig. 1.
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Fig. 1. The analytic and numerical results for the primordial spectra. We have takend = 6, g = λ= κ = 0.1, σi = 0.114M, φi = 0.0278M in
numerical calculation.

wherea is the scale factor,φ1(2) = σ(φ), R is the
curvature perturbation,Ψ ≡ −Σj φ̇j δφj is the total
momentum current potential,p and ρ are the total
pressure and energy density, andω≡ p/ρ. The gauge-
invariant curvature perturbationΦH is given by

(23)ΦH = 4πG
a2

k2 δρcom.

We have found that the above analytic solution Eq. (15)
agrees well with the numerical results. These two pri-
mordial spectra are plotted in Fig. 1. From Fig. 1, one
can see that the analytic solution (the solid line) agrees
with the numerical results very well, which support the
validity of the approximation used above.

The spectral index is given by

(24)n= 1+ 2
d lnk3/2ΦH(k)

d lnk
.

Substituting Eq. (12) (or Eq. (15)) into Eq. (24), the
spectral indexnCOBE on COBE scales

nCOBE� 1− 3M2V
′(σ )2

V 2
0

(25)+ 2M2V
′′(σ )
V0

−M2V
′(φ)2

V 2
0

(26)� 1+ 2M2V
′′(σ )
V0

(27)= 1− 1

NCOBE
� 0.98.

We have also obtainednCOBE = 0.98 from our nu-
merical calculation. Note thatnCOBE = 1.2 ± 0.3 is
implied by present CMB observations and hence the
CMB observation does not restrict any parameters in
this model as opposed to the result in Ref. [2]. This
discrepancy is due to the incorrect estimation of the
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Fig. 2. The time evolutions of the gauge invariantζ and
V ′(φ)+V ′(σ)
V ′(φ)2+V ′(σ)2 δφ during inflation.

gauge invariantζ in Ref. [2] whereζ is given by

(28)ζ = δρ

ρ + p ∝ V ′(φ)+ V ′(σ )
V ′(φ)2 + V ′(σ )2

δφ.

On the other hand, the accurate form ofζ is given by

(29)ζ = ∆g

1+ω − 16πGa2p

(1+ω)k2
Π,

where∆g ≡ δ + 3(1 + ω)R, δ ≡ δρ/ρ, andΠ is an
anisotropic stress perturbation. Hence only if we take
the flat slicing and an anisotropic stress perturbation
can be neglected, then the first equality in Eq. (28)
is satisfied. It is also worth noting that the dynamics
of the perturbed system cannot be described by one
equation for ζ when more than one scalar field
are involved [9,10]. In addition, the expression (28)
is based onδσ = δφ. However, δσ and δφ are
classical random quantities, and the correct expression
is 〈(δσ )2〉 = 〈(δφ)2〉, where 〈· · ·〉 means ensemble
average. The results of numerical calculation for the
time evolutions ofζ and

V ′(φ)+ V ′(σ )
V ′(φ)2 + V ′(σ )2

δφ

during inflation are plotted in Fig. 2. As seen in Fig. 2,
the two quantities are not proportional to each other.

4. Isocurvature fluctuations

During inflation, the fluctuation of the phaseθ of
the AD field is given by

(30)δθ = H√
2k3φ

.

After baryogenesis by the AD mechanism, the fluc-
tuation ofθ becomes baryonic isocurvature perturba-
tion [11]. According to Ref. [2], the baryon number
densitynB is proportional to sin 2θ . Thus the isocurva-
ture fluctuation with comoving wavenumberk is given
by

(31)δiso(k)= δniso
B

nB

ΩB

Ωt

(32)= 2 cot2θk
H(tk)√
2k3φ(tk)

ΩB

Ωt
,

whereΩB(t) is the density parameter of baryons (total
matter),tk is the time when the given mode crosses the
Hubble radius during inflation. On the other hand, both
the AD field and the inflaton generate the adiabatic
fluctuation given by

(33)δad(k)= 2

3

(
k

a(t)H(t)

)2

ΦH

= 2

3

(
k

a(t)H(t)

)2

(34)× 2

3

1

M2

(
V (σ)

V ′(σ )
δσ + V (φ)

V ′(φ)
δφ

)

(35)

= 2
√

2

9

√
k H(tk)

a(t)2H(t)2M2

(
8π2

g2
σ(tk)+ φ(tk)

2d − 2

)
,

where t is an arbitrary time. To compare these two
types of fluctuations, it may be natural to consider
the ratio of the power spectra at horizon crossing, i.e.,
k−1a(t)=H(t)−1, which is written as [12]

αKSY = Piso

Pad

∣∣∣∣
k=a(t)H(t)

(36)= 81g4M4

256π4φ(tk)2σ(tk)2

(
ΩB

Ωt

)2

cot2 2θk.

It is also useful to consider the ratioα of the present
power spectra [13]. The present power spectrum can
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be described as

(37)
P(k)= Pad+ Piso =AadkT

2
ad(k)+AisokT

2
iso(k),

where the transfer functions (Tad, iso) are normalized
asT (k→ 0)= 1. The ratioα is defined as

(38)α ≡ Aiso

Aad
.

Actually, α is related toαKSY [13] by α = (4/27)2 ×
αKSY. From Eqs. (5), (11), and (36), we obtain a lower
limit for α as

(39)α = g4M4

144π4φ(tk)2σ(tk)2
cot2 2θk

(
ΩB

Ωt

)2

(40)> αc,

whereαc is given by

(41)αc =




√
30

72π2gλcot2 2θk
( ξ
M

)−2
N−1
k

(
ΩB
Ωt

)2
,

d = 4,( 5
72

) 1
4 g

3
2 λ

1
2

12π2 cot2 2θk
(
ξ
M

)−1
N−1
k

(
ΩB
Ωt

)2
,

d = 6.

If we takeN = 50,ΩB = 0.03h−2,Ωt = 0.28, and
h= 0.8,3 this lower limit is approximately given by

(42)αc �
{

0.52gλcot2 2θk, d = 4,

8.4× 10−4g
3
2λ

1
2 cot2 2θk, d = 6.

If g � λ � 0.1 and θ∼ O(1), thenαc ∼ 1.1 × 10−3

for the d = 4 case. According to [14], the best-fit
value4 of α is αbest-fit= 2.4 × 10−3. Finally, we have
constraints ong, λ, andθ :

(43)gλcot2 2θk < 4.7× 10−3, d = 4,

(44)g
3
2λ

1
2 cot2 2θk < 2.9, d = 6.

Thus, the large coupling constants can be excluded for
d = 4. On the other hand, the constraint ford = 6 ( and

3 These are best-fit values of model (10) in [14]. The fit was done
for the data from Boomerang and MAXIMA-1.

4 αEKV defined as Eq. (6) in [14] is related to our definition ofα
as follows

α = αEKV

36(1− αEKV)
.

We adopt the model (10) in [14], because both adiabatic and
isocurvature perturbations are almost scale-invariant in our model.

d � 8) is not severe at all. It is noticed that the value of
the AD field during inflation can be smaller than that
used here for some initial conditions because the AD
field may oscillate before inflation. For this case, the
constraint becomes more stringent.

5. Conclusion

In this Letter we have considered the adiabatic and
isocurvature fluctuations of the AD field in the D-term
inflation model, and have found that there exists an
upper limit for AD field due to its dynamical prop-
erty and the requirement that an inflation should oc-
cur. The primordial spectrum has been calculated an-
alytically and numerically, and has been found to be
of the familiar Harrison–Zeldovich type. While the
adiabatic fluctuations of the AD field do not make
any significant contribution, the isocurvature fluctua-
tions of the AD field can generate baryonic isocurva-
ture perturbations. The upper bound for the AD field
in turn leads to the lower limit for isocurvature fluc-
tuation as Eq. (42). Taking account of the observa-
tional constraints on isocurvature perturbations from
Boomerang and MAXIMA-1, we had interesting con-
straints on some combinations ofg, λ, andθ , espe-
cially in the case ofd = 4.
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