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Abstract

In this paper we study the covering vertex model of the one-dimensional Hubbard Hamiltonian con-
structed by Shastry in the realm of algebraic geometry. We show that the Lax operator sits in a genus one 
curve which is not isomorphic but only isogenous to the curve suitable for the AdS/CFT context. We pro-
vide an uniformization of the Lax operator in terms of ratios of theta functions allowing us to establish 
relativistic like properties such as crossing and unitarity. We show that the respective R-matrix weights lie 
on an Abelian surface being birational to the product of two elliptic curves with distinct J-invariants. One of 
the curves is isomorphic to that of the Lax operator but the other is solely fourfold isogenous. These results 
clarify the reason the R-matrix can not be written using only difference of spectral parameters of the Lax 
operator.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The Hubbard model originates from the tight-binding formulation for solids where the elec-
trons can hop between lattice sites but also interact through the Coulomb repulsion. In its simplest 
form, electron hopping takes place between nearest neighbor sites with the same kinetic en-
ergy while the Coulomb interaction occurs only for electrons at the same site with a constant 
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strength U. The Hubbard Hamiltonian on a ring of size N with interaction symmetric under 
electron-hole transformation is given by,

H = −
N∑

j=1

∑
σ=↑,↓

(c
†
jσ cj+1σ + c

†
j+1σ cjσ ) + U

N∑
j=1

(c
†
j↑cj↑ − 1

2
)(c

†
j↓cj↓ − 1

2
), (1)

where c†
jσ and cjσ stand for creation and annihilation operators for an electron at site j with 

spin σ .
In a groundbreaking work Lieb and Wu showed that Hamiltonian (1) is exactly diagonalized 

by means of an extension of the coordinate Bethe ansatz method besides the model absence of 
Mott transition [1]. Over the years this solution has been used to compute many other physical 
properties and for a recent extensive review we refer to the monograph [2]. Exact integrability 
from the viewpoint of the quantum inverse scattering approach was only established many years 
later by Shastry in three influential papers [3–5]. An important result was the discovery of a clas-
sical two-dimensional vertex model on the square N ×N lattice whose row-to-row transfer matrix 
commutes with the spin version of the Hubbard Hamiltonian. This spin model was obtained by 
applying a generalized version of the Jordan–Wigner transformation on the bulk term of Eq. (1)
which can be rewritten as [3],

H =
N∑

j=1

σ+
j σ−

j+1 + σ−
j σ+

j+1 + τ+
j τ−

j+1 + τ−
j τ+

j+1 + U

4
σz

j τ z
j , (2)

where σ±
j , σz

j and τ±
j , τ z

i are two commuting sets of Pauli matrices acting on the site j . Recall 
that strict periodic boundary conditions for electron Hamiltonian (1) lead to sector dependent 
twisted boundary conditions for the spin operator (2) and the precise form of this relationship can 
for instance be found in [6]. However, this difference on boundaries can be easily captured by 
introducing fermionic statistics into the integrable structures without affecting the main features 
of Shastry’s construction [7].

The appealing form of the spin Hamiltonian (2) led Shastry to propose that the underlying 
classical vertex model should be given by coupling appropriately two six-vertex models obeying 
the so-called free-fermion condition. Let us denote by L0j (ω) the Lax operator encoding the 
Boltzmann weights structure of such coupled six-vertex models. As usual the indices 0 and j
refer to operators acting on the auxiliary and quantum spaces associated respectively with the 
degrees of freedom sited on the horizontal and vertical edges of the square lattice. In terms of 
Pauli matrices such Lax operator can be expressed by,

L0j (ω) = exp

[
h

2
(σ z

0 τ z
0 + I0)

]
Ij

[
L(σ )

0j (a, b, c)L(τ )
0j (a, b, c)

]
exp

[
h

2
(σ z

0 τ z
0 + I0)

]
Ij , (3)

where I is the four-dimensional identity matrix and the symbol ω denotes the set of parameters 
a, b, c and h.

The Lax operators L(σ )
0j (a, b, c) and L(τ )

0j (a, b, c) represent the weights of two copies of six-
vertex models whose expressions are,

Lσ
0j (a, b, c) = (a + b)

2
I0Ij + (a − b)

2
σz

0 σz
j + c(σ+

0 σ−
j + σ−

0 σ+
j ), (4)

and

Lτ
0j (a, b, c) = (a + b)

I0Ij + (a − b)
τ z

0 τ z
j + c(τ+

0 τ−
j + τ−

0 τ+
j ), (5)
2 2
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such that the so-called free-fermion condition is fulfilled,

a2 + b2 = c2. (6)

In order to assure integrability the six-vertex free-fermion weights a, b, c and the dimension-
less interaction h must be constrained by,

sinh(2h) = Uab

2c2
. (7)

In addition to that, Shastry considered the local condition that is sufficient for the commuta-
tivity of two transfer matrices built out of Lax operators with distinct weights parameters. In fact, 
the explicit form of the R-matrix R(ω1, ω2) operator satisfying the Yang–Baxter relation,

R12(ω1,ω2)L13(ω1)L23(ω2) = L23(ω2)L13(ω1)R12(ω1,ω2), (8)

has been determined in references [4,5].
In recent years new insights into the Hubbard model emerged from the investigation by Beis-

ert of integrable structures associated to the fundamental representation of centrally extended 
su(2|2) superalgebra [8]. This representation depends on the central elements values which have 
been parametrized in terms of two variables x+ and x− constrained by the genus one curve [8],

E1 ≡ x+ + 1

x+
− x− − 1

x−
− ıU = 0. (9)

Afterwards it has been pointed out that the intertwining operator based on such representation 
of the su(2|2) superalgebra can be related to the original Shastry R-matrix [9]. This equivalence 
was further elaborated in [10] for a factorizable S-matrix derived in the context of the su(2|2)

Zamolodchikov–Faddeev algebra [11]. Such relationship occurs up to gauge transformation and 
when the R-matrices parameters are identified as [10],

x+ = ıa exp(2h)

b
, x− = −ıb exp(2h)

a
. (10)

At this point we recall that this mapping goes back at least to the parameterization used in 
[5,6] for the eigenvalues of the transfer matrix based on the Lax operator (3)–(7). We also note 
that the expression for E1 is exactly Eq. (31) of Ref. [6] taken into account identification (10).

Although the above connection suggests that the Lax operator (3)–(7) could be sited on an 
elliptic curve it does not mean that such underlying spectral curve is necessarily isomorphic 
to E1. In this paper we shall show that the right hand side of Eq. (10) involves quadratic powers 
on the polynomial ring variables in which the Lax operator (3)–(7) is properly defined. This fact 
excludes isomorphism but leaves the possibility that the Hubbard model spectral curve E2 be 
isogenous to E1. Recall that a n-fold isogeny among elliptic curves E2 and E1 is a surjective 
morphism that maps the distinguished point of E2 (place at “infinity”) to the distinguished point 
of E1 [12]. The integer n is the degree of the morphism and thus a generic point of E1 is mapped 
to n distinct points of E2. In fact, it turns out that the spectral curve underlying the Shastry Lax 
operator is given by the following affine quartic elliptic curve,

E2 ≡ (x2 + y2)2 − Uxy − 1 = 0, (11)

where the suitable ring variables x and y are related to the weights used by Shastry as,

x = a exp(h), y = b exp(h). (12)
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In next section we discuss the derivation of the curve E2 from the original construction by 
Shastry of the covering Hubbard model. We also show that the curves E2 and E1 are not isomor-
phic but only have a fourth degree isogeny. In section 3 we argue that the uniformization of E2
can be performed along the lines of the symmetrical eight vertex model with weights satisfying 
the free-fermion condition [13]. The matrix elements of the Lax operator are then represented in 
terms of factorized ratios of theta functions. This allows us to present local inversion properties 
for the Lax operator such as crossing and unitarity relations. In section 4 we discuss the geomet-
rical properties associated with the R-matrix of the Hubbard model. We show that the R-matrix 
weights lies on an Abelian surface built out of the product of two non-isomorphic elliptic curves. 
Our concluding remarks are in section 5 and in two appendices we present technical details of 
some computations omitted in the main text.

2. Lax operator spectral curve

The problem of finding integrable systems leads us to solve a set of polynomial relations on 
the product of three projective spaces originated from the Yang–Baxter equation. This means that 
all the matrix elements of a given Lax operator are expected to be determined by homogeneous 
polynomials in suitable ring variables up to an overall normalization. Inspecting the entries of 
the Lax operators (3)–(7) one concludes that the respective polynomial ring is C[x, y, c] where 
the variables x and y have already been defined in Eq. (12). Upon this identification the explicit 
matrix form of the Lax operator is,

L12(x, y, c)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 xy 0 0 xc 0 0 0 0 0 0 0 0 0 0 0

0 0 xy 0 0 0 0 0 xc 0 0 0 0 0 0 0

0 0 0 y2 0 0 yc 0 0 yc 0 0 θ(x, y) 0 0 0

0 xc 0 0 xyc2

θ(x,y)
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x2c2

θ(x,y)
0 0 0 0 0 0 0 0 0 0

0 0 0 yc 0 0 y2c2

θ(x,y)
0 0 c2 0 0 yc 0 0 0

0 0 0 0 0 0 0 xyc2

θ(x,y)
0 0 0 0 0 xc 0 0

0 0 xc 0 0 0 0 0 xyc2

θ(x,y)
0 0 0 0 0 0 0

0 0 0 yc 0 0 c2 0 0 y2c2

θ(x,y)
0 0 yc 0 0 0

0 0 0 0 0 0 0 0 0 0 x2c2

θ(x,y)
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 xyc2

θ(x,y)
0 0 xc 0

0 0 0 θ(x, y) 0 0 yc 0 0 yc 0 0 y2 0 0 0

0 0 0 0 0 0 0 xc 0 0 0 0 0 xy 0 0

0 0 0 0 0 0 0 0 0 0 0 xc 0 0 xy 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)

where θ(x, y) = x2 + y2.
The next step is the determination of the spectral curve which should constrain the variables 

x, y and c. This task can be done by eliminating the unwanted variables a, b and exp(2h) with 
the help Eqs. (6), (12),

a = x
, b = y

, exp(2h) = x2 + y2

2
. (14)
exp(h) exp(h) c
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By substituting the above results in Eq. (7) we find that the desired spectral curve is,

E2 ≡ (x2 + y2)2 − Uxyc2 − c4 = 0, (15)

which is just the projective closure of the affine curve (11).
Let us now show that the curve E2 is connected with the projective closure of E1 by means of 

a fourfold isogeny. We first note that from Eq. (9) the expression for E1 is given by,

E1 = (x+ − x−)(x+x− − z2) − ıUx+x−z, (16)

where the variable z refers to the extra projective coordinate.
By using Eqs. (6), (10), (12) we can establish the following morphism between the elliptic 

curves E2 and E1,

E2 ⊂CP
2[x, y, c] ψ−→ E1 ⊂CP

2[x+, x−, z]
(x : y : c) �−→ (ψ1 : ψ2 : ψ3),

(17)

where the polynomials map expressions are,

ψ1 = ıx2(x2 + y2), ψ2 = −ıy2(x2 + y2), ψ3 = xyc2. (18)

Note that the above map is defined everywhere even at the singular points (1, ±ı, 0) ∈ E2. In 
fact, at these particular points one can find an alternative representation of ψ with the help of the 
polynomial (15), namely

(ψ1 : ψ2 : ψ3) ∼ (x2 : −y2 : − ıxyc2

x2 + y2
) ∼ (x2 : −y2 : − ıxy(x2 + y2)

c2 + Uxy
), (19)

and as result we obtain ψ(0 : ±ı : 0) = (1 : 1 : 0) ∈ E1.
The degree of the morphism (17) can be determined as the cardinality of the fiber ψ−1(P) for 

a generic point P ∈ E1. Considering that the variables x, y, c are constrained by the curve E2 one 
finds that such degree is indeed four.

An alternative way to see that the two elliptic curves are not isomorphic is through the com-
parison of their J-invariants. It is well known that such invariant classifies genus one curves up 
to isomorphism [12]. This invariant can be computed by birationally transforming a genus one 
curve into its Weierstrass form, namely

C = y2
0 − x3

0 −Ax0 −B, (20)

with A and B in the complex field.
Note that if we replace x0 by λ2x0 and y0 by λ3y0 we still retain the main Weierstrass form of 

the curve. The only amount of ambiguity is that the coefficients A and B are replaced by λ−4
A

and λ−6
B respectively. We see that under such scale of coordinates there is just one invariant 

which is clearly the quantity A3/B2. The J-invariant is defined as a linear fractional image of this 
ratio,

J(C) = 1728
4A3

4A3 + 27B2
, (21)

where the numerical prefactor is chosen for sake of compatibility with situations in which the 
field characteristic is non-zero [12].
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The curves E1 and E2 are easily normalized to the Weierstrass form and the final results for 
their J-invariants are,

J(E1) = (U4 + 16U2 + 16)3

U2(U2 + 16)
and J(E2) = − (U2 + 16U + 16)3(U2 − 16U + 16)3

U2(U2 + 16)4
, (22)

which are clearly different for generic values of U and consequently the curves E1 and E2 are 
not isomorphic. We also note that the denominators of the J-invariants vanish at the non-trivial 
values of the coupling U = ±4ı in which the curves E1 and E2 become rational.

Moreover, given two elliptic curves C1 and C2 and an integer n, there is a direct way to 
decide if they are n-isogenous. We just have to verify that the so-called modular polynomial 
�n [J(C1), J(C2)] is zero. In our specific situation the expression of the four-level modular poly-
nomial is [17],

�4[x, y] = x6 + y6 − (x5y4 + x4y5) + 2976(x5y3 + x3y5) − 2533680(x5y2 + x2y5)

+ 561444609(x5y + xy5) − 8507430000(x5 + y5) + 7440(x4y4)

+ 80967606480(x4y3 + x3y4) + 1425220456750080(x4y2 + x2y4)

+ 1194227244109980000(x4y + xy4) + 24125474716854750000(x4 + y4)

+ 2729942049541120(x3y3) − 914362550706103200000(x3y2 + x2y3)

+ 12519806366846423598750000(x3y + xy3)

− 22805180351548032195000000000(x3 + y3)

+ 26402314839969410496000000(x2y2)

+ 188656639464998455284287109375(x2y + xy2)

+ 158010236947953767724187500000000(x2 + y2)

− 94266583063223403127324218750000(xy)

− 364936327796757658404375000000000000(x + y)

+ 280949374722195372109640625000000000000. (23)

We have checked that the non-trivial identity �4 [J(E1), J(E2)] = 0 is indeed satisfied for 
arbitrary values of the coupling U. This confirms the fourfold isogeny among the elliptic curves 
E1 and E2.

3. Uniformization and local relations

We start showing that the uniformization of the curve E2 can be implemented along the lines 
of the eight-vertex model satisfying the free-fermion condition [13]. To this end we first write this 
elliptic curve as the intersection of two quadric surfaces in the three-dimensional space. Denoting 
by w such extra coordinate, E2 can be represented by the following pairs of equations,

x2 + y2 − cw = 0, c2 − w2 + Uxy = 0, (24)

and after performing the rotation c = w1 − ıw2 and w = w1 + ıw2 we obtain,

x2 + y2 − w2
1 − w2

2 = 0, w1w2 = U
xy. (25)
4ı
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Inspecting Eq. (25) we recognize the well known spectral curve of the symmetric eight vertex 
model with weights x, y, w1 and w2 satisfying the free-fermion restriction. At this point we can 
follow Baxter monograph [13] and the uniformization of the weights relevant for the Hubbard 
model are,

x(λ)

c(λ)
= sn[K(k) − λ, k]

1 − ıksn[λ, k]sn[K(k) − λ, k] ,
y(λ)

c(λ)
= sn[λ, k]

1 − ıksn[λ, k]sn[K(k) − λ, k] , (26)

where λ is the spectral parameter, K(k) denotes the complete elliptic integral of the first kind of 
modulus k and sn[λ, k] represents the Jacobi elliptic function. The dependence of the modulus 
on the coupling is,

k = U

4ı
. (27)

Note that this uniformization when U → 0 recovers in a direct way the expected trigonometric 
parameterization of the weights.1 This representation however involves sums in the denominator 
and it is not optimal for the study of analytical properties. The uniformization can alternatively 
be given in terms of ratios of entire functions of the spectral parameter. The first task is to located 
the positions and multiplicities of the zeros and poles of the given elliptic function in the region 
defined by the respective pair of primitive periods. Then we can write the elliptic function as 
ratios of products of theta functions located at such zeros and poles within a constant factor. The 
multiplicative constant can be determined by the exact knowledge of the function at some suitable 
values of the spectral parameter. Considering this procedure we find the following factorized 
representation,

x(λ)

c(λ)
= ı(4k

√
q)−1/4 H[K(k) − λ, k]	[λ, k]

H[λ + ıK(k′)/2, k]H[K(k) + ıK(k′)/2 − λ, k] (28)

y(λ)

c(λ)
= ı(4k

√
q)−1/4 	[K(k) − λ, k]H[λ, k]

H[λ + ıK(k′)/2, k]H[K(k) + ıK(k′)/2 − λ, k] (29)

where the complementary modulus k′ satisfies the usual relation k′2 + k2 = 1 and the nome 
q = exp[−πK(k′)/K(k)]. For sake of completeness the explicit expressions of the theta functions 
are,

H[λ, k] = 2q1/4 sin

[
πλ

2K(k)

] ∞∏
j=1

(
1 − 2q2j cos

[
πλ

K(k)

]
+ q4j

)
(1 − q2j ), (30)

	[λ, k] =
∞∏

j=1

(
1 − 2q(2j−1) cos

[
πλ

K(k)

]
+ q(4j−2)

)
(1 − q2j ). (31)

In order to express the Lax operator (13) solely in terms of ratios of entire functions we still 
need the representation of the polynomial combination θ(x, y). After some simplifications it can 
be given as,

θ(λ)

c2(λ)
= ı

	[K(k) + ıK(k′)/2 − λ, k]	[λ + ıK(k′)/2, k]
H[K(k) + ıK(k′)/2 − λ, k]H[λ + ıK(k′)/2, k]

= ı
	[K(k) + ıK(k′)/2 − λ, k]H[λ − ıK(k′)/2, k]
H[K(k) + ıK(k′)/2 − λ, k]	[λ − ıK(k′)/2, k] (32)

1 The regular point is at λ = 0 in which the Lax operator (13) becomes the four-dimensional permutator.
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We have now gathered the basic ingredients to discuss local properties satisfied by the Lax 
operator. One of them is related with the invariance of the respective partition function by π/2
rotation of the lattice. Inspecting the structure of the operator (13) we conclude that this symmetry 
is directly related with the variables exchange x ↔ y which preserves the form of the spectral 
curve (15). Considering the above uniformization we see that this exchange is accomplished by 
shifting the spectral parameter by the elliptic integral K(k) value. Denoting by L12(λ) the ratio 
L12(x, y, c)/c2 we found the following crossing relation,

L12(λ) = M1L12(K(k) − λ)t2M−1
1 , (33)

where t2 denotes transposition on the second space and the charge conjugation matrix M is,

M =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ . (34)

The crossing property has the immediate consequence of providing us a global symmetry 
constrain for the free energy of the classical vertex model at finite volume. Let ZN(λ) be the 
partition function of the vertex model with weights L12(λ) on the square lattice of size N. Then 
it follows from Eq. (33) that,

ZN(λ) = ZN (K(k) − λ) (35)

The next local property is the so-called unitarity relation which for relativistic scattering the-
ory connects Lax operators with spectral parameters λ and −λ. Here we have attempted similar 
relation by studying the local properties of the Lax operator around the regular point λ = 0. The 
result of this analysis is the following expression,

L12(λ)L12(−λ) =
[
x(λ)

c(λ)

]2 [
x(−λ)

c(−λ)

]2

I1 ⊗ I2 (36)

Note that the above relation is almost what we usually have for relativistic systems. The 
only difference is that the Lax operator evaluated at −λ is not permuted on its spaces. Here the 
Lax operator is not parity reversal invariant for generic values of U and as a consequence of 
that L12(λ) �= L21(λ). From previous experience with other solvable models it is conceivable 
that combination of crossing and unitarity could lead us to functional relations for the transfer 
matrix eigenvalues in the limit of infinite system [14,15]. This method provides an alternative 
way to derive relevant physical properties such as the free-energy and the dispersion relation of 
the low-lying excitations [16]. We hope that our theta function uniformization of the weights 
will shed some light on the appropriate analyticity assumptions that still has to be made for the 
applicability of such approach.

4. R-matrix geometric properties

We start this section by presenting the explicit expression of Shastry’s R-matrix in terms of 
the suitable ring variables describing the Lax operator. This matrix can be written as,
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R(λ1, λ2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 b 0 0 c 0 0 0 0 0 0 0 0 0 0 0
0 0 b 0 0 0 0 0 c 0 0 0 0 0 0 0
0 0 0 h − a 0 0 d 0 0 d 0 0 h 0 0 0
0 c 0 0 b 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 g 0 0 0 0 0 0 0 0 0 0
0 0 0 d 0 0 q − g 0 0 q 0 0 d 0 0 0
0 0 0 0 0 0 0 b 0 0 0 0 0 c 0 0
0 0 c 0 0 0 0 0 b 0 0 0 0 0 0 0
0 0 0 d 0 0 q 0 0 q − g 0 0 d 0 0 0
0 0 0 0 0 0 0 0 0 0 g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 b 0 0 c 0
0 0 0 h 0 0 d 0 0 d 0 0 h − a 0 0 0
0 0 0 0 0 0 0 c 0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 0 0 0 0 c 0 0 b 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(37)

The expressions for the R-matrix elements are obtained after performing some simplifications 
on the original weights determined previously by Shastry [4,5]. Considering the entry c as an 
overall normalization we found,

a
c

= y1y2

θ(x1,y1)
+ x1x2

θ(x2,y2)
,

b
c

= − x1y2

θ(x1,y1)
+ y1x2

θ(x2,y2)
,

b
c

= y1x2

θ(x1,y1)
− x1y2

θ(x2,y2)
,

d
c

= x1y1 − x2y2

x2
1x2

2 − y2
1y2

2

,
h
c

= x1x2θ(x1,y1) − y1y2θ(x2,y2)

x2
1x2

2 − y2
1y2

2

,

q
c

= x1x2θ(x2,y2) − y1y2θ(x1,y1)

x2
1x2

2 − y2
1y2

2

,
g
c

= x1x2

θ(x1,y1)
+ y1y2

θ(x2,y2)
, (38)

where the bold variables xj and yj are given as ratios of the spectral curve coordinates,

xj = x(λj )

c(λj )
, yj = y(λj )

c(λj )
, for j = 1,2. (39)

In order to understand the geometric properties associated to the R-matrix we first need to 
find the implicit representation of the image of the rational map,

E2 × E2 ⊂CP
2 ×CP

2 φ−→ V ⊂CP
7

(x(λ1) : y(λ1) : c(λ1)) × (x(λ2) : y(λ2) : c(λ2)) �−→ (a : b : b : c : d : g : h : q),

(40)

where V is the algebraic variety associated to the R-matrix.
The solution of the above problem will lead us to polynomials on the R-matrix entries a, b, 

b, c, d, g, h and q which are the defining equations of V. This task is performed by eliminating 
the variables xj and yj from Eqs. (38) considering also that they are constrained by the spectral 
curve (11). The technical details concerning this computation are summarized in Appendix A
and in what follows we only present the main results. It turns out that the variety V is formally 
described as the intersection of five quadrics,
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V = {(a : b : b : c : d : g : h : q) ∈ CP
7|Q1 = Q2 = Q3 = Q4 = Q5 = 0}. (41)

The expressions of the degree two homogeneous polynomials Qj are,

Q1 = −c2 + ag + bb, Q2 = −d2 + ag − gh − aq + hq + bb ,Q3 = −c2 − d2 + hq,

Q4 = −a2 − b2 − g2 + ah + gq − b
2
, Q5 = Ucd − h2 + q2 (42)

where we recall that the above first three quadrics have been pointed before as identities among 
the R-matrix weights in [7]. However, to the best of our knowledge the last two are new in the 
literature specially Q5 since it contains the Hubbard coupling U.

We have used the computer algebra system Singular [18] to obtain some basic information 
on the geometric properties of the variety V. This algebraic set turns out to be an irreducible 
complete intersection and therefore we are dealing with a complex two-dimensional variety. This 
distinguishes the Hubbard and the eight-vertex models even though both have Lax operator based 
on elliptic curves. In fact, for the eight-vertex model the variety V is one-dimensional and the 
R-matrix lies on the same curve of the Lax operator [13] and the map (40) reflects the standard 
group law of elliptic curves. By way of contrast, the Hubbard model sits on the lower bound of 
the fiber dimension theorem2 in which φ−1 is a zero dimensional variety.

Further progress is made by noticing that the quadrics Q3 and Q5 define a nonsingular elliptic 
curve in CP3[c, d, h, q] which is isomorphic to E2 formulated as in Eq. (24). This means that 
V is a surface contained in the cone with base CP3[a, b, b, g] over E2 making it possible to 
established the following surjective map,

V ⊂CP
7 π−→ E2 ⊂CP

3

(a : b : b : c : d : g : h : q) �−→ (c : d : h : q).
(43)

The next natural step is to investigate the properties of the fiber of π since this feature lies 
at the heart of the geometry of algebraic surfaces [20]. This study is somehow cumbersome and 
the main technical points of the computations have been summarized in Appendix B. The central 
result of this analysis is that the general fiber π−1 turns out to be a smooth curve of genus one 
meaning that V is an elliptic surface. From the classification theory of algebraic surfaces [20]
we know that an elliptic surface fibred over a genus one curve can be either an Abelian surface, 
a bielliptic surface or a proper elliptic surface with Kodaira dimension one. In order to decide 
on the actual class of V a central ingredient is the description of the generic fiber in terms of 
its Weierstrass model. Now the respective pair of coefficients A and B are interpreted as local 
functions on the curve E2 and from this data we shall be able to infer on the class of the surface. 
We have found that the equation for such Weierstrass fibration has a remarkable simple structure, 
namely

y2
0 − x3

0 + c4
0d

4
0 (U4 + 256U2 + 4096)

48
x0 + c6

0d
6
0 (32 + U2)(U4 − 512U2 − 8192)

864
= 0,

(44)

where c0 and d0 are coordinates of the affine point [c0, d0, c2
0 + d2

0 , 1] ⊂ E2. For the explicit 
birational map dependence of x0 and y0 with the surface variables see Appendix B.

2 This theorem states that if φ : X → Y is a surjective morphism among irreducible varieties then dim(φ−1) ≥
dim(X) − dim(Y), see for example [19].
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We now can just change coordinates replacing x0 by x0c
2
0d

2
0 and y0 by y0c

3
0d

3
0 and dividing 

through c6
0d

6
0 we end up with coefficients not depending on E2. This means that locally the 

Weierstrass fibration can always be definable with constants A and B and therefore we conclude 
that V is an Abelian surface. More precisely, this surface is birational to the product of two 
elliptic curves, namely

V ∼= E2 × E3, (45)

where E3 is defined by the homogeneous polynomial,

E3 ≡ z0y
2
0 − x3

0 + (U4 + 256U2 + 4096)

48
x0z

2
0 + (32 + U2)(U4 − 512U2 − 8192)

864
z3

0 = 0.

(46)

At this point we observe that the elliptic curves E2 and E3 are not isomorphic but only have a 
degree four isogeny. In fact, the J-invariant of E3 is,

J(E3) = (U4 + 256U2 + 4096)3

U8(U2 + 16)
, (47)

such that it satisfies the modular �4 [J(E2), J(E3)] = 0 identity.
The above analysis explain why the R-matrix associated to the Hubbard can not be written 

solely in terms of the difference of two spectral parameters. Besides having weights lying on a 
non-trivial surface only part of its geometry retains isomorphism with the one of the Lax operator.

5. Conclusions

The basic ingredients in the theory of solvable two-dimensional vertex model of statistical 
mechanics are the Lax operator and the R-matrix which are constrained by the Yang–Baxter 
equation (8). The Lax operator is expected to leave on some algebraic variety X while the 
R-matrix may generically be sitting on a yet another manifold Y. They may coincide in some 
special situations such as when both the Lax operator and the R-matrix are equidimensional and 
invariant by parity-time reversal symmetry. In fact, taking the transposition on the three spaces 
of Eq. (8) we obtain

L23(ω2)
t2t3L13(ω1)

t1t3R12(ω1,ω2)
t1t2 = R12(ω1,ω2)

t1t2 L13(ω1)
t1t3L23(ω2)

t2t3, (48)

and after assuming PT symmetry for both operators we have,

L32(ω2)L31(ω1)R21(ω1,ω2) = R21(ω1,ω2)L31(ω1)L32(ω2). (49)

Now by applying the permutation on the first and third spaces on both sides of Eq. (49) we 
finally find,

L12(ω2)L13(ω1)R12(ω1,ω2) = R23(ω1,ω2)L13(ω1)L12(ω2), (50)

and direct comparison with the original relation (8) tells us that we have just exchanged the 
second Lax operator with the R-matrix. This means that both X and Y should be defined by the 
same polynomial relations.

In general situations the Yang–Baxter offers us a rational map since the R-matrix elements 
can be linearly eliminated from a subset of independent functional relations. Formally this map 
can be represented as,
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X × X ⊂CP
n+1 ×CP

n+1 φ−→ Y ⊂CP
m

(x0 : · · · : xn+1) × (y0 : · · · : yn+1) �−→ (φ0(x0, · · · , yn+1) : · · · : φm(x0, · · · , yn+1),

(51)

where n = dim(X), m counts the number of linearly independent R-matrix weights and 
φj (x0, · · · , yn+1) are map polynomials.

The study of the geometric properties of Y requires the implicit representation of the image 
of the map φ. This is basically an elimination problem and in principle can be solved by methods 
based on Gröbner basis computations. In practice however it is known that this is not a simple 
task depending much on the number and complexity of the polynomials φj(x0, · · · , yn+1) as 
well as on the defining equations of X.

In this paper we have addressed these problems for the classical vertex model associated to the 
Hubbard Hamiltonian devised by Shastry [3–5]. We find that the variety X is a genus one curve 
and provided its uniformization in terms of factorized ratios of theta functions. This pave the 
way to discuss local relations for the Lax operator much like in the case of relativistic systems. 
On the other hand the geometric properties of Y is that of an Abelian surface birational to the 
product of two non-isomorphic elliptic curves. This may explain why the Bethe ansatz equations 
of the Hubbard model is somehow unconventional as compared with other Lattice models based 
on elliptic curves such as the eight-vertex and hard-hexagon models [13,21]. In the algebraic 
Bethe ansatz much of the input comes from the R-matrix elements which here sits in a different 
algebraic variety of the respective Lax operator. It seems interesting to look for alternative solu-
tions for the transfer matrix spectrum more based on the properties of the Lax operator such as 
to establish finite system exact inversion identities. In this context an earlier attempt by Shastry 
himself [5] and the recent formulation of fusion for integrable models with R-matrix without the 
difference form [22] could be relevant guidelines. We hope that the uniformization given here 
will be useful for setting up this approach and the needed analyticity assumptions.
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Appendix A. Elimination procedure

We start by defining the ideal I ⊂ C[x1, y1, x2, y2, a, b, b, c, d, g, h, q] associated the map 
(40) by clearing the denominators of Eqs. (38). This can be done by choosing appropriately the 
weight c and as result we obtain,

I =< E2(x1,y1),E2(x2,y2),a − p1(x1,y1,x2,y2),b − p2(x1,y1,x2,y2),

b − p3(x1,y1,x2,y2), c − p4(x1,y1,x2,y2),d − p5(x1,y1,x2,y2),

g − p6(x1,y1,x2,y2),h − p7(x1,y1,x2,y2),q − p8(x1,y1,x2,y2) >, (A.1)

where the symbol E2(xj , yj ) denotes the curve (11) on the variables xj and yj and the expres-
sions for the polynomials pj (x1, y1, x2, y2) are,
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p1(x1,y1,x2,y2) = [
y1y2θ(x2,y2) + x1x2θ(x1,y1)

] [
x2

1x2
2 − y2

1y2
2

]
,

p2(x1,y1,x2,y2) = [
y1x2θ(x1,y1) − x1y2θ(x2,y2)

] [
x2

1x2
2 − y2

1y2
2

]
,

p3(x1,y1,x2,y2) = [
y1x2θ(x2,y2) − x1y2θ(x1,y1)

] [
x2

1x2
2 − y2

1y2
2

]
,

p4(x1,y1,x2,y2) = θ(x1,y1)θ(x2,y2)
[
x2

1x2
2 − y2

1y2
2

]
,

p5(x1,y1,x2,y2) = [
x1y1 − x2y2

]
θ(x1,y1)θ(x2,y2),

p6(x1,y1,x2,y2) = [
x1x2θ(x2,y2) + y1y2θ(x1,y1)

] [
x2

1x2
2 − y2

1y2
2

]
,

p7(x1,y1,x2,y2) = [
x1x2θ(x1,y1) − y1y2θ(x2,y2)

]
θ(x1,y1)θ(x2,y2),

p8(x1,y1,x2,y2) = [
x1x2θ(x2,y2) − y1y2θ(x1,y1)

]
θ(x1,y1)θ(x2,y2). (A.2)

The elimination of the variables x1, y1, x2, y2 of the above polynomials is equivalent to find 
the ideal I1 ⊂C[a, b, b, c, d, g, h, q] defined by,

I1 = I ∩C[a,b,b, c,d,g,h,q]. (A.3)

One way of finding I1 is first to compute an alternative basis of I called Gröbner basis. The 
elimination theorem asserts that if G is the Gröbner basis of I then G ∩ C[a, b, b, c, d, g, h, q]
is a Gröbner basis of I1. For more details about this theorem and its properties we refer to the 
Book [23]. Fortunately all that can be computed using intrinsics developed in some computer 
algebra systems such as Singular [18]. Direct computations are however involved and we find 
more convenient to eliminate each pair of variables xj , yj at a time. It turns out that the elimina-
tion of the variables x1 and y1 leads to an intermediate ideal I2 ⊂ C[x2, y2, a, b, b, c, d, g, h, q]
whose generating set of polynomials are given by,

I(1)
2 = ag − c2 + bb,

I(2)
2 = (b2 + b

2 + a2 − ah)(h − a)3 + a(d2 − bb)2 − 2bb(h − a)(d2 − bb),

I(3)
2 ≡ E2(x2,y2) = (x2

2 + y2
2)

2 − Ux2y2 − 1,

I(4)
2 = b2 + a2 − ah + ω1(x2,y2)cd,

I(5)
2 = bc + ω1(x2,y2)bd − ω2(x2,y2)ad,

I(6)
2 = ω2(x2,y2)bd + ω1(x2,y2)ω2(x2,y2)bc −

[
1 + ω1(x2,y2)

2
]
(h − a)c,

I(7)
2 = ω2(x2,y2)ad − ω1(x2,y2)ω2(x2,y2)(q − g)c −

[
1 + ω1(x2,y2)

2
]

bc, (A.4)

where we recognize that the first component I(1)
2 is exactly the quadratic Q1. The functions de-

pending on the variables x2 and y2 are,

ω1(x2,y2) = Ux2
2y2

2

Ux2y2 + 1
, ω2(x2,y2) = x2

2 + y2
2

Ux2y2 + 1
(A.5)

We now proceed by eliminating the fraction field elements ω1(x2, y2) and ω2(x2, y2) out 
of the generators I(3)

2 , · · · , I(7)
2 . The compatibility between I(6)

2 and I(7)
2 leads us directly to the 

quadratic Q2 as well as to the following polynomial,

I(6) = (c2 − bb)(d2 − bb) + a(h − a)
(

a(h − a) − b2 − b
2
)

(A.6)
2
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It turns out that the above generator can be further simplified with the help of the quadrics Q1
and Q2, namely

I(2)
6 = ag(h − a)(q − g) + a(h − a)

(
a(h − a) − b2 − b

2
)

= a(h − a)
[
g(q − g) − a2 + ha − b2 − b

2
]

(A.7)

where the last factor is just the quadric Q4 and the first two are trivial extraneous terms.
Considering these results we can now factorize the component I(2)

2 as follows,

I(2)
2 = g(q − g)(h − a)3 + a(q − g)2(h − a)2 − 2bb(q − g)(h − a)2

= (q − g)(h − a)2
[
g(h − a) + a(q − g) − 2bb

]
= (q − g)(h − a)2

[
hq − c2 − q2

]
(A.8)

giving rise to the quadric Q3.
The final step is to assure the compatibilization of the fractions ω1(x2, y2) and ω2(x2, y2)

with the algebraic curve E2(x2, y2). The elimination of the common variables x2, y2 leads us to 
a single constraint, namely[

ω1(x2,y2)
2 + ω2(x2,y2)

2
]2 − Uω1(x2,y2)ω2(x2,y2)

2

+2
[
ω1(x2,y2)

2 − ω2(x2,y2)
2
]
+ 1 = 0. (A.9)

By extracting the functions ω1(x2, y2) and ω2(x2, y2) from the components I(4)
2 and I(5)

2 the 
constraint (A.9) becomes a polynomial in the R-matrix weights. This leads to the last quadric Q5
by considering similar simplifications as done above.

Appendix B. Fibration analysis

In order to study the properties of a generic fiber one can take an affine point of E2 such as 
[c0, d0, c2

0 + d2
0 , 1] where the coordinates c0 and d0 are constrained by,

(c2
0 + d2

0 )2 + Uc0d0 − 1 = 0. (B.1)

The fiber π−1 is an algebraic variety ⊂C[a, b, b, g] described by the following polynomials,

Q̃1 ≡ bb + ag − c2
0 = 0,

Q̃2 ≡ bb + g(a − 1) − (c2
0 + d2

0 )a + c2
0 = 0,

Q̃4 ≡ b2 + b
2 + g2 − (c2

0 + d2
0 )g + a(a − 1) = 0 (B.2)

Using the software Singular we found that π−1 turns out to be an irreducible non-singular
curve of genus one. Further information on such elliptic fibration can be obtained by eliminat-
ing the variables b and b with the help of the quadrics Q̃1 and Q̃2. After using Eq. (B.1) the 
polynomial Q̃3 becomes,

C = (a2 + b2)2 − c4
0(2a − 1)(2a2 + 2b2 − 2a + 1) − Uc0d0a

[
a3 + (1 + a)b2

]
− 2c2

0d
2
0

[
(2a − 1)a2 + (2a + 1)b2

]
(B.3)
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We end up with a quartic curve on the variables a and b which possess two double points as 
singularities. These are the simplest singular points we can have and the curve C can be desin-
gularized by means of a single birational transformation bringing it into the Weierstrass form. 
Let us denote by x0 and y0 the corresponding affine Weierstrass coordinates then the inverse 
birational map is,

x0 = c0d0x̃0

c2
0(a − 1)2 + (d0a)2

, y0 = c0d0Uỹ0

c2
0(a − 1)2 + (d0a)2

. (B.4)

• The variable x̃0:

x̃0 = 2α2
1

U
a2

[
(d2

0 − 5c2
0)a + 3ı

2
(d2

0 − 3c2
0)b

]
+ 2α1a(a + ıb)

[
b2 + α2

1

U2
a2

]

+ 2α1c0(ıα5b + α6a)a − α2

[
2(2a − 1)b2 + ıα3b + α4a

]
− ıU(3c2

0 − d2
0 )b3 + α7c0

3,

(B.5)

where the coefficients α1, · · · , α7 are determined in terms of the coordinates c0 and d0 as follows,

α1 = (c2
0 + d2

0 )U, α2 = c2
0U, α3 = 1 + 4c4

0 − 12c2
0d

2
0 − 2c0d0U,

α4 = 32c0d0

3U
+ 16c4

0 + 11c0d0U

6
− 2, α5 = 6c3

0 − 6c0d
2
0 − d0U

2
,

α6 = 8d0

3U
+ 9c3

0 − 3c0d
2
0 − d0U

24
, α7 = 16d0

3
+ 4c3

0U − 4c0d
2
0 U − d0U2

12
. (B.6)

• The variable ỹ0:

ỹ0 = 4c0d0α1a2(b − ıa)(b2 + α2
1

U2
a2) + 2

α2
1

U2
a3 [

(β1 + α1c0d0)b − ıβ1a
]

+ c0
α1

U
a2(2ıβ2a − 3

2
β3b)

+ 2ab2 [
(β4 + α1c0d0)b − ıβ4a

] + 4ıc2
0b2

[
(
2α1α2

U2
− 1)(2a − 1) − c0d0U

2

]

+ c0

2
(β5b3 − 4ıβ6c

2
0a2 + β7c0ab − 4ıc2

0β8a + β9c
2
0b + 8ıβ10c

3
0), (B.7)

where the coefficients β1, · · · , β10 are given by,

β1 = 2c2
0 − 2d2

0 − 13c3
0d0U + 3c0d

3
0 U,

β2 = α1

U
(8c0 − 33c2

0d0U − d3
0 U) + 24c0d

2
0 (2c0d0U − 1),

β3 = α1

U
(8c0 − 35c2

0d0U − 3d3
0 U) + 32c0d

2
0 (2c0d0U − 1),

β4 = 2c2
0 − 2d2

0 − 7c3
0d0U + c0d

3
0 U,

β5 = −8c0 + 32c3
0d

2
0 + 32c0d

4
0 + 17c2

0d0U + d3
0 U,

β6 = 12c3
0 − 36c0d

2
0 − d0U − 40c4

0d0U + 24c2
0d

3
0 U + c0d

2
0 U2,

β7 = 24 − 192c2
0d

2
0 − 58c0d0U − 64c5

0d0U + 192c3
0d

3
0 U + 35c2

0d
2
0 U2 − d4

0 U2,

β8 = −8c3 + 8c0d
2 + 32c5d2 + 32c3d4 + d0U + 24c4d0U − 8c2d3U − c0d

2U2,
0 0 0 0 0 0 0 0 0 0
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β9 = −8c3
0 − 40c0d

2
0 + 128c5

0d
2
0 + 128c3

0d
4
0 − 3d0U + 36c4

0d0U + 36c2
0d

3
0 U + 2c0d

2
0 U2,

β10 = α1

U
(8c2

0d
2
0 − 1) + c0d0(3c2

0 + d2
0 )U. (B.8)

The corresponding Weierstrass equation for the variables x0 and y0 has been presented in the 
main text, see Eq. (44). The same analysis can be performed for the special fiber at the closed set 
h = 0. Once again we find a non-singular genus one curve which J-invariant is the same as that 
of the generic fiber given by Eq. (47). This means that the surface V is normalized in terms of 
the product of two elliptic curves.
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