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ABSTRACT

In this article we show that the pointwise eXIstence of a regulariser for holomorphic Fredhom-valued
mappings defined on pseudo-convex domains in Banach spaces with an unconditional basis implies the
existence of a holomorphic regulariser.

1. INTRODUCTION

There is an extensive literature, dating back over forty years, on the parametric
dependence of various types of inverses given their pointwise existence. Excellent
summaries are provided in [9] and [17], and we have been strongly influenced by
the results and methods in both of these articles. We are interested in holomorphic
dependence on a parameter in an arbitrary Banach space while the holomorphic
results in [9] and [17] concern a parameter in a finite-dimensional Banach space.
The relatively recent results ofLempert [12,13] on sheaf cohomology for holomor­
phic sheaves defined on an infinite-dimensional Banach space provided the missing
ingredient in the move from finite to infinite-dimensional spaces.

Our focus in this article is on the existence of holomorphic and meromorphic
regularisers for Fredholm-valued holomorphic functions. In Section 3 we show that
any Fredholm-valued holomorphic mapping defined on a pseudo-convex domain
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in a Banach space with an unconditional basis has a holomorphic regulariser. The
proof of this result for domains in finite-dimensional spaces is well known and uses
holomorphic liftings but this is of limited value in the infinite-dimensional case
(see [3]), and we were obliged to take a different approach. In Section 4 we show,
following ideas in [9] and [17], that the function z --+ !(Z)-l is meromorphic when
! is a Fredholm-valued holomorphic function that is invertible at some point.

If X and Yare Banach spaces over <C we let LeX, Y) (respectively K(X, Y),
F(X, Y)) denote the set of all continuous (respectively continuous compact, con­
tinuous finite rank) linear mappings from X to Y and we let GL(X, Y) denote the
subset of LeX, Y) consisting of all bijective mappings. We use also the standard
notation X' := LeX, q, LeX) := LeX, X), K(X) := KeX, X), F(X) := F(X, X)
and GL(X) := GL(X, Y). The space K(X) is a closed ideal in LeX) and the
quotient algebra C(X) = £(X)/KeX) is called the Calkin algebra on X. If Q is an
open subset of a Banach space X and Y is a Banach space we let H(Q, Y) denote
the space of holomorphic mappings from Q into Y (see [1,14,15] for background
material on infinite-dimensional holomorphy).

2 FREDHOLM OPERATORS

In this section we recall basic properties of Fredholm operators and prove a number
of results required later. We refer to [4] and [16] for background information on
Fredholm operators.

A mapping T E LeX, Y) is Fredholm if ker(T) and coker(T) := Y / im(T) are
both finite-dimensional. The space of all Fredholm operators from X into Y is
denoted by <t>(X, Y). If T E <t>(X, Y) then index(T), the index of T, is defined as

index(T) := dim(ker(T)) - dim(coker(T)),

where dim denotes dimension. We let <t>n (X, Y) denote the set of all Fred­
holm mappings from X to Y with index n E Z. We let <t>(X) := <t>(X, X) and
<t>o(X) := <t>o(X, X). The set <t>(X, Y) is an open subset ofLeX, Y) and GL(X, Y) c
<t>o(X, Y).

In proving results for Fredholm operators it is often useful to be able to reduce
them to the cases <t>(X) and <t>o(X, Y). In these cases we can call on the following
results: a mapping T E LeX) is Fredholm if and only if its image in the Calkin
algebra is invertible and, moreover, a Fredholm operator T E <t>(X, Y) has index
o if and only if T = S + K = R + F where S, R E GL(X, Y), K E K(X, Y) and
F EF(X, Y).

The set <t>(X, Y) may be empty. The set <t>o(X) is never empty since the identity
mapping on X belongs to it, but it is possible that <t>o(X) = <t>(X) and that <t>(X) =
U~l <t>2n(x, Y) (see [5]). Recently, Argyros and Haydon answered a long standing
open question by showing that there exists an infinite-dimensional Banach space X
such that LeX) = <t>o(X).

Definition 1. Let X and Y be Banach spaces and T E LeX, Y). A mapping S E

Ley, X) is called a regulariser for T if ST - Ix E K(X) and T S - Iy E K(Y).
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An operator T E LeX. Y) has a regulariser if and only if T E <I>(X, Y) (see, for
example, [4], p. 190).

If <I> (X, Y) is non-empty we have a close relationship between X and Y, and in
the following lemma we show how to take advantage of this relationship.

Lemma 1. Let T E <I>(X, Y) and suppose dim(ker(T» = m and dim(coker(T» =
n. Then

and the mapping R(x. y) := (Tx, 0) belongs to <l>°(X EEl en, Y EEl em). Moreover, if
L y : Y -+ Y EEl em and Px: X EEl en -+ X are the canonical mappings and S is a
regulariser for R, then Px 0 So Ly is a regulariser for T.

Proof. There exists a closed subspace Z in X such that X :::: Z EEl ker(T) :::: Z EEl em ,
Tlz: Z -+ T(Z) is a linear isomorphism and Y :::: T(Z) EEl coker(T) :::: T(Z) EEl en.
This implies

Note that for most pairs of Banach spaces X and Y this implies X :::: Y.
Since ker(R) = ker(T) EEl en, we have that dim(ker(R» = m + n. Similarly

coker(R) = coker(T) EEl em, and dim(coker(R» = n + m. Hence indexeR) = 0 and
R E <l>°(X EEl en, Y EEl em).

Since S is a regulariser for R, there exist K E K(Y EEl em) and C E K(X EEl
en) such that R 0 S = IYEllcm + K and S 0 R = IXEllc" + C. Let S(y, w) =
(S] (y, w), S2(Y, w» for all y E Y and WE em. Then R 0 S(y, w) = (T 0 Sl (y, w), 0),
hence Px 0 R 0 S(y, w) = T 0 Sl(Y, w). If, on the other hand, we let K(y. w) =
(K[ (y, w), K2(Y, w» then R 0 S(y, w) = (y + K[ (y, w), w + K2(y, w», thus Px 0

R 0 S(y, w) = y + Kl(Y, w). Then

To (Px 0 S 0 Ly)(y) =T 0 Sl (y, 0)

=Px 0 R 0 S(y, 0)

=y + Kl(Y,O)

= (ly + K] 0 Ly)(y)

and hence To (Px 0 S 0 Ly) - ly is compact. Let x E X and z E en, then

R(x, z) = Ly 0 T(x) = [L y 0 T 0 Px](x, z)

and R = L y 0 T 0 Px. Hence

(Px 0 S 0 Ly) 0 T(x) = Px 0 S 0 (Ly 0 T 0 Px)(x, 0)

= Px 0 (S 0 R (x , 0))

= x + Px 0 C(x, 0)

= (Ix + Px 0 C 0 Ly)(x),
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so (Px 0 SoL y) 0 T - 1x is compact. The proof is complete. 0

3. HOLOMORPHIC REGULARISERS

Definition 2. Let f E H(Q, <p(X, Y» where X and Y are Banach spaces and Q

is an open subset of a Banach space. A mapping g E H(Q, <P(Y, X» is called a
holomorphic regulariser for f if, for each z E Q, g(z) is a regulariser for fez).

For finite-dimensional domains the next proposition is due to Krein and Trofimov
[11] and Gramsch [6] (see also Theorem 4.5 in [17]). It extends Proposition 9 in [3]
to an arbitrary Banach space.

Theorem 1. Let Q be a pseudo-convex open subset of a Banach space with an
unconditional basis and let X and Y be Banach spaces. Iff E H(Q, <P(X, Y» then
there exists a holomorphic regulariser for f.

Proof. We may suppose without loss of generality that Q is connected. By [16],
p. 29, the mapping z E Q --+ index(f(z» is continuous and as it is integer-valued
it is locally constant. We first suppose that index(f) = 0 and that X ::::: Y. Fix
WE Q. Since index(f(w» = 0, we can choose K w E K(X) such that few) - K w

is invertible. Since the mapping T E GL(X) --+ T- 1 E GL(X) is holomorphic we
can find an open neighbourhood of w, Uw, such that h: z E Uw --+ (f(z) - Kw)-l

is well defined and holomorphic.
On carrying out the same procedure at all points of Q we obtain an open

covering of Q and a collection ofhoIomorphic functions from which we can extract
a countable open covering (Un)~l and a sequence of holomorphic mappings
(hn)~l' where hn(z) = (f(z) - Kn)-l E H(Un; GL(X» and K n E K(X). If z E

Un n Um, then

(f(z) - Knfl - (f(z) - Kmfl

= (f(z) - Kmfl (Km - Kn)(f(z) - Knfl,

Moreover,

hnm +hmn =0 on Un n Um

and

Hence (hnm)n.m is a cocycle for the sheaf of K(X)-valued holomorphic functions
on Q. By [12] there exists a sequence (fn)~l' fn E H(Un, K(X», such that
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hnm (z) = fn (z) - fm (z) on Un n Um. This implies

(f(z) - Knf' - fn(z) = (f(z) - Kmf' - fm(z)

for all z E Un n Um, and the function g(z) := (f(z) - Kn)-' - fn(z) is a well-defined
holomorphic function on Q. Moreover,

g(z)f(z) = (f(z) - Knf' fez) - fn(z)f(z)

= Ix + [(fez) - Knf' Kn - fn(z)f(z)]

and (f(z) - Kn)-' Kn - fn(z)f(z) E K(X) for all z E Un. Similarly,

f(z)g(z) = f(z)(f(z) - Knf' - f(z)fn(z)

= Ix + [Kn(f(z) - Knf' - f(z)fn(z)]

and Kn(f(z) - Kn)-' - f(z)fn(z) E K(X) for all z E Un. This completes the proof
when index(f) = °and X :::::: Y.

Now let X and Y be arbitrary Banach spaces, and let f E H(Q, ¢(X, Y». Fix
a point zo in Q, then dim(ker(f(zo») = m and dim(coker(f(zo») = n for some
m, n EN. By Lemma 1 X EB en :::::: Y EB em. We define f* E H(Q, 'c(X EB en»
by letting f*(z)(x, y) := (f(z)(x), 0), so f*(z) E ¢o(X EB en) for all z E Q. By
the above result for index °there exists a holomorphic regulariser g for f*.
Let Ly: Y --+ Y EB em and Px :X EB en --+ X be the canonical mappings, then
by Lemma 1, Px 0 g 0 L y is a holomorphic regulariser for f. The proof is
complete. 0

4. MEROMORPHIC INVERSES

Definition 3. Let Q denote an open subset of the Banach space X and let Y and Z
be Banach spaces.

(a) A set A C Q is called an analytic set if for each x E Q there exists an open
neighbourhood of x, Vx, a Banach space Yx and it E HcYx, Yx), fx ¢ 0, such
that A n Vx = {z E Vx: fx(z) = O}. If each Yx is finite-dimensional A is said to
be of finite definition.

(b) A function f :Q' --+ Y is a meromorphic function on Q if Q' is a dense open
subset of Q and if for each x E Q there exists a connected open neighbourhood
of x, Vx, gx E HcYx, Y), and hx E HcYx), hx ¢ 0, such that

fez) = gAz)
hx(z)

for all z E Vx n Q'. We let M (Q, Y) denote the set ofall Y -valued meromorphic
functions on Q.
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(c) A mapping f E M(Q, L(Y, Z)) is a finite meromorphic function if for each
zo E Q there exists an open neighbourhood V of zo such that on V f has the
decomposition

1
fez) = g(z) + -k2(Z) 0 P 0 kl (z)

h(z)

where P is a projection onto a finite-dimensional subspace of Y, g E H(V,

L(Y, Z»), kl E H(V, L(Y», k2 E H(V, L(Y, Z» and hE H(V), h ¢ O.

If A is an analytic subset of Q then Q\A is a dense open subset of Q. The
following result is due to Krein and Trofimov [10,11]. Since the method is important
and the proof in [17] is rather condensed we include the details.

Theorem 2. Let X and Y be Banach spaces, let p be a positive integer and let

Sp(X, Y):= {T E <p(X, Y); dim(kernel(T») ~ pl·

IfSp(X, Y) i= 0 then Sp(X, Y) is an analytic subset offinite definition in <P(X, Y).

Proof. Let To E <P(X, Y). We first suppose that index(To) = 0 and X ~ Y. This
means we can find Tl E F(X) such that To + Tl E CL(X). Hence T + Tl E CL(X)
for all T in some neighbourhood V of To in L(X). If T E V let f(T) = (T +
Ttl- 1Tl. Then f E H(V, L(X», T = (T + Tl)(lx - f(T» and ker(T) = ker(lx ­
f(T», that is x E ker(T) if and only if x = f(T)x. We now choose (cPi)7=1 c X'
and (xi)7=1 C X such that Tl(X) = L:7=1 cPi(X)Xi for all x in X and let fi(T) =
(T + Ttl-1xi for 1 ~ i ~ n. Then fi E H(V, X) and

n

= LcPi(X)((T + Ttl-Ix,)
i=l

n

= LcPI (x)!z (T)
i=l

for all T E V. Hence x E ker(T) if and only if

n

(2) x = [f(T)](x) = LcPi(X)fi(T).
i=l

Let x E ker(T) and let;j = cPj(x) for j = 1, ... , n, then

n n

(3) ;) =cP)(j(T)(x») = LcPi(X)cPj(ji(T») = L;icPj(ji(T»)
1=1 i=l
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for j = 1, ... , n. Conversely, suppose (~j );=1 satisfies (3) and x = LJ=I ~jh (T).
Then <p;(x) =L;=I ~j<Pl(h(T) and

n

= I:M!(T)(f,(T»)]
;=1

= !(T)(~~;f,(T))
= [f(T)](x).

Hence x E ker(T) if and only if (<p; (x ))7=1 is a solution to the finite linear system
of equations (3). The system (3) has coefficient matrix (<pj (f; (T)) h~l.j~n and thus
has at least p linearly independent solutions if and only if the determinants of all
minors of order n - p + 1 in (<pj(f;(T)))I~;.j~n vanish. Since each entry in this
matrix is a holomorphic function of T E V, the set ofall T where these vanish is an
analytic subset of finite definition in V.

If To E <I> (X, Y) is arbitrary we can, by Lemma 1, choose integers rand s such
that X EB cr ~ Y EB CS. Let So :cr ---+ CS be the zero operator, then the operator Ro
defined by Ro(x, y) := (To(x), So(y)) lies in <I>°(X EB cr, Y EB CS). By the above we
can find an open neighbourhood V of Ro, a finite-dimensional Banach space Z, and
g E 'H(V, Z) such that

Now choose E > 0 such that {T E <I> (X, Y), liT - Toll < E} x So C V. Let W = {T E

<I>(X, Y), II T - Toll < E} and let h(T) := geT EB So) for all T E W. Then h(T) = 0 if
and only if g(T EB So) = 0, and by (4) this occurs if and only if dim(ker(T EB So» ~

p + r. Since dim(ker(T EB So)) = dim(ker(T» + r this implies

Sp(X, Y) n W = {T E W: h(T) = OJ.

This completes the proof. D

The following theorem generalises results ofGramsch and Kaballo [9], and Krein
and Trofimov [11].

Theorem 3. Let X and E be Banach spaces, let Q denote a connected open subset
ofE and let! E 'H(Q, <I>(X)). Ifthere exists ZO E Q such that !(ZO) E CL(X) then
the mapping Z ---+ !(Z)-I defines a <I> (X)-valuedfinite meromorphicfunction on Q.
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If, in addition, E has an unconditional basis and n is pseudo-convex, then on a
dense open subset ofn we have the decomposition

(5) f(Z)-1 = g(z) + h(z),

where g E H(n, L(X» and hE M(n, K(X».

Proof. Since f(zo) is invertible, index(f(zo» =0 and, as f is holomorphic, and n
is connected this implies index(f(z» = 0 for all ZEn. We then have

A:= (z E n: fez) is not invertible} = {z E n: dim(ker(f(z») ~ I}.

If A = 0 the mapping zEn ---+ f(Z)-1 is holomorphic and letting g(z) = f(Z)-1

and h(z) = 0 for all ZEn completes the proof.
Now suppose A =f 0. If z E A, then by Theorem 2 there exists an open neighbour­

hood V of fez) in <t>(X), a finite-dimensional Banach space Y and l E H(V, Y)

such that V n 51 (X) = {T E V: leT) = O}. If W = f- I (V), then

An W = {z E W: fez) E 51(X)} C {z E W: l(f(z») =oJ.
Thus A is contained in an analytic subset of n of finite definition and hence its
complement n' := n \ A is a dense open subset of n such that z E n' ---+ f(Z)-1 E

<t>(X) is holomorphic. Let Zl EA. Since index(f(zJ» =0 we can choose F E :F(X)
such that f(zl) + FE G L(X). By continuity there exists an open neighbourhood V
of Zl such that the mapping z E V ---+ (f(z) + F)-I is holomorphic. Let P E L(X)
denote a projection onto the range XI of F and let Q := Ix - P have range X2.
Clearly X::::: XI EB X2. Let D(z) := -F(f(z) + F)-I for z E V. Using fez) =

(f (z) + F) - F we obtain

(6) f(z)(f(z) + Fr
l

= Ix - F(f(z) + Fr l

= Ix - P F(f(z) + Fr l

= Ix + PD(z)

= (Ix + P D(z)Q) 0 (Ix + P D(z)P).

The mappings on the left in (6) are invertible for all z E V' := un n/.The mapping
Ix + PD(z)Q has a holomorphic inverse on V. Indeed, (PD(Z)Q)2 = 0 since
QP = 0, hence (Ix + PD(Z)Q)-I = Ix - PD(z)Q, and the mapping z E V---+
Ix - P D(z) Q E L(X) is holomorphic. Thus z E V ---+ Ix + P D(z)P is invertible
on V I. With respect to the decomposition X I EB X2 of X we may present it in the
following matrix form:

Ix + P D(z)P = (Ixl + P D(z)lxj
OXjI-->X2

The mapping k:z E V ---+ det(1xl + PD(z)lxj) is well defined and holomorphic.
If z E V and det(Ixl + PD(Z)lxl) = 0, then there exists Xl =f 0 in XI such that
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(IX1 + P D(z»(x]) = 0. Hence (Ix + P D(Z)P)(Xl, OX2) = 0, implying that z ¢. V'.
Hence z E V' --+ k(Z)-1 is well defined and holomorphic. Since Ix] + P D(z) Ix] is
a finite matrix for all z E V, its adjoint Ad(z) is holomorphic on V. Hence for all
z E V' we have

-1 Ad(z)
(Ix + PD(z)P) =--oP+Q

k(z)

and

(Ix + P D(z)pr
1

0 (Ix - P D(z)Q)

Ad(z)
= -- 0 P 0 (Ix - D(z)Q) + Q.

k(z)

By (6),

(7) f(Z)-1 = (f(z) + Frio (Ix + P D(z)r 1

= (f(z) + Frio (Ix + P D(z)pr
1

0 (Ix - P D(z)Q)

= _1_ (f(z) + Frio Ad(z) 0 P 0 (Ix - D(z)Q)
k(z)

+ (f(z) + Frio Q

on V'. Since P is a finite-dimensional projection and all ofthe mappings on the right
in (7) are holomorphic on V, the mapping z --+ f(Z)-1 is finite meromorphic on V.
As the point ZI was arbitrarily chosen in A we have shown that z E V --+ f(z)-1 is
a finite meromorphic function on Q.

If Q is a pseudo-convex domain and E has an unconditional basis, Theorem I
implies that f has a holomorphic regulariser g E H(Q, CP(X». If we let h(z) =
f(z)-1 - g(z) for all z E Q\A then hE M(Q, L(X» and

f(Z)-1 = g(z) + h(z).

Since f(z)h(z) = Ix - f(z)g(z) E K(X) we also have h(z) = f(Z)-1 (Ix ­
f(z)g(z» E K(X) for all z E Q\A and h E M(Q, K(X». This completes the
proof. D

Let X and Y be Banach spaces. A mapping A E L(X, Y) is called right invertible
if there is B E L(Y, X) such that A 0 B = I y. We call B a right inverse for A.

In [2] we considered the problem of the existence of a holomorphic right in­
verse for a pointwise-right-invertible holomorphic function. The following theorem
shows that even right-invertibility at just one point can yield surprising results. It
also generalises both Theorem 3 and a finite-dimensional result in[II].

Theorem 4. Let Q be a pseudo-convex connected open subset ofa Banach space
with unconditional basis, X and Y be Banach spaces and let f E H(Q, CP(X, Y».
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If there exists zo E Q such that f (zo) is right invertible, then f has a finite
meromorphic right inverse g E H(Q, <1>(Y, X), and on a dense open subset ofQ
we have the decomposition

(8) g(z) = I(z) + m(z),

where IE H(Q, L(Y, X)) and mE M(Q, K(Y, X)).

Proof. By Theorem I f has a holomorphic regulariser, s E H(Q, <1>(Y, X)). Thus
there exists C E K(X) such that s(zo)f(zo) = Ix + C. Let R be a right inverse for
f(zo), then

(s(zo)f(zo))R = s(zo) = R + C R,

hence R = s(zo) + K where K := -CR is a compact operator. Let h(z) := s(z) + K,
then hE H(Q, <1>(Y. X)) and

f(z)h(z) = f(z)s(z) + f(z)K = I y + T(z),

where T(z) E K(y) for all z. Let F(z) := f(z)h(z) for all z, then FE H(Q, <1>(Y))
and since F(zo) = I y , F is invertible at zoo Thus, by Theorem 3, F has a finitely
meromorphic inverse, w, on Q. Hence the mapping z --+ h(z)w(z) is a finitely
meromorphic right inverse for f on Q. The decomposition (8) follows from the
existence, by Theorem 3, ofa decomposition for w. The proof is complete. D

Remark.

• In the statement of Theorem 4 it suffices to have a point zo E Q such that f(zo)
is sUIjective. Indeed, since f (zo) is Fredholm its kernel is complemented, and
a surjective mapping with a complemented kernel is right invertible (see, for
example, Lemma I in [2]).

• We stated Theorem 4 for right inverses, but it holds also for left inverses (in
which case it suffices that f is injective at some point).
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