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We have shown that renal epithelial cell survival depends on

the sustained activation of the extracellular signal-regulated

protein kinase (ERK) and lack of this activation was associated

with death during oxidative stress. ERK is activated via the

canonical epidermal growth factor receptor (EGFR)–Ras–MEK

pathway, which could be attenuated by oxidants. We now

show that the failure to activate ERK in a sustained manner

during severe oxidative stress is owing to the activation of

the signal transducer and activator of transcription-3 (STAT3)

rather than the failure to activate the EGFR. Tyrosine

phosphorylation of the EGFR and STAT3 was studied in

hydrogen peroxide (H2O2)-treated mouse proximal tubule

(TKPTS) cells or in mouse kidney after ischemia/reperfusion (I/

R) injury by Western blotting. STAT3 activation was inhibited

by either pharmacologically (AG490) through its upstream

janus kinase (JAK2) or by a dominant-negative STAT3

adenovirus. EGFR was inhibited by AG1478. Survival was

determined by fluorescence-activated cell sorter analysis and

trypan blue exclusion. We found that the EGFR was

phosphorylated on its major autophosphorylation site

(Tyr1173) regardless of the H2O2 dose. On the other hand,

both I/R and severe oxidative stress – but not moderate stress

– increased tyrosine phosphorylation of STAT3 in an EGFR

and JAK2-dependent manner. Inhibition of JAK2 or STAT3

lead to increased ERK activation and survival of TKPTS cells

during severe oxidative stress. Our data suggest a role of

tyrosine-phosphorylated STAT3 in the suppression of ERK

activation. These data suggest that the STAT3 pathway might

represent a new target for improved survival of proximal

tubule cells exposed to severe oxidant injury.
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During ischemia/reperfusion (I/R) injury, the excessive
formation of reactive oxygen species and their intermediates,
such as hydrogen peroxide (H2O2), contributes to the death
of proximal tubules of the kidney.1 In cultured mouse
proximal tubule cells (TKPTS), we found that a moderate
amount of H2O2 (0.5 mmol/l) resulted in sustained activa-
tion of extracellular signal-regulated kinase (ERK) and cell
survival. By contrast, treatment with excessive H2O2

(1.0 mmol/l) led to a transient activation of ERK and cell
death.2 We also demonstrated that survival after H2O2

treatment requires the activation of the transcription factor
cAMP-responsive element-binding protein, a downstream
effector of the epidermal growth factor receptor (EGFR)–ERK
pathway,3 and this signaling is interrupted by severe oxidant
stress.

The activation of ERK has been shown to be executed
through the canonical EGFR–Ras–MEK pathway.4,5 Epider-
mal growth factor (EGF) and EGF-like ligands bind and
activate the intrinsic tyrosine kinase activity of the EGF
receptor and initiate autophosphorylation of various tyrosine
residues. H2O2 itself can also induce phosphorylation of the
EGFR and initiate signaling through the EGFR–Ras–MEK
pathway.6–10 In vivo studies suggest that H2O2 generated
during reperfusion could act as an activator of the EGFR.11

Thus, moderate levels of H2O2 might serve as a second
messenger in survival signaling including the EGFR/ERK
pathway.12–14 Proximal tubules of the kidney, which undergo
necrotic cell death, express high levels of EGFR15 and activate
the EGFR during I/R injury;11,16 yet, we and others have
failed to demonstrate activation of ERK or other downstream
elements of the canonical pathway in proximal tubule
segments following I/R injury.17,18

In seeking an explanation for this observation we
considered at least two possibilities. Severe stress might fail
to activate the EGFR, usually accomplished by phosphoryla-
tion at a key activation site on the receptor,6–9,19 or by a post-
receptor mechanism involving the activation of transduction
signaling arising from an alternate pathway that represses
EGFR downstream signaling. Such an EGFR-repressing
mechanism has been observed during reactive oxygen
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species-activated janus kinase (JAK)/STAT signaling both in
vitro as well as during I/R-induced injury,20,21 whereby the
activation of the signal transducer and activator of transcrip-
tion-3 (STAT3) has been observed to downregulate the
ERK1/2 pathway. It would appear that these alternate
signaling pathways induced by severe stress result in the
inhibition of the EGFR-mediated survival pathway.

We therefore postulated that the ERK survival signaling
pathway is interrupted by severe oxidant stress in TKPTS.
Accordingly, we tested the hypotheses that severe oxidant
stress fails to activate ERK either by failure to activate the
EGFR or by activation of the JAK2/STAT3 pathway.
Furthermore, we sought to re-establish ERK signaling by
manipulation of these pathways in order to restore cell
survival during severe oxidant stress.

RESULTS
EGFR is phosphorylated independent of the dose of oxidative
stress in mouse renal proximal tubular cells

TKPTS cells were treated with 0.5 or 1 mmol/l H2O2 or 10 ng/ml
EGF for 30 min. Phosphorylation of the EGFR at one of the
major autophosphorylation sites (tyrosine(Tyr) 1173) and
the unphosphorylated EGFR was determined by Western
blotting (Figure 1a). The results show that the EGFR was
significantly phosphorylated at Tyr 1173 both at 0.5 and

1.0 mmol/l H2O2 similar to treatment by its cognate ligand
EGF (Figure 1b). Pretreatment of TKPTS cells with 50 mM/l
AG1478 (an EGFR inhibitor) 1 h before treatment with
0.5 mmol/l H2O2 resulted in extensive necrotic cell death
similar to that seen after treatment with 1 mmol/l H2O2

(Figure 1c), suggesting that EGFR activation is critical for cell
survival. For comparison control (untreated), 0.5 mmol/l-
and 1 mmol/l H2O2-treated cells are also included. Note the
G2/M arrest induced by 0.5 mmol/l H2O2, which we have
previously shown to accompany cell survival under these
conditions.2 These results suggest that attenuation of ERK
phosphorylation by 1 mmol/l H2O2

2 may be downstream
from the activated EGFR.

Severe oxidant stress tyrosine phosphorylates STAT3 both
in vitro and in vivo

We next explored the role of STAT3 in the interruption of
EGFR-induced ERK1/2 activation.22 TKPTS cells were treated
with 0.5 or 1 mmol/l H2O2 for 30 min and Tyr-705
phosphorylated STAT3 was determined by Western blotting
(Figure 2a). The results demonstrate that only 1 mmol/l
H2O2 phosphorylates STAT3 significantly at Tyr-705 (Figure
2b). Tyrosine phosphorylation of STAT3 is also detectable in
lysates from mouse kidneys undergoing I/R injury (Figure
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Figure 1 | EGFR activation after various levels of oxidant stress
and its role in survival. (a) TKPTS cells were treated with either 0.5
or 1 mmol/l H2O2 or 10 ng/ml EGF for 30 min. Cell lysates were
prepared and phosphorylation of EGFR determined by Western
blotting using a phospho-EGFR (Tyr 1173) antibody that recognizes
one of the major autophosphorylation site on EGFR. Status of the
unphosphorylated EGFR was also determined. Data shown are
representative of three independent experiments. (b) Densitometric
analysis of Western blots as shown in (a). The extent of EGFR tyrosine
phosphorylation was determined by normalizing phospho-EGFR
levels to the total EGFR. Values are given as mean7s.d. (n ¼ 3).
*Po0.001 compared to the untreated control. (c) TKPTS cells were
pretreated with 50mmol/l AG1478 1 h before treatment with
0.5 mmol/l H2O2. Twenty-four hour after H2O2 treatment FACS
analysis was carried out to determine viability of cells. Cells reside in
the sub-G1 fraction are considered dead. For comparison, control
(untreated), 0.5 mmol/l and 1 mmol/l H2O2-treated cells are also
included. Note the G2/M arrest induced by 0.5 mmol/l H2O2. Data
shown are representative of three independent experiments.
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Figure 2 | Tyrosine 705 phosphorylation of STAT3 in TKPTS cells
and in the kidney. (a) TKPTS cells were treated with 0.5 or 1 mmol/l
H2O2 for 30 min. Tyr 705 phosphorylation of STAT3 (pSTAT3Tyr) was
determined by Western blotting together with the total STAT3. Data
shown are representatives of three independent experiments.
(b) Densitometric analysis of Western blots as shown in (a). The
extent of STAT3 tyrosine phosphorylation was determined by
normalizing phospho-STAT3 levels to the total STAT3. Values are
given as mean7s.d. (n¼ 3). *Po0.001 compared to the untreated
control. (c) Protein lysates were obtained from kidneys 15 and 30 min
as well as 24 h after re-establishing the blood flow after 50 min
ischemia and subjected to sodium dodecyl sulfate-polyacrylamide gel
electrophoresis followed by Western blotting. Blots were hybridized
with antibodies that recognize either the phospho-(Tyr705)-STAT3
or STAT3, respectively. Data shown are representatives of three
independent experiments. (d) Densitometric analysis of Western
blots as shown in (c). The extent of STAT3 tyrosine phosphorylation
was determined by normalizing phospho-STAT3 levels to the total
STAT3. Values are given as mean7s.d. (n¼ 3). *Po0.001, **Po0.05
compared to the untreated control. #Po0.05 compared to the 30 min
reperfusion.

670 Kidney International (2006) 70, 669–674

o r i g i n a l a r t i c l e I Arany et al.: STAT3 inhibits ERK during renal oxidative injury



2c). As is shown in Figure 2, 30 min as well as 24 h
reperfusion significantly increased tyrosine phosphorylation
of STAT3 in the mouse kidney. The relative decrease in STAT3
tyrosine phosphorylation 24 h after reperfusion is owing to
the fact that ischemic injury also increased total STAT3
protein at that time point (Figure 2d). Regardless, the levels
of tyrosine-phosphorylated STAT3 are still significantly
higher compared to the normal kidney. These results suggest
that tyrosine phosphorylation of STAT3 might be a key
negative regulator of ERK activation. Furthermore, tyrosine-
phosphorylated STAT3 might be an important element in
death signaling.

We next asked if the activation of STAT3 is mediated by
the EGFR or JAK2.23–26 Pretreatment of TKPTS cells with
either the JAK2 inhibitor AG490 or the EGFR inhibitor
AG1478 partially but significantly attenuated 1 mmol/l H2O2-
induced STAT3 tyrosine phosphorylation (Figure 3b),
suggesting that both JAK2 and EGFR participate in STAT3
phosphorylation.

Inhibition of JAK2 or STAT3 ameliorates survival through
restoring ERK activation

To determine whether ERK activation and survival could be
restored by inhibition of the JAK2/STAT3 pathway, TKPTS
cells were pretreated with either the JAK2 inhibitor AG490 or
infected with a dominant-negative STAT3 adenovirus (Ad-
dnSTAT3) before treatment with 1 mmol/l H2O2. After 24 h,
cell numbers were counted. As shown in Figure 4a,
pretreatment with AG490 significantly increased survival of
cells after treatment with 1 mmol/l H2O2. Similarly, inhibi-
tion of STAT3 also reduced 1 mmol/l H2O2-induced cell
death (Figure 4b).

We next explored whether JAK2/STAT3 inhibition restores
ERK activation. Accordingly, TKPTS cells were either
pretreated with AG490 (Figure 5) or infected with an
adeno-dnSTAT3 (Figure 6) before treatment with 1 mmol/l

H2O2. The phosphorylation status of ERK was determined
2 and 4 h after treatment with H2O2 by Western blotting.
Figures 5 and 6 show that 1 mmol/l H2O2 significantly
inhibited the phosphorylation of ERK at those time points.
However, pretreatment with AG490 (Figure 5) or by direct
inhibition of STAT3 via a dominant-negative mutant
(Figure 6) restored ERK activation (phosphorylation).
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Figure 3 | Tyr 705 phosphorylation of STAT3 by 1 mmol/l H2O2 is
both EGFR- and JAK2-dependent in TKPTS cells. (a) TKPTS cells
were pretreated with either the JAK2 inhibitor AG490 (50 mmol/l) or
the EGFR inhibitor AG1478 (50mmol/l) for 1 h before treatment with
1 mmol/l H2O2 for 30 min. Levels of the tyrosine-phosphorylated and
total STAT3 were determined by Western blotting. Results shown are
representatives of three independent experiments. (b) Densitometric
analysis of Western blots as shown in (a). The extent of STAT3
tyrosine phosphorylation was determined by normalizing
phospho-STAT3 levels to the total STAT3. Values are given as
mean7s.d. (n ¼ 3). *Po0.005, **Po0.05 compared to the
untreated control.
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Figure 4 | Inhibition of JAK2 or STAT3 ameliorates survival of
TKPTS cells after treatment with 1 mmol/l H2O2. (a) TKPTS cells
were pretreated with 50mmol/l AG490 for 1 h before treatment with
1 mmol/l H2O2. After 24 h, cell counts were determined by trypan
blue exclusion. Data are expressed as the percentage of pretreatment
(control) values (N¼ 3; mean7s.d.). Cell morphology was assessed by
light microscopy. AG490: cells treated with 50 mmol/l AG490 for 24 h;
and 1 mM: cells treated with 1 mmol/l H2O2 for 24 h; 1 mMþAG490:
cells pretreated with 50mmol/l AG490 for 1 h before treatment with
1 mmol/l H2O2 for 24 h. *Po0.001. (b) TKPTS cells were infected with
25 multiplicity of infection/ml dominant-negative STAT3 adenovirus
24 h before treatment with 1 mmol/l H2O2. After 24 h, cell counts
were determined. Data are expressed as the percentage of
pretreatment (control) values (N¼ 3; mean7s.d.). dnSTAT3: cells
infected with dnSTAT3 for 24 h; 1 mM: cells treated with 1 mmol/l
H2O2 for 24 h; and dnSTAT3þ 1 mM: cells infected with dnSTAT3
before treatment with 1 mmol/l H2O2 for 24 h. *Po0.001
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DISCUSSION

We have shown that survival of renal epithelial cells during
oxidant injury depends on the activation of the ERK–cAMP-
responsive element-binding protein pathway.2,3 We now
show that an activated EGFR is indispensable for survival
as AG1478, an EGFR inhibitor, attenuates survival of TKPTS
cells during moderate oxidant stress (Figure 1c). This is the
first demonstration of EGFR-dependent survival signaling in
renal proximal tubules.

Although proximal tubules activate the EGFR after renal
I/R injury,27 they fail to activate ERK or other downstream
elements of the proximal tubule survival pathway17,18 and
undergo necrotic death. We considered at least two
possibilities to explain this observation: failure to phosphor-
ylate the EGFR or activation of alternative pathways that

interrupt EGFR–ERK signaling. We found that EGFR is
phosphorylated on one of its major autophosphorylation site
(Tyr 1173) regardless of the dose of oxidant in proximal
tubule cells in vitro (Figure 1a). We then focused our
attention on activation of alternate pathways that may
interrupt EGFR-mediated survival signaling.

We next explored the effects of severe oxidant stress
signaling at post-receptor levels. Aware that reactive oxygen
species activates the JAK/STAT pathway,24,28 we found that
1 mmol/l but not 0.5 mmol/l H2O2 phosphorylated STAT3 at
Tyr 705 in TKPTS cells (Figure 2a, b). Similarly, I/R injury
increased tyrosine phosphorylation of STAT3 in the kidney
(Figure 2c, and d). We also found that tyrosine phosphory-
lation of STAT3 was mediated by both the EGFR and JAK2, as
inhibition of either the EGFR or JAK2 diminished tyrosine
phosphorylation of STAT3 in vitro (Figure 3). Thus,
activation of STAT3 by 1 mmol/l H2O2 requires both the
EGFR and JAK2. Inhibition of JAK2 by AG490 or inhibition
of STAT3 function by Ad-dnSTAT3 reduced cell death caused
by 1 mmol/l H2O2 treatment (Figure 4a, and b), thus
revealing a pro-death role of this pathway in oxidant injury
in these cells.

STAT3 is capable of suppressing the ERK pathway,22,29

although the mechanism of this inhibition is not clear. A
direct role of STAT3 in the inhibition of ERK activation was
revealed in experiments in which inhibition of either JAK2 or
STAT3 increased ERK phosphorylation after treatment with
1 mmol/l H2O2 (Figures 5 and 6). One possibility is that the
tyrosine-phosphorylated STAT3 competes with growth factor
receptor-bound protein 2 for the binding site on the activated
EGFR30 and thus terminates ERK activation. Oxidative stress
can also trigger STAT3-mediated activation of SOCS3,31

which can inhibit EGFR signaling.32 To our knowledge, this is
also the first determination of the pro-death role of the JAK/
STAT pathway in the kidney. The precise mechanism by
which the activated (tyrosine phosphorylated) STAT3
suppresses ERK activation remains to be determined.

Activation of the JAK/STAT pathway following I/R injury
has broad implications. STAT3 can mediate inflammatory
responses as well33 by increasing the expression of tumor
necrosis factor a34 or interleukin-8,35 both of which are
induced during renal I/R36,37 and may contribute to the
pathogenesis of tubular injury. Tumor necrosis factor a is a
known mediator of tubular cell death and plasma or urinary
interleukin-8 levels predict high mortality in patients with
acute renal failure.38,39 Tumor necrosis factor a34 and
interleukin-835 possess a STAT3 binding site in their
promoter proximal region. Thus, activation of STAT3 in
addition to its demonstrated role in suppressing EGFR–ERK
signaling might regulate transcription and secretion of
inflammatory cytokines that could contribute to tubular
epithelial cell death.

In summary, we found that severe oxidant stress leads to
the tyrosine phosphorylation of STAT3. This event depends
on the activation of the EGFR and JAK2 kinase in renal
tubular epithelial cells. The pathway is directly linked to cell
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Figure 5 | Effects of JAK2 inhibition on ERK phosphorylation in
TKPTS cells treated with 1 mmol/l H2O2. (a) TKPTS cells were
treated with 1 mmol/l H2O2 for 2 and 4 h in the presence or absence
of 50 mmol/l AG490. ERK phosphorylation was determined by
Western blotting. Data shown are representatives of three
independent experiments. (b) Densitometric analysis of Western
blots as shown in (a). The extent of ERK phosphorylation was
determined by normalizing phospho-ERK1 levels to the total ERK1.
Values are given as mean7s.d. (n¼ 3). *Po0.05 compared to the
untreated control. #Po0.05 compared to the 1 mmol/l H2O2-treated
cells, @Po0.05 compared to the 1 mmol/l H2O2-treated cells.
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Figure 6 | Effects of STAT3 inhibition on ERK phosphorylation in
TKPTS cells treated with 1 mmol/l H2O2. (a) TKPTS cells were
treated with 1 mmol/l H2O2 for 2 and 4 h in the presence or absence
of a dnSTAT3 adenovirus. ERK phosphorylation was determined
by Western blotting. Data shown are representatives of three
independent experiments. (b) Densitometric analysis of Western
blots as shown in (a). The extent of ERK phosphorylation was
determined by normalizing phospho-ERK1 levels to the total ERK1.
Values are given as mean7s.d. (n¼ 3). *Po0.05 compared to the
untreated control. #Po0.05 compared to the 1 mmol/l H2O2-treated
cells, @Po0.05 compared to the 1 mmol/l H2O2-treated cells.
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death as inhibition of STAT3 function enables cells to survive
severe oxidant stress. Part of the mechanism entails
interruption of ERK activation via an activated EGFR. Thus,
the STAT3 pathway might represent an important new target
to protect proximal tubule cells from oxidant injury. These
results also suggest a dual function for the EGFR (pro-
survival or pro-death) and might explain the death of
proximal tubules in the kidney in the presence of activated
EGFR during I/R injury.

MATERIALS AND METHODS
Cell culture
The immortalized TKPTS cells are gift from Dr Elsa Bello-Reuss.40

They were maintained in Dulbecco’s modified Eagle’s medium:
Ham’s F12 media supplemented with 8% fetal calf serum at 371C
and 5% CO2 atmosphere. Experiments were performed on
logarithmically growing cells (approximately 50–60% confluency).
Cell viability was determined by trypan blue exclusion.

Animal preparation
Male 129Sv mice (6–8 weeks old) were anesthetized with 50 mg/kg
body weight of sodium pentobarbital and a 50 min period of
ischemia was induced by bilateral renal hilum clamping, as
described earlier.20 Sham operation was also performed without
induction of ischemia. The clamps were removed and kidneys were
harvested for Western blotting at various time points after re-
establishing perfusion.

Protein lysates and Western blotting
Monolayers of TKPTS cells were lysed in a radioimmunoprecipita-
tion assay buffer that contained 100 mg/ml phenylmethylsulfonyl
fluoride (Sigma, St Louis, MO, USA), 100 mmol/l sodium
orthovanadate (Sigma, St Louis, MO, USA), and 50ml/ml of
proteinase inhibitor cocktail (Sigma, St Louis, MO, USA) as
described earlier.2 Kidneys were homogenized in the same buffer
as described earlier.2,3,41 Protein content was determined by using a
BioRad Protein Determination assay (BioRad Hercules, CA, USA) as
described earlier.2 Proteins (50–100 mg) from cell lysates were
separated by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis and transferred to a polyvinylidine difluoride membrane
(BioRad, Hercules, CA, USA). The filters were hybridized
with the appropriate primary antibodies followed by a horseradish
peroxidase-conjugated secondary antibody. The bands were
visualized by an enhanced chemiluminescence method (Amersham)
and quantified by densitometry (UnScan-It, Silk Scientific, Ore, UT,
USA).

Adenoviral infection of TKPTS cells
TKPTS cells were grown in six-well-plates and incubated in the
presence of 25 multiplicity of infection/ml adenovirus vector that
contained a dominant-negative STAT3 construct21 for 24 h at 371C
as described earlier.2,3 Total cell lysates from these infected cells were
prepared for later analysis. For survival studies the infected cells
were treated with H2O2 for additional 24 h and cell counts were
determined by trypan blue exclusion. Earlier we determined that the
efficiency of infection was around 80% using a control (Ad-green
fluorescent protein) adenovirus (unpublished data). We also
determined that infection with a control adenovirus (Ad-green
fluorescent protein) did not influence cell survival or activation of
ERK.2,3

Fluorescence-activated cell sorter analysis
Cell cycle analysis was performed by propidium iodide staining as
described earlier.2,41 Briefly, TKPTS cells were collected after
trypsinization and fixed in 70% ethanol overnight. After RNAse
treatment, cells were incubated with 5 mg/ml propidium iodide and
analyzed with a Becton Dickinson FACSCalibur analyzer. The cell
cycle profile was analyzed using the CellQuest software.
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