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The g-difference equations are kind of important problems in g-calculus and applied
mathematics. In this paper, the homotopy analysis method is extended to find approximate solution
for some of g-differential equations. The g-diffusion equation and some examples are analytically
investigated. The series solutions obtained by the proposed method are checked by reducing the
solutions of g-calculus problems to Ai-calculus approximate solutions when ¢ — 1.
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1. Introduction

At the last quarter of 20th century, ¢g-calculus appears connec-
tions between physics and mathematics [1-9]. It has a lot of
applications in different applied science and various mathe-
matical areas, such as statistic physics fractal geometry, combi-
natorics, number theory, orthogonal polynomials, basic
hypergeometric functions, quantum theory and theory of rela-
tivity. The g-differential equations are used to modelling the
linear and nonlinear problems and played an important role
in different fields of engineering and science. Recently, the
semi-analytic techniques have been successfully employed to
solve linear and nonlinear g-difference models, such as the dif-
ferential transformation method [10-12], successive approxi-
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mation method [13,14], variational iteration method [15,16]
and homotopy perturbation method [17] and other methods.
The homotopy analysis method (HAM) [18-27] is one of the
semi-analytical techniques used most often for solving various
differential equations in /-calculus; in this study, the homo-
topy analysis method is extended to solve g-differential equa-
tions. The solutions obtained by the proposed method are
the semi-analytic solutions for the problems in /-calculus for
the parameter ¢ — 1. We describe some definitions and prop-
erties of the ¢g-calculus when 0 < ¢ < 1, let T}, be the timescales.
T, ={q" : m € Z} U{0}. The g-number corresponding to the
ordinary number k is defined as [28],

_qn .

so that k is the limit of [k], as ¢ — 1 and the g-binomial coef-
ficients are defined by:

where [k] ! = [1],[2], ... [K]

g
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Definition 1. The g-derivative of a real continuous function
f(x) is defined as follows [28]:

,, flgx) — f(x)
—_— L X # 1). 3
T =EOE R k%0 ge0) G)
When ¢ — 1 it reduces to the standard derivative
?”Y {x) — f'(x). Using the Definition 1 one can easily see that

the effect of g-derivative on the power function is as follows:

d,
dyx

(x—a) =[k],(x—a)"", (v,acRkeN).

Definition 2. The partial ¢g-derivative of a function f{x;; x,) to
a variable x; is defined by [10]

9y Sgxy; x2) = f(x15X2)

—f(x1; %) = . 4

6qf(x17x2) (q—l)X1 ( )
Definition 3. The ¢-Leibniz rule for a ¢g-derivative of a product
of two functions [10] is

dn ) m m dzf—k o d:
dqim (g(X)f(x)) = ; |: k :| . dqu—kf(qu) dqu g(x)7 (5)
and

dmik dm k
gt/ )| =il G| (6)
where

k m—k [ . k m A ’(’7I)+
aemi(q) =D Y (=1)(1-q) M,,'{ } { _ }
i=0 j=0 P p
(7)

arm-i(q) is exists when i+j—m+k=0 and equal zero
otherwise.

Definition 4. The g-integration is defined as [10]

/ A)dyt = (1 = g)> iqff(qix)- (8)

i=0
2. The homotopy preliminaries

Definition 5. Assume y be a function of homotopy-parameter
p, then

1 9y
[m]q' a‘ipm p=0

Dy (y) = ©)

is called the mth-order g-homotopy derivative of y, where
m > 0 is an integer.

Theorem 1. For homotopy-series y(x,p) = S u(x)p', then

(a) D:('ﬁ) = Un (10)
(b) DZY(]"//) = Ump—1 (11)
where m > 0 is an integer.

Proof.

(a) According to Taylor’s theorem [29,30], the series of  is
1 9y
o1 Logp |,

the Definition 5 of D;”(lp).

given byu,, =

" which given (a) by means of

(b) According to homotopy series Y(x,p) = > 1% u:(x)p',
then
+00 )
Dy (py) = (pzu,p> D’”Zuzp = WDy (),
=0

Dm(pH—l):{l !:fl:+1_m:0
i 0 ifi+l1—-m#0

From (12), DJ'(py) exists when i=m—1 and zero
otherwise, then

D’:(p'wb) = Up-1 O

(12)

Theorem 2. Let L be a linear operator independent of the homo-
topy parameter p. For homotopy series

=3 up. (13)
then D'{;'(LW) = L[DZ1(¢)]

Proof. Since L is independent of p, it holds

Ly = ]Z;[Lui}pi, (14)

taking mth-order g-homotopy derivative on both sides of the
above expression (14) and using Theorem (1a)

LHS=D'Ly) = D’”Z[L w)p* = L(uy,). (15)

RH.S = L[Dif(l//)} = L(uy,). (16)
From Egs. (15) and (16) then D}'(Ly) = L[D;'(y)].

Theorem 3. Let a homotopy-series be

§ Um XZ m

m=0

Y(x,t,p) =

where p € [0, 1], L an auxiliary linear operator independent of p
and uy initial solution. Then

DT (1 *[))L[!//*uo}} :L[um(x7 t) 7mqm Up— l(xv t)]’ (17)

where the operator DZ’(lﬁ) is defined by (9) and y,, is defined by

_{07 m< 1 (18)
=L, ms 1

Proof. Since L is a linear operator independent of p, then

(1 =p)Lly — uo] = LY — py + uop — ug).
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Using Theorems 1 and 2, we have
Dy{(1 = p)L[Y — uol} = Dy{Lly — p + uop — uo]}
= L{D; Y — p¥ + uop — Mo]}
= L[Dy (W) = Dy (py) + uo Dy (p)]

=L {um — Up—1 + UOD;’?(P)}

which equals to L[u,] when m =1, and L[u,, — u,_] when
m > 1, respectively. Thus using the definition (18) of y,, it
holds

D?{(l =D)L — uol} = Ll (X, 1) = fpttm—1(x, 1)]. =

Theorem 4. Let a homotopy-series be

lﬁ = Zum(x7 f)Pm, (]9)

m=0

where p € [0,1], L is an auxiliary linear operator independent of

p, N is a nonlinear operator, uy(x, t) is initial solution, h the con-
trol parameter and H(x,t) an auxiliary function, respectively.
The zeroth-order deformation equation is given by

(1 = p)LY — uo] = phH(x, )N[]. (20)

The corresponding mth-order deformation equation (m = 1)
reads

Lluy(x,1) = spthmr (X, 1)] = RH(x, I)DZF]N[‘//L (21)
where the operator D;’”l is given by (9) and y,, is given by (18 ).

Proof. Using Theorem 3, we have

Dy~H{(1 = )Ll — w]} = Dy~ {phH(x, )N[y]} (22)
According to Theorem 3, it holds
Dyp{ (1 = p) LIy — wol} = Lfttm (%, 1) = spttm-1(x, 1)) (23)

According to Theorem (1b), one has
Dy~ {phH(x, )N[]} = hH(x, t)D)~ {pN[y]}
= hH(x,t)Dy ' {N[y]} (24)

Substituting (23) and (24) into (22), one has the mth-order
deformation equation

Ll (x, 1) = Ztt1 (x, 1)) = RH(x, ) Dy~ N[Y]. O
Theorem 5. For an arbitrary homotopy-series (19), it holds

DZ’ (lpz) = Zak‘m—k((/)um—kuk? (25)
k=0
where ay,«(q) is given by (7) and m = 0 is positive integer.

Proof. According to Definition 5, Theorem (la) and the g-
Leibniz Product Law (5), it holds

AN
D" 2\ q
q (W) [mL]! " -

m 1 » . .

= o (W(x;pg")) Dy ()
[k Nm — k] 01 a

= ak‘m—k(q)ukum—k‘ |
k=0

3. Analysis of method

Consider the nonlinear g-difference equation:

U ve(n-fg ) v o 26)
dqxnr . gl. ’dqx* 7""dqu—h y =Y
with boundary conditions
ou
Blu,— ] =0, r 27
(nge) =0 xer, @)

where B is a boundary operator and I' is boundary of the
domain Q. The Eq. (26) can be written in the form

N[f(x)] =o. (28)

where N is a nonlinear operator, x denotes independent vari-
able, and f(x) is an unknown function. From Eq. (20), we
can construct zeroth-order deformation equation as follows:

m

1 _ q
(I-p) T

W (x,p) = fo(x)] = phH(x)(N[y(x, p))), (29)

where p € [0,1] denotes the so-called embedding parameter.
I # 0 is a control parameter, H(x) is a non-zero auxiliary func-
tion, Y(x,p) is an unknown function and f,(x) is an initial
solution of f(x). It is obvious that when p =0 and p =1,
Eq. (29) becomes

W(X, 0) :ﬁ)(x)>l//(x71) :f(x) (30)

respectively. Thus as p increases from zero to one, the solution
Y(x,p) varies from the initial solution f,(x) to the solution
f(x). The initial solution fy(x) satisfies the conditions (27).
Expanding ¥/(x, p) in the Taylor series [29,30] then

Y(x,p) = fo(x) + D S, (31)
m=1

where

Jl) = D) (32)

To determine the higher order terms f,,(x)(m, 1,2,...) define
the vector

Jilx) = () /1(x), - fi(x)} (33)

From Theorem 4, the so-called mth-order deformation equa-
tion is

dm -
o U3 = 2 () = RHCO R (1 (), (34
where

1O (N, )
m—1 oyt

q

Rm(}m—l(x)) = ) (35)

p=0
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and y,, is given by (18). Now the solution of the mth-order
deformation Eq. (34) for m > 1 when H(x) =1 becomes

f ( ) /mfm l
// / {hRm (fm , \))} d xdqx dyx+co
+eox+F o X!

(36)
where ¢y, ¢y, ...,c,_; are constants and can be calculated by
oy B(wep). 252) . an

8[]17171 ’

=0

Starting by fy(x), we obtain the functions f,,(x) for
m, 1,2, 3,... form Egs. (36) and (37) successively. Accordingly,
the M-th order of approximate solution of the problem (26)
and (27) is given by

M

SX) = Fu(x) =Y £, (x). (38)

m=0

4. Numerical examples

Example 1. Suppose the nonlinear g-difference equation is [15]
in the following form:

TR0 0~ 1= 0, (39)
and

10) = 0. (40)
For q — 1, the problem (39) becomes

%#fz(x)— 1=0, (41)
and has the exact solution

Sf(x) = tanh (x). (42)

Now, apply the homotopy analysis method for the problems
(39) and (40). Choosing the initial solution f(x) = zero, the
mth-order deformation Eq. (36) for m > 1 becomes

100) = b0+ [ R CF o () o (#3)
where ¢y can be calculated by

Jn(0) =0 (44)
and by using Theorems 1 and 5, Rm(}m,l(x)) is defined by

— d m—1
Rm(,fm,1 (x)) = ﬂ m— l
q

(45)

Now giving the solution of mth-order deformation Eq. (43) as
follows:

fl (.’C) = 7hxa
£ =~

+Zakm 1— k /}cfm 1-k — ( Xm)a

P gx

—h(1+ R x4
( Jx 1+q+¢

fi(x) =

fi(x) =R +0)(2-3¢+¢ +2¢* + ¢°)x
(- ¢+ ¢ )
1+q+¢

F(1+7)’(3 - 2¢* +2¢° + 2¢* + ¢°)x°
14+q+¢
Pl = ¢ +¢ +¢°)x°
(Ut g+ P +g+ P+ +q")

Ss(x) = —h(1 + h)*x +

and so on. The analytic approximation solution is given by

S1x) = Fy(x) =Y fu(x) (46)
m=0
and d" f(x)‘ is given by [31]
x=0
d, 4 o Ay
Top| = nw|  =tm ) @)

The value of  must be found. To find the valid region of 7, the

/i curve given by 4 s Fs(x )‘ for different values of ¢ is drawn
X

in Fig. 1, which clearly 1ndlcates that the valid region of 7 is
about —1.5 < < —0.5. Also, it is clear from Fig. 1 that the
value did not change with the value of ¢ that is consistent with
the problem, and from (39) and (40), we find that %‘f(O) =

For ¢ — 1 the g¢-difference Eq. (39) is converted to the ordi-
nary differential Eq. (41). The analytic approximation solution

for the problem (41) when 71 = —1, becomes

X2y
Fy(x)=x——+—+--- 4
ux) =X =g+, (48)

Eq. (48) is consistent with the exact solution (42) for problem
(41). This shows the accuracy of the method used.

Example 2. Suppose the g-analogue of an oscillator equation
[15,16] is in the following form:

P
L f(x) ~ flx) = 0 (49)
and

0)=1 dq =1 50
0) = 7@()6)'\‘:0—7 (50)

and has the exact solution e, which is the g-exponential func-
tion [15,16]. For ¢ — 1, the problem (49) becomes

ﬁ@<mww, (51)

and has the exact solution e*.

Now, applying HAM for the problem (49) and (50). By
choosing the initial solution fy(x) =1+ x, the mth-order
deformation Eq. (36) for m > 1 becomes

f ( ) /mfm 1 / hRm fm 1( )) qux+Co+clx

(52)

10.1016/j.as¢j.2016.02.005
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where ¢y and ¢; can be calculated by
df]
dyx

n(0) =0 ——flx) =0 (53)

x=0

And Ro(fm_1(x)) is defined by

- d
Rou(fin-1(x)) = = Fna (%) = fr 1 (%) (54)
dx
Now giving the solution of mth-order deformation Eq. (52) as

follows:
hx? nx?

becomes, Fy(x) =2 % The limit f(x) = limy o

ZZO)—, = ¢* is an exact solution of (51).

Example 3. Suppose ¢-diffusion equation [10] is in the follow-
ing form:

2

0
i) = 1) (56)

2,
0,1

subjecting to the initial condition

X) = — _ 7 x,0) = e, 57
M= W gt ) frth =4 o7
h(1 + h)x? (1 + ) Eq. (56) al}gws the g-exponential (.iistribution which describes
flx) =— 1+ - 0+9(0+q+49) a non-equilibrium system. Applying HAM for the problem
q 2 1 aTq (56) and (57) using the initial solution f,(x, r) = ¢;, the mth-
+ . x'h order deformation Eq. (36) for m > 1 becomes
(I+q)(1+¢)(1+q+¢%)
+ XShz fm(x7 I) :mem—l(x7 t) +/hRm(fm—l(x7 l‘))dql+60 (58)
1+’ +A) 0 +a+ @)1 +q+E+¢ +4¢*)
£ X2(1 + k)’ X1+ h)? 2x*R(1 + h) 25K (1 + h)
X)) = — _
- I+g  (+9U+9+¢) (1+9°(1+¢)(1+q+¢) 1+ ’01+PAU+q+PA)1+q+P+¢ +4q)

3
X7

1+ @' (1 +a+¢)(1+24 + ¢ +2¢* +¢° +2¢° + ¢¥)

X

1+q 1+ 1—g+ AN +q+ A1 +q+ P+ +a)1+q+ ¢+ +¢* + ¢ +q°)

and so on. The analytic approximation solution is given by
(38). A proper value of & must be found. To find the valid

2
d,

region of 7, the /i curve given by Fs(x) for ¢ :% and
=0

a'qx2 N
q — 1 is drawn in Fig. 2, which clearly indicates that the valid
region of 7 is about —1.5 < / < —0.5. When 71 = —1, the ana-

lytic approximation solution becomes

2

Fy(x)=1+x+ A al
e T+ (1+9(+g+¢)

4

3

X
Jr
1+’ (1+A) (1 +q+ )
xS
+ 2
I+¢) 1+ +qg+@)(1+q+¢+¢ +q)
J’_...’
X x? X3 x* X3 M
Fy(x) =1+ d—— 4 ... =)
. [, 2B e b ,.Z;[z}q!

55)

When f(x) = limy .. Fu(x) = ¢, is an exact solution of (49).
The same result can be obtained by using the variational iter-
ation method [15,16]. For ¢ — 1,[] =1, then Eq. (55)

where ¢y can be calculated by

Su(x,0) =0 (59)
and

- 9, %
R(fn1 (3, 0) = 55 fa (650) = 55 o1 (36,1) (60)

The solutions of mth-order deformation Eq. (58) are as
follows:

Si(x 1) = —e;ih,

21
flwn) =g (<140 + ).

, 200 (1+ 1) £n
L0 =ef | —rh(1+7)? - ’
f3(x,0) eq( (1) + 1+g¢ (1+q)(1+(1+112))

3P (1+ 1)
Silx,0) =¢; <th(1 +h) + 1(+ p L _

385 (1 + h)
(I+q)(1+qg+4¢%)

“nt
TR TR +q+q2))
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d, F5(0)
a d, x

1.4}
12f
Lo}

0.8F

d, F5 (0)

d, x

1.4
1.2F
1.0

0.8F

\ [

Figure 1

d,* Fg (0)

a -
d_l xz
2

1.0 F

_ 1
4=
L h
-2.0 -1.5 -1.0 -0.5
Fg"'(0)
b 1.0 F
q-1
. . . i
-2.0 -1.5 -1.0 -0.5

Figure 2 7-curves of d:,l,iz Fe(x) for different values of q of

Example 2. =0

d, Fs5(0)

d, x

14

1.2

h-curves of%Fs for different values of q of Example 1.
X" =0

and so on. The analytic approximation solution is

S X X X t2h2
Fy(x, 1) = ;fm(x, )=e; —ejth+e, (flﬁ(l +h)+ ] +q)

242
+e;<fth(1 Ly 2R

1+g¢
A )
+ e 61
(I+q)(1+q+4%) (6D
For i = —1, Eq. (61) becomes
2 i

t
Fyx,t)y=e'[1+1+ +
(1) < R G g

I4
+ +
1+’ +A)(1+q+¢)

—e"<1+t+lz+t3+t4+ )
‘ M) Lt B ML

M i

= BJZ [[ ] (62)

=0 i}q'

The limit f(x, £) = limy—.oo Fur(x, £) = €;¢} is an exact solution
of (56). The same result can be obtained by using the ¢-
differential transform [10].

5. Conclusion

In this study, the homotopy analysis method is successfully
extended to g¢-differential equations. The ¢-diffusion equation
and some examples are analytically investigated to show the

10.1016/j.as¢j.2016.02.005
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efficiency and the importance of the proposed method. The
results demonstrate reliability and efficiency of the algorithm
developed.
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