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SUMMARY

Intestinal gluconeogenesis is involved in the control
of food intake. We show that mu-opioid receptors
(MORs) present in nerves in the portal vein walls
respond to peptides to regulate a gut-brain neural
circuit that controls intestinal gluconeogenesis and
satiety. In vitro, peptides and protein digests behave
as MOR antagonists in competition experiments.
In vivo, they stimulate MOR-dependent induction
of intestinal gluconeogenesis via activation of
brain areas receiving inputs from gastrointestinal
ascending nerves. MOR-knockout mice do not carry
out intestinal gluconeogenesis in response to
peptides and are insensitive to the satiety effect
induced by protein-enriched diets. Portal infusions
of MOR modulators have no effect on food intake in
mice deficient for intestinal gluconeogenesis. Thus,
the regulation of portal MORs by peptides triggering
signals to and from the brain to induce intestinal
gluconeogenesis are links in the satiety phenomenon
associated with alimentary protein assimilation.

INTRODUCTION

Given the worldwide increase in cases of obesity and associated

illnesses such as type 2 diabetes, the scientific community has

been urged to improve our understanding of the mechanisms

underlying energy homeostasis. An increasingly important area

of investigation involves the hormonal signals that the gut

produces in response to nutrient assimilation and that modulate

hunger, such as cholecystokinin (CCK), glucagon-like peptide 1,

and peptide YY (Gibbs et al., 1976; Morley et al., 1983; Turton

et al., 1996). In particular, the enteric neural system plays a key

role in sensing and transmitting signals to the brain (Berthoud,

2004; Moran, 2000; Vahl et al., 2007).
Intestinal gluconeogenesis is a newly described process

(Croset et al., 2001; Mithieux et al., 2004a; Mithieux et al.,

2004b; Rajas et al., 1999; Rajas et al., 2000) that influences the

control of glucose and energy homeostasis in the fed postab-

sorptive state (for review see Mithieux, 2009). The induction of

intestinal gluconeogenesis translates into a release of glucose

in the portal vein, which collects blood from the whole gut. Its

detection by a portal glucose sensor and the transmission of

this signal to the brain by the peripheral neural system initiate

a decrease in hunger and an improvement in the insulin sensi-

tivity of hepatic glucose production. This above all takes

place in two particular nutritional situations, i.e., feeding with

a protein-enriched diet (PED) (Mithieux et al., 2005; Pillot et al.,

2009) and after gastric bypass surgery (Troy et al., 2008). The

role played by intestinal gluconeogenesis in the satiety initiated

by PED has been confirmed recently. Indeed, mice with an

intestinal-specific knockout of the catalytic subunit (G6PC) of

glucose-6 phosphatase (G6Pase, the essential enzyme of gluco-

neogenesis) proved insensitive to PED-induced satiety (Penhoat

et al., 2011).

A long-known and intriguing property of proteins is that

a number of them, especially those involved in human nutrition

such as caseins from milk, release oligopeptides exhibiting

m-opioid activity in vitro upon partial proteolytic digestion (Ziou-

drou et al., 1979). Moreover, the literature on the subject

mentions the m-opioid activity of various oligopeptides, of which

the minimal structure required is a dipeptide (Capasso et al.,

1997; Moritoki et al., 1984; Schiller et al., 2002; Shiomi et al.,

1981). It is also known that the modulation of m-opioid receptors

(MORs) can interfere with the control of food intake. Agonists

enhance food intake, whereas antagonists inhibit it (see the

review by Yeomans and Gray, 2002). Interestingly, MORs are

most widely expressed in two organs of the body: the brain,

especially in the regions implicated in the control of food intake

and reward-driven appetite (Ding et al., 1996; George et al.,

1994;Will et al., 2003), and the small intestine, where they control

gut motility, including bowel movements (Hedner and Cassuto,

1987; Sternini, 2001; Sternini et al., 2004). Food proteins are
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absorbed from the intestinal lumen after incomplete proteolysis.

It has been hypothesized that food proteins (e.g., caseins) might

exert a systemic signaling role via their proteolytic digests with

m-opioid activity (Meisel and FitzGerald, 2000; Zioudrou et al.,

1979). However, that the latter might reach the brain following

oral ingestion seems questionable. Indeed, b-casomorphin 1-7

(b1-7), an MOR agonist released by the digestion of b-casein,

is degraded by the liver (Kreil et al., 1983) and is not detected

in systemic blood after the ingestion of milk or dairy products

(Teschemacher et al., 1986). Alternatively, MOR modulators

from an alimentary origin might act at a gastrointestinal or

mesenteric portal site (Holzer, 2009; Meisel and FitzGerald,

2000). In line with this rationale, naloxone (Nalox), a chemical

MOR antagonist that is actively degraded by the liver (Green-

wood-Van Meerveld et al., 2004; Reimer et al., 2009), can

suppress food intake when given orally in humans (Yeomans

and Gray, 2002). This suggests that the drug might modulate

hunger sensations from a gastrointestinal site.

In this work, we first use intraportal infusions of MOR agonists

and antagonists to establish that MORs present at a portal site

initiate a gut-brain neural circuit of intestinal gluconeogenesis

regulation. Then, we demonstrate that alimentary proteins act

at this gastrointestinal site to induce gut gluconeogenesis-

dependent satiety via the MOR antagonist properties of their

oligopeptide digests.

RESULTS

Portal MORs Regulate Intestinal Gluconeogenesis
via a Gut-Brain Neural Circuit
To elucidate the role of the portal neural system in the induction

of intestinal gluconeogenesis gene expression by food protein,

we initially studied the effect of a PED in rats after periportal

treatment by capsaicin, a drug that inactivates afferent nerves.

Interestingly, there was no induction of either G6Pase activity

or PEPCK-C (phosphoenolpyruvate carboxykinase-cytoplasmic

form) protein expression in capsaicin-treated rats fed on a PED,

unlike what occurred in sham-operated rats in which strong

induction was observed (Figures S1A and S1B, available online).

We studied the abundance of neuronal fibers, visualized via the

presence of the neuronal marker PGP9.5, around the portal vein

walls after capsaicin treatment. In agreement with the observa-

tion that portal nerves are mainly composed of afferents

(Berthoud, 2004), the number of neuronal fibers was dramatically

reduced after administration of the drug (Figure S1C). This

confirmed the suppression of the afferents by the drug. Then,

to test the putative role of MORs in this induction, we infused

MOR-regulators in conscious rats with a catheter implanted in

a mesenteric vein, as described previously (Mithieux et al.,

2005). Three infusion rates were studied. The intermediate rate

approximately matched (on a 1:1 molar basis) the appearance

of b1-7 from a protein-enriched meal representative of the PED

used above. It is noteworthy that both b1-7 and a selective

MOR agonist D-Ala2, N3-Me-Phe4, Gly5-ol (DAMGO) signifi-

cantly suppressed intestinal G6Pase activity after an 8 hr infusion

(Figure 1A). On the contrary, both Casoxin C (CasoC), an MOR

antagonist stemming from kappa-casein (Chiba et al., 1989)

and Nalox markedly enhanced G6Pase activity (Figure 1A).
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Comparable results were obtained for the expression of the

PEPCK-C protein (Figure 1B). When a metabolic glucose tracer

(tritiated on carbon 3) was associated with the Nalox infusion

at the end of the experiment, there was a decrease in 3[3H]

glucose-specific activity in the portal vein compared to that in

artery (Figure 1C). This revealed that newly synthesized unla-

beled glucose had been released in the blood by the intestine.

Intestinal glucose production (IGP) represented 25%–30% of

total endogenous glucose production (EGP) after the infusion

of Nalox (Figure 1C). IGP was sufficient to counterbalance intes-

tinal glucose uptake (IGU), so no lowering of plasma glucosewas

observed in the portal vein (Figure 1C). We previously showed

that this is sufficient to initiate portal glucose sensing and

suppression of food intake (Mithieux et al., 2005; Troy et al.,

2008). On the contrary, no such appearance of unlabeled

glucose was observed in rats infused with DAMGO (Figure 1C).

In this case, there was no decrease in the 3[3H]glucose-specific

activity and the level of plasma glucose was lower in the

portal vein compared to that in the artery (Figure 1C), reflecting

glucose utilization by the gut. It must be noted that we did not

determine IGP after infusion of saline. Because of the low accu-

racy of the tracer dilution method (this is a weakness of this

approach), the flux of glucose released by the intestine under

basal condition is hardly distinguishable from nil (see e.g.,

Mithieux et al., 2005; Pillot et al., 2009 for discussion of this

point). In agreement with what could be expected from the effect

of MOR effectors on intestinal gluconeogenesis, rats infused

with MOR antagonist (CasoC) in the portal vein exhibited

decreased food intake, whereas those infused withMOR agonist

(b1-7) exhibited increased food intake (Figure S1D).

We used three approaches to further determine the role played

by portal MORs. Immunohistochemical studies using the

neuronal marker PGP9.5 (Figure 2A, in red) revealed the pres-

ence of neuronal fibers in the walls of the portal vein both in

rats (Figure 2A) and inmice (not shown). In addition, the presence

of MOR-1 (green fluorescence) was also detected in close

vicinity to the portal vein (Figure 2A). Merging both fluorescence

channels (Figure 2A, in yellow) revealed close colocalization of

both proteins in certain neuronal structures. Interestingly, we

observed comparable colocalization of MOR-1 and PGP9.5 in

the portal branches irrigating the portal spaces of the human liver

(Figure 2A). Furthermore, the presence of MOR-1 within the

portal vein walls was confirmed by western blot (Figure 2B). In

contrast, MOR-1 was not detected in the ileum of MOR-KO

mice,which confirmed the specificity of the detection (Figure 2B).

Then, we studied the effect of b1-7 and CasoC separately on

intestinal gluconeogenesis gene expression in capsaicin-treated

rats. There was no effect of either effector on gluconeogenic

enzymes in rats with portal denervation (Figure S1E), strongly

suggesting that the periportal neural system is crucial for the

transmission of the MOR-signal. Lastly, we evaluated the impact

of b1-7 and Nalox on the regions of the brain implicated in the

reception of the signals from the portal area. This is linked to

the dorsal vagal complex (DVC), which is the main receiver of

inputs from the vagus nerve, and to the parabrachial nucleus

(PBN), which mainly receives afferents from the spinal cord (for

a review see Berthoud, 2004). Using immunohistochemistry,

we studied the expression of the immediate-early gene protein
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Figure 1. Effect of Portal Infusion of MOR Effectors on Gut Gluconeogenesis in Rats

(A and B) The rats (fed on an SED) were infused via the portal vein with saline or MOR effectors at the indicated rates, for 8 hr. (A) G6Pase activity. (B) PEPCK-C

protein amount estimated by western blot. The data are expressed as the means ± SEM of six to eight rats per group. *, different from saline infusion, p < 0.05

(Tukey’s post hoc test).

(C) EGP and intestinal glucose fluxes were determined after portal infusions of metabolites (8.33 10�6mmol/kg/min). The results are themeans ±SEM of five rats

per group. aDifferent from value in artery, p < 0.05, Student’s two tailed test for paired values. bDifferent from DAMGO, p < 0.05, one-way ANOVA followed by

Tukey’s post hoc test.

See also Figure S1.
product C-FOS, a well-recognized marker of neuronal activation

(Bullitt, 1990; Sagar et al., 1988). The portal infusion of b1-7 did

not elicit significant C-FOS activation in any of these regions,

compared to saline infusion (Figures 3 and S2). On the contrary,

Nalox infusion caused a 2- to -3-fold induction of C-FOS in the

DVC, i.e., the area postrema (AP) and the nucleus of the tractus

solitaris (NTS), and in the PBN (Figures 3 and S2). Interestingly,

no activation took place in any of these nuclei in rats whose

portal vein had been treated by capsaicin at the time of surgery

for catheter implantation (Figures 3 and S2). A very similar

pattern of C-FOS activation (and of denervation effect) took

place in the main hypothalamic regions, where neurons are pro-

jected from the NTS, notably the paraventricular nucleus (PVN),

the lateral hypothalamus (LH) and the arcuate nucleus (ARC)
(Figure S2). In the same manner, C-FOS activation occurred in

the periaqueductal gray (PAG), a nucleus receiving inputs from

the PBN, following Nalox infusion, whereas activation did not

take place in this nucleus in capsaicin-denervated rats (Fig-

ure S2). When surgical disruption of the common hepatic branch

of vagus was performed instead of capsaicin denervation,

C-FOS activation induced by Nalox was cancelled in the NTS

and in the downstream PVN but was still present in the PBN

and in the PAG (Figure S3).

Proteolytic Digests and Oligopeptides Exhibit MOR
Antagonist Properties
When rats were previously fed on a PED for 3 days, there was

a marked increase in amounts of G6PC and PEPCK-C protein
Cell 150, 377–388, July 20, 2012 ª2012 Elsevier Inc. 379
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Figure 2. Presence of MORs within theWalls of the

Portal Veins in Rats and Humans

(A) MORs (green, left) colocalized with specific neuronal

marker ubiquitin carboxy-terminal hydrolase PGP9.5

(red, middle) in the walls of the portal vein of both rats and

humans. Right: merged images. The arrows point out

the neural fibers innervating the wall of the portal vein. The

arrowheads point out nerve bundles in the vicinity of the

portal vein. Bottom:, MOR was visualized in the Auer-

bach’s plexus (the nervous system innervating the

muscular layers of the intestinal wall, which controls

motility) as a positive control. White bar: 50 mm in portal

veins, 25 mm in the Auerbach’s plexus. The data shown are

representative of portal veins from three rats and portal

branches from four different human samples.

(B) Western blot analysis of the presence of MOR-1 in the

ileum and the portal vein of rats and its absence in the

ileum of MOR-KO mice as a control of specificity.
(compare Figure 4 and Figures 1A and 1B). Infusing MOR

agonists in the portal vein of PED-fed rats reversed increases

of G6PC and PEPCK-C protein. On the contrary, no additional

induction effect took place when infusing MOR antagonists

(Figure 4). The same pattern was observed with a PED contain-

ing a mixture of milk caseins (which might possibly release b1-7

or CasoC into the blood) (Figure 4), or with a PED from plant

proteins (i.e., soy, which did not contain these moieties) (Fig-

ure S4). This suggests that MOR antagonists and PED from

any origin could induce intestinal gluconeogenesis gene expres-

sion via the same mechanistic pathway.

To document the above assumption, we combined several

approaches. First, we infused a proteolytic digest (peptones)

and selected oligopeptides (di- or tripeptides) separately into

the mesenteric-portal vein of rats. The following structures

were selected to match the di- or tripeptides with or without

a lateral chain (Tyr-Ala and Gly-Gly, respectively) or with an

electric charge in the lateral chain (Phe-Pro-Arg). In all cases,

a marked induction of G6Pase was observed in both the jejunum

(Figure 5A) and the ileum, a gut portion of weaker G6Pase activity

in the basal state, but inducible in the case of PED feeding

(Mithieux et al., 2005) (Figure 5B). In Figure 5, peptones were

from amixture of caseins. However, peptones frommeat protein

had the same effect (not shown). In addition, glucose tracer dilu-

tion studies revealed that IGP took place after the portal infusion

of Tyr-Ala and peptones separately (Figure 1C). Finally, as

observed previously for MOR antagonists (Figure S1), no induc-

tion of G6Pase by oligopeptides took place in rats with capsaicin

denervation of the periportal area (Figure 5). Second, in rats

infused with Tyr-Ala, there was a 3-fold increase in C-FOS

expression in the DVC (Figures 3B and 3G) and in the hypothal-

amus, the PBN and the PAG (Figure S2), just like the rats infused

with Nalox. Furthermore, no increase in C-FOS took place after
380 Cell 150, 377–388, July 20, 2012 ª2012 Elsevier Inc.
inactivation of portal afferents (Figures 3B, 3H,

and S2). Third, we tested whether or not oligo-

peptides could behave as MOR antagonists in

a neuroblastoma cell constitutively expressing

MOR (Lorentz et al., 1988; Yang et al., 2000).

(1) We checked that labeled (tritiated) DAMGO
bound to N1E-115 cells and that unlabeled DAMGO competed

for binding with a 50% inhibitory concentration (IC50) of about

10�7M, thus confirming previous results (Zhang et al., 2006).

Then, we showed that Tyr-Ala and Gly-Gly competed for the

binding of tritiated DAMGO with IC50 means of 3.10�6M and

9.10�7M, respectively. Peptones also competed efficiently with

tritiated DAMGO (data not shown). (2) We studied the effect of

oligopeptides on the coupling of MOR to adenylate cyclase in

the same cells. Concomitant with the fact that MOR is coupled

via G-protein-inhibiting adenylate cyclase, the agonist DAMGO

strongly decreased cell cAMP content (Figure S5). On the

contrary, the antagonists CasoC and Nalox dramatically

increased cell cAMP content. This is in keeping with a previous

observation: an endogenous activity of MOR may exist,

constantly depressing the cAMP level even in the absence of

an agonist. This endogenous activity may be eliminated on

antagonist binding, thus promoting an increase of cAMP (Kotz

et al., 2000). It is noteworthy that all oligopeptides increased

the cAMP content and could prevent the decrease of DAMGO-

induced cAMP in coincubation experiments (Figure S5). This

strongly suggests that oligopeptides exhibited MOR antagonist

properties.

MOR-Dependent Induction of Intestinal
Gluconeogenesis Is a Causal Link in the Satiety Effects
of Food Proteins
To demonstrate the causal role of MORs in the protein-digest-

dependent induction of intestinal gluconeogenesis and its

role in associated satiety, we performed experiments of portal

infusion on mice with deletion of Mor (MOR-knockout) and

on mice with intestine-specific deletion of G6Pase (I-G6pc-

knockout, G6PC being the catalytic subunit of G6Pase). There

was a slight basal induction of gluconeogenic enzymes in
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Figure 3. Effect of Portal Infusion of MOR Agonists and Antagonists on C-FOS Expression in the Dorsal Vagal Complex of Rats

(A, C, E and G) C-FOS immunoreactive cells in the DVC of rats infused via the portal vein with saline only (A), b1-7 (C), Nalox (E), and Tyr-Ala (G) (at a rate of

8.3.10�6 mmol/kg/min).

(B) Quantification of C-FOS neurons in all areas of the DVC: saline (white bar), b1-7 (black bar), Nalox (gray bar). Open bars: sham-treated rats; dashed bars:

capsaicin-treated rats. Data are expressed as means ± SEM (n = 3) of immunoreactive cells per brain hemisphere. The values with different letters differed

significantly (p < 0.05, Kruskal-Wallis nonparametric test, followed by Dunn’s post hoc test).

(D, F, and H) Comparable infusions of b1-7 (D), Nalox (F) and Tyr-Ala (H) in rats previously treated by capsaicin around the portal vein.

Scale bar: 200 mm. The following abbreviations are used: AP, area postrema; NTS, nucleus of the solitary tract; dmnX, dorsal motor nucleus of the vagus. See also

Figures S2 and S3.
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Figure 5. Effect of Oligopeptides and Protein Digests on G6Pase

Enzyme Expression in the Rat Intestine

Rats with portal catheters (fed on SED) were infused for 8 hr with the indicated

metabolites at the indicated rates. The rate of infusion of peptones was

calculated to match the rate of appearance of protein digests derived from the

assimilation of an SED (low dose) or PED (high dose). The shaded bars refer to

experiments in rats treated locally with capsaicin around the portal vein.

(A) Glc6Pase activity in jejunum.

(B) Comparable determinations performed in a distal ileum segment. The data

are the means ± SEM (n = 6). Statistics are as described in the legend of

Figure 1.

See also Figure S5.
MOR-KO mice (Figures S6A and S6B). Again, this is in line with

the basal tone of MORs in wild-type (WT) mice (see above),

which would not exist in MOR-KO mice. When infused in WT
382 Cell 150, 377–388, July 20, 2012 ª2012 Elsevier Inc.
mice, di- and tripeptides and peptones induced G6Pase activity

in the jejunum (Figure 6A). On the contrary, DAMGO suppressed

G6Pase activity, and this was inversed by peptones in coinfusion

experiments (Figure 6A). It is noteworthy that none of these

effectors induced any effect on gut gluconeogenesis in MOR-

KO mice (Figure 6B). Furthermore, we studied food intake in

MOR-KO and WT mice after a switch from starch-enriched diet

(SED) to PED. Food intake per day for both groups was not

different with SED. After a transient drop, a classic response to
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(B) Comparable experiments performed on MOR-KO mice.

(C) Food intake was monitored each day during the first period of feeding SED to WT (open circles) and MOR-KO (gray squares) mice. At day 0, the mice were

switched to PED and food intake wasmonitored for a further 2 weeks. The data are expressed as themeans ±SEM of eight mice per group. The error bars are not
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See also Figure S6.
changes in food type in rodents, food intake was reduced by

about 20% in WT mice fed with a PED. On the contrary, MOR-

KO mice resumed their previous food intake (Figure 6C). It is

noteworthy that this insensitivity to PED was linked to an

absence of modulation of intestinal G6Pase. This highlights

a dramatic difference from the induction effect shown in WT

mice (Figure S6C). Lastly, we studied the food intake in WT

and I-G6pc-KO mice infused with an MOR antagonist via the

portal vein. There was a 15% decrease in the amount of food

ingested in WT mice infused with Nalox (Figure 6D), i.e., mice

exhibiting increased intestinal gluconeogenesis (Figure 6A). In

contrast, no effect was observed upon the infusion of Nalox

in I-G6pc-KO mice, i.e., in the absence of intestinal gluconeo-

genesis (Figure 6D). Comparable results were obtained when

Tyr-Ala was infused instead of Nalox (13% decrease in the

amount of food ingested in WT mice, no diminution in I-G6pc-

KO mice). Taken together, these data strongly suggest that

MOR-mediated intestinal gluconeogenesis and MOR-mediated

modulation of hunger are closely linked phenomena, which
may account for the satiety effect of food protein following their

assimilation.

DISCUSSION

By combining infusions of MOR effectors in the portal vein in

conscious rats and experiments of denervation of the portal

vein walls, we demonstrate that MORs associated with portal

neuronal fibers initiate a gut-brain neural circuit of induction of

intestinal gluconeogenesis, a function controlling food intake

(Mithieux et al., 2005). An infusion into the gut lumenwould better

mimick the in vivo appearance of protein digests. However, the

flux of native peptide metabolites is difficult to monitor from

the gut lumen due to its high protease content. The neural

system immediately surrounding the intestinal mucosa is by-

passed under the experimental conditions of portal infusion.

Therefore, even if infused metabolites are sensed in the portal

area under the experimental conditions studied here, it cannot

be excluded that MOR-dependent sensing may also, under
Cell 150, 377–388, July 20, 2012 ª2012 Elsevier Inc. 383



physiological conditions, take place upstream in the neural

system surrounding the gut mucosa or in the gut muscular layer

(Hedner and Cassuto, 1987; Sternini, 2001).

Neural afferents traveling along the ventral trunk of the vagus

nerve are likely to be involved in the transmission of the MOR

signal to the brain. In support of this view, the activation of

both the NTS and hypothalamus induced by MOR antagonists

(revealed by C-FOS expression) is suppressed either by capsa-

icin treatment or by surgical vagotomy. However, the signals

conveyed via the spinal cord, i.e., spino-mesencephalic route

(PBN and PAG), are likely to be involved as well. In agreement

with this assumption, both the PBN and the PAG, which connect

afferents from the spinal cord, are activated via portal MOR

antagonists. Moreover, the activation in these nuclei is sup-

pressed via periportal treatment by capsaicin (a treatment that

ablates the afferents of either route) and not by surgical

vagotomy (a treatment that preserves the spinal afferents). Inter-

estingly, the NTS, hypothalamus, and spino-mesencephalic

pathways are all known to be involved in the control of energy

homeostasis (see Berthoud, 2004 for a review).

It is established that proteins are partially digested within the

gut lumen to oligopeptide moieties mainly composed of di- or tri-

peptides (Daniel, 2004). These oligopeptides are then trans-

ported within enterocytes by means of a specific transporter

(PepT1) of the luminal membrane (Boll et al., 1994; Nielsen and

Brodin, 2003). A fraction undergoes further proteolysis to amino

acids to feed the intestinal amino acid pool. Another fraction is

released into the portal blood, together with amino acids, via

specific oligopeptide and amino acid transporters located at

the basolateral membrane (Lee, 2000). A number of proteins

have been shown to release proteolytic digests with m-opioid

activity (see above). However, the assumption that any food

protein could induce intestinal gluconeogenesis via a MOR-

dependent pathway implied that the proteolytic digests or

peptides of any protein origin could exhibit MOR antagonist

activity. This inference is strongly supported by the observation

herein that peptides, either alone or in mixture (peptones),

behave asMOR antagonists both in vivo to induce gut gluconeo-

genesis and in vitro in experiments of coupling to adenylate

cyclase. The absence of these regulations in MOR-KO mice

and their insensitivity to PED feeding, along with the incapacity

of MOR antagonists tomodulate food intake inmice with ablated

intestinal gluconeogenesis, together confirm a causal link

between MOR antagonism by oligopeptides and the satiety

effect induced by food protein.

These findings may appear difficult to reconcile with the liter-

ature reporting that oligopeptides and food protein digests could

behave as either MOR agonists or MOR antagonists (Capasso

et al., 1997; Moritoki et al., 1984; Schiller et al., 2002; Shiomi

et al., 1981, Zioudrou et al., 1979). However, following ligand-

receptor interaction, various MOR-initiated cellular processes

occur, such as receptor internalization, intracellular sorting and

recycling (Böhm et al., 1997; Sternini et al., 2000). This results

in complex adaptations including receptor downregulation,

desensitization, and resensitization, depending on the concen-

tration of the ligand and on the time of exposure. These cumula-

tive phenomena make the resulting downstream effects of

MOR-modulators (i.e., agonist-like or antagonist-like) almost
384 Cell 150, 377–388, July 20, 2012 ª2012 Elsevier Inc.
unpredictable (for a review see Taylor and Fleming, 2001). Alto-

gether, this probably accounts for some of the inconsistent

results published in the field and may also explain, at least

partially, why the different metabolites studied herein did not

always elicit clear dose-dependent effects (see e.g., Figure 1

or Figure 5). In addition, the Mor gene family is highly complex

and includes multiple splice variants and various promoters, de-

pending on its expression site (Pan, 2005). These splice variants

may be functionally distinct, regarding their regulation by various

agonists or antagonists, or depending on their location (Pan,

2005; Pasternak et al., 2004). Therefore it is possible that the

general antagonist behavior of peptides and protein hydroly-

sates revealed here is a specific feature of MORs expressed in

the mesenteric-portal system.

Another intriguing question relates to the complexity of the

sequence of events, which allows the alimentary protein to exert

their satiety end-point action. Indeed, a number of known

factors, e.g., intestinal hormones, arise from the gut driven by

the meal and are assumed to affect food intake by binding their

receptors directly in the hypothalamus. These are rapidly acting

mechanisms. In the case of food proteins, a series of events initi-

ates the gluconeogenesis gene program in the intestine, via

a reflex arc with the brain. This is progressive and takes place

over the postprandial period (Figure 7). After that, the glucose

released may initiate its central action via portal-sensing driven

mechanisms (Mithieux et al., 2005). This is a lasting phenomenon

because it depends on gene induction and thusmay endure after

food assimilation. This is in line with the fact that protein feeding

decreases hunger some time from the preceding meal, which is

the definition of the phenomenon called ‘‘satiety’’ (Booth et al.,

1970; Rolls et al., 1988). This might explain why protein feeding

decreases food intake in the long term, i.e., for several days or

weeks (Jean et al., 2001; Mithieux et al., 2005; Penhoat et al.,

2011). Hence, advantages exist in terms of reduction of body

weight and adipose tissue mass (Jean et al., 2001, Mithieux

et al., 2005). On the contrary, rodents treated before meals

with the satiation hormone CCK, which is involved in the meal

termination, do not reduce their global food intake. Indeed,

they compensate the CCK-initiated decrease of meal size by

increasing the number of meals per day (West et al., 1984). To

evaluate the long-term potential effect of MOR modulators,

lasting portal infusion experiments would have been of interest.

It is likely that benefits on the adipose tissue mass and body

weight would be similar to those observed with protein feeding.

Unfortunately, technical problems (portal catheters blocked or

pulled out) are very frequent after a few days, making such

experiments infeasible.

In conclusion, we report that MORs expressed in the mesen-

teric-portal area control a gut-brain neural circuit of regulation

of intestinal gluconeogenesis. The latter controls food intake

(Mithieux et al., 2005; Penhoat et al., 2011, Troy et al., 2008).

The regulatory role of MORs in the control of food intake has

been largely documented for the central nervous system, related

to their roles in the so-called ‘‘reward’’ system (Glass et al., 1999;

Shin et al., 2010). Here, we report that MORs play a role in medi-

ating the satiety effects of alimentary proteins, acting within

a neural gut-brain circuit (Figure 7). Remarkably, various m-opioid

antagonists given orally decrease hunger in humans (Yeomans
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2005).
and Gray, 2002), despite the fact that they do not reach the brain

due to extensive first-pass hepatic metabolism (Reimer et al.,

2009). Gastric bypass, an increasingly popular surgical opera-

tion treating morbid obesity, promotes a dramatic reduction

of hunger sensation in a few days. This is true in obese mice

(Troy et al., 2008) and in obese humans (for a review see Thaler

and Cummings, 2009). Although intestinal gluconeogenesis was

revealed to be involved in the decreased food intake after gastric

bypass in mice (Troy et al., 2008), a net portal release of glucose

under postabsorptive conditions has been observed several

days after gastric bypass in nondiabetic obese patients (Hayes

et al., 2011). This suggests that intestinal gluconeogenesis could

be sufficient to compensate and even surpass gut glucose utili-

zation. As MOR-positive neural fibers are present in the wall of

the human portal vein branches (Figure 2A), the mechanisms

uncovered here may also take place in humans. This knowledge

may thus pave the way for future approaches in the treatment

and/or prevention of metabolic diseases.

EXPERIMENTAL PROCEDURES

Animals and Tissue Sampling

Adult male Sprague-Dawley rats (Charles River), aged 6 to 8weeks and weigh-

ing 260–280 g at the time of their arrival, were housed in a climate-controlled

room (22 ± 2�C) subjected to a 12 hr light/dark cycle with lights on at

7:00 AM and lights off at 7:00 PM, with free access to water and an SED
diet. Mice were housed under similar conditions. A colony of MOR-KO mice

(Jackson Laboratories) was generated in our facilities from two couples of

mice. I-G6pc-KO mice were described previously (Penhoat et al., 2011). The

experiments were performed 5 weeks after gene deletion. PED composition

was based on SED (SAFE A04, France), with a modification of starch-glucose:

protein ratio from 50:23 to 23:50 (weight basis). Proteins were an equimolar

ratio of soy proteins and casein. However, soy proteins were used for only

a few experiments. The intestine was sampled as described previously

(Mithieux et al., 2004a). Enzyme expression analyses were performed in prox-

imal jejunum in all but a few experiments (Figure 5B). Glc6Pase activity was

assayed under conditions of maximal velocity. All procedures were described

in detail previously (Mithieux et al., 2004a; Rajas et al., 1999).

Studies in Conscious Animals

Animals were anesthetizedwith 2% isoflurane. A catheter was implanted in the

inferior left mesenteric vein after laparotomy and secured with biological glue.

A passage under the skin up to the neck was done to recover the other end of

the catheter, which was secured with a Dacron mesh button tether (Harvard

apparatus). The procedure to implant a portal catheter (PE10, Fine-Bore

Polyethylene Tubing, SmithsMedical) inWT and I-G6pc-KOmice was compa-

rable. In rats intended for portal vein denervation, a gauze compress moist-

ened with 80 ml of a capsaicin solution (10 mg/ml) dissolved in water, ethanol,

and Tween at a ratio of 8:1:1 was applied around the portal vein for 15 min.

Regarding vagotomy studies, the left and caudal lobes of the liver were gently

deflected, and the hepatic branch of the vagus, along with the fascia

surrounding the nerve, was sectioned with fine scissors. Animals were allowed

to recover from the surgery for 1 week, with free access to SED and water.

A marbocyl/ketofen solution was infused each day, in order to prevent

coagulation, infection, and pain.
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Portal infusions (at a rate of 125 ml/hr for rats and 15 ml/hr for mice) were

carried out for 8 hr, starting at 9 A.M., in animals with free access to food

and water. Saline was infused as a control vehicle. The following metabolites

were infused: [D-Ala2, N3-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), human

b1-7, Nalox, peptones from meat protein (Sigma-Aldrich), CasoC (kindly

provided by Damien Ficheux, IBCP, Lyon, France), dipeptides H-Tyr-Ala-OH

and H-Gly-Gly-OH, and tri-peptide H-Phe-Pro-Arg-OH (Bachem). Following

the infusions, the animals were anesthetized with sodium pentobarbital for

tissue sampling.

To study food intake in WT and MOR-KO mice (Figure 6C), basal consump-

tion was determined for 5 days before switching to PED. Then, we measured

food intake every day for 15 days. To study the effect of Tyr-Ala in WT and

I-G6pc-KO mice (Figure 6E), portal infusions were carried out for 24 hr and

the amount of food ingested quantified at the end. Each mouse was studied

alternatively for saline or Nalox infusion, including 1 day without experiment

between infusions.

Determination of Intestinal Glucose Fluxes

After an 8 hr infusion of metabolites, as described above (but with no food for

the last 6 hr), rats were anesthetized and fitted with polyethylene catheters

inserted into the right jugular vein for 3[3H]glucose infusion and into the left

carotid artery for blood sampling, as described previously (Croset et al.,

2001; Mithieux et al., 2005; Rajas et al., 1999). At the end of the additional infu-

sion time (for 90min), blood was sampled from the carotid artery and the portal

vein. Blood plasma was separated and deproteinized and used to determine

glucose concentration and specific activity (SA). All calculations were done

by using the formulas described in detail by Croset et al. (2001).

Microscopy Studies

Animals were deeply anesthetized with intraperitoneal injection of sodium

pentobarbital, and transcardially perfused with 0.9% NaCl followed by ice-

cold phosphate-buffered (pH 7.4) paraformaldehyde (PFA). Tissues were

postfixed in PFA for 2–3 hr and cryoprotected in 30% sucrose in phosphate-

buffered saline (PBS) with thimerozal (0.01% v/v). Before freezing, the samples

were embedded in Tissue-Tek (Sakuro Finetek), and vessels and portions of

the intestine were injected with the same substance. Human portal branches

were sampled from healthy portions of hepatectomized livers and immediately

postfixed by immersion in PFA as described above. Serial 20 mm thick sections

were cut on a freezing cryostat.

Immunofluorescence

Sections were preincubated in PBS with 0.3% Triton X-100 (PBST) containing

5% bovine serum albumin (blocking solution) for 2 hr and further incubated

with the primary antibody in the blocking solution overnight at room tempera-

ture. After several rinses in PBST, sections were incubated in the secondary

antibody for 2 hr at room temperature. For double labeling, the protocol

was repeated with the other antibodies after three 15 min washes in PBST.

Staining was absent in the control experiment with omission of primary anti-

bodies. Furthermore, we checked that no cross-reactivity between antibodies

occurred, as assessed by inverting the order of staining and omitting the

second primary antibody (data not shown). Images were generated by using

a fluorescence microscope (Carl Zeiss Axiovert 200M).

See also Table S1.

C-FOS Labeling

Prior to any incubation, endogenous tissue peroxidase activities were

quenched with 1% H2O2 in PBS for 30 min. The procedure was then the

same as described before for primary and secondary antibody incubations.

Following PBS washes, the ABC Elite reagent (Vector Laboratories) was

applied for 45 min. The sections were then incubated in 3,30-diaminobenzidine

(DAB), in conjunction with 5 mg/ml nickel and ammonium sulfate (Sigma-

Aldrich) for 15 to 30 min at a concentration of 0.5 mg/ml in PBS with 0.03%

H2O2. Sections were thoroughly washed, air-dried, dehydrated, and coverslip-

ped. For the quantitative assessment of C-FOS expression in the brain, four

to six sections were chosen in areas in the hypothalamus, PBN, and PAG,

as well as in the brain stem, according to Paxinos and Watson (1998). Images

were generated with a light microscope (Nikon Eclipse E400) and FOS-positive
386 Cell 150, 377–388, July 20, 2012 ª2012 Elsevier Inc.
nuclei were counted by using a calibrated macro as described before (Zheng

et al., 2002) with ImageJ software (U. S. National Institutes of Health, Be-

thesda, Maryland, USA, http://imagej.nih.gov/ij/). All data are expressed as

FOS-positive neurons per hemisphere of the brain.

See also Table S1.

Statistical Analyses

Data are expressed as means ± SEM. One-way ANOVA followed by Tukey’s

post hoc test was used for multiple parametric comparisons. Student’s two-

tailed paired t test was used for paired comparisons. The nonparametric

Kruskal-Wallis test followed by Dunn’s post hoc test was used for C-FOS posi-

tive neuron counting. Statistical significance was set at p % 0.05.
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