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Tree Transducers and Tree Languages* 

B~ENDA S. BAKER 

Bell Laboratories, 600 _Mountain Avenue, ~Ylurray Hill, New Jersey 07974 

Tree transducers (automata which read finite labeled trees and output finite 
labeled trees) are used to define a hierarchy of families of "tree languages" 
(sets of trees). In this hierarchy, families generated by "top-down" tree trans- 
ducers (which read trees from the root toward the leaves) alternate with families 
generated by "bottom-up" tree transducers (which read trees from the leaves 
toward the root). A hierarchy of families of string languages is obtained from the 
first hierarchy by the "yield" operation (concatenating the labels of the leaves of 

• the trees). Both hierarchies are conjectured to be infinite, and some results are 
presented concerning this conjecture. A study is made of the closure properties 
of the top-down and bottom-up families in the hierarchies under various tree and 
string operations. The families are shown to be closed under certain operations 
if and only if the hierarchies are finite. 

INTRODUCTION 

Most automata which have been studied in formal language theory read 
strings. However, Doner (1970) and Thatcher and Wright (1968) discovered 

that finite-state automata could be generalized to read finite labeled trees; 
instead of reading a string from left to right, a finite tree automaton reads a tree 
from the leaves toward the root ("bot tom-up")  or from the ~root toward the 

leaves ("top-down").  A set of trees ("tree language") accepted by a finite tree 
automaton is called a recognizable set. By generalizing proof techniques of 
finite string automata, Donor and Thatcher and Wright proved that the family 
of recognizable sets is closed under  union, intersection, complement, and 
generalized forms of concatenation and Kleene +. 

Associated with each tree t is a string called its yield (denoted by Y(t)), 
obtained by concatenating the labels of the leaves of t from left to right. Thus,  
the yield operation generates a string language from each tree language. Now 
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Part of the research was done while the author held a National Science Foundation 
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such a string language is the yield of a recognizable set of trees if and only if it 
is an e-free context-free language (i.e., a context-free language not containing 
the empty string) (Thatcher, 1970). Therefore, the yields of recognizable sets 
are closed under union, concatenation, Kleene+, substitution, and certain other 
operations (Hopcroft and Ullman, 1969). 

Rounds (1968) and Thatcher (1970) added output functions to tree automata 
to obtain "tree transducers." A tree transducer reads an input tree either top- 
down or bottom-up, and generates a tree as output. Recognizability is not 
preserved by either top-down or bottom-up tree transductions (Thatcher, 
1973). Moreover, neither the class of top-down transductions nor the class of 
bottom-up transductions is closed under composition (Thatcher, 1970 and 
Engelfriet, 1975). Therefore, the composition of tree transductions may be 
applied to recognizable sets of trees to obtain more complex tree languages. 
Let D O denote the family of recognizable sets. For each n, let Dn denote the 
family of tree languages generated from the recognizable sets by the composition 
of n top-down tree transductions. Also, let U~ denote the family of tree languages 
generated from the recognizable sets by the composition of n bottom-up 
tree transductions. Section 1 proves the surprising result that for each n, 
D n _C gn+ 1 C On+ 1 ; that is, the families generated by the top-down transductions 
alternate with the families generated by the bottom-up transductions in a single 
hierarchy. We conjecture that for each n, D~ C U~+ 1 C D~+I, so that the 
hierarchy is infinite; in Section 4 a proof is given that D O C U 1 ~ D I C U2 ~ D2. 
Taking the yield of each family in this D-U hierarchy produces a hierarchy of 
families of string languages; for each n, Y(D,~) C Y(Un+I) C Y(D~÷I). Again, 
we conjecture that each inclusion is proper; in Section 4 we prove that Y(Do) 
Y(U1) ~ Y(D1) ~ Y(U2) C Y(D2). 

It is natural to wonder what properties all top-down (bottom-up) families 
share simply b~ause they are generated by the same kind of tree transducer 
and how the differences between top-down and bottom-up tree transducers are 
reflected in properties of the families in the hierarchies. 

Section 2 shows that certain compositional properties of top-down and 
bottom-up tree transducers translate into closure properties of the families in 
the hierarchies. By this method, it is shown that each family D n is closed under 
transductions performed by "linear" tree transducers (tree transducers which 
cannot generate more than one output subtree from any input subtree), while 
each family Un is closed under deterministic bottom-up transductions. The 
ability of top-down transducers (but not bottom-up transducers) to generate 
several distinct output subtrees from the same input subtree is exploited to 
show that each Dn is closed under tree concatenation and a related operation 
called tree substitution. Each U~ is closed under tree substitution into the 
recognizable sets (a restricted form of tree substitution), but results in Section 4 
prove that at least U 1 and U2 are not closed under unrestricted tree 
substitution. On the other hand, all the families in the hierarchy are closed 
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under intersection with recognizable sets (Ogden and Rounds, 1972, and 
Section 2). 

In Section 3, it is shown that the families Y(D~) and Y(Us) are closed under 
many string operations which have been commonly studied in formal language 
theory. In particular, the "extended" yield (i.e., the yield modified by adding 
the empty string) of each D~ and Us is closed under union, concatenation, 
Kleene*, homomorphism, intersection with regular sets, and substitution into 
context-free sets. In addition, the extended yield of each Ds is closed under 
inverse homomorphism and substitution. 

Section 4 presents some results bearing on the conjecture that the hierarchies 
are infinite. In particular, for every n, if D n ~ Us+l, then Un+l C Ds+l • More- 
over, for every n, if Y(Dn) C Y(Un+~) , then Y(Un+~) C Y(Ds+l). I f  it could be 
shown that for every n, if U~ C D n then D~ ~ Us+l, and if Y(Us) C Y(Dn) then 
Y(Ds) C Y(U~+I) , we would have a proof that each hierarchy is infinite. 
Remarkably, the differences in the known closure properties of the top-down 
and bottom-up families noted above also are related to the conjecture that the 
hierarchies are infinite. I t  is shown that for every n, D s C Un+ 1 C Dn+ 1 if and 
only if Us+l is not closed under tree substitution. Also, for every n, Y(D~)2  
Y(U~+I) C Y(Ds+I) if and only if Y(U~+I) is not closed under inverse homo- 
morphism. Although it is not known whether either hierarchy is finite, a proof 
is given that if the D - U  hierarchy is finite, it must have an odd number k of 
distinct families, with K >~ 5. Recently, Perrault (1975) announced the result 
that Y(D1) C Y(U2). This result is used to show that the Y(D) -- Y(U) hierarchy 
contains at least five distinct families. 

The results in this paper indicate that tree transducers generate "natural" 
families of tree languages, in that these families are closed under some interesting 
operations while their yields are closed under many of the same string operations 
as the "natural" families of regular, context-free, and context-sensitive languages. 

SECTION 1 

Finite labeled trees may be defined formally as strings constructed from 
"ranked" alphabets. An alphabet Z is ranked by a function r: 2J ~ N which 
assigns a rank to each member of 2:. For each n, 2J~ =- r-~(n) denotes the set of 
symbols in Z which have rank n. Intuitively, the rank of a symbol is the number 
of sons it has when it labels a node in a tree. 

Let H denote the set containing left and right brackets and comma. To avoid 
possible confusion, ranked alphabets are not allowed to include elements of /7.  
For a ranked alphabet Z, the set Z ,  of (finite labeled) trees over the alphabet Z 
is the least set of strings in (27 k3 H)*  such that 

(1) Z 0_CZ,,  and 

(2) for n > 0, b c Z s ,  and t l ,  t 2 , . . . ,  t n ~ Z ,  , b[tl, t~ ..... ts] ~ Z , .  
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By convention, if t - =  bit 1 ,..., tn] ~27 . ,  it may be assumed that n > 0, 
b ~ Z n ,  and t 1 ,..., t n ~ Z . ,  unless otherwise specified. 

An important parameter of a tree is its depth, which is defined inductively 
as follows: 

(1) For b ~ Z o ,  depth(b) = 1; 

(2) For t = b[tl, . . .  , t~] ~ Z , ,  depth(t) = 1 + max{depth(ti) I 1 ~ i ~ n}. 

Associated with each tree t is a string called its yield and denoted by Y(t).  
The yield of a tree is obtained by concatenating the labels of its leaves from 
left to right according to the following inductive definition: 

(1) ~or b E Zo,  Y(b) = b; 

(2) For t = b[t 1 ,..., t,~] ~ Z . ,  Y( t )  = Y ( q )  Y ( t~ ) " "  Y(t~) E Zo*. 

For a set of trees T, Y ( T )  = {Y(t) l t ~ T}. I f  F is a family of tree languages, 
Y ( F )  ~-- {Y(T) I T ~F}.  

For the purpose of informal discussion, trees may be represented in the usual 
way by directed ordered graphs, drawn so that the "root"  of the tree is at the 
" top"  and the "leaves" of the tree are at the "bot tom."  With this convention, 
a tree transducer may read trees either " top-down" (from the root toward the 
leaves) or "bot tom-up"  (from the leaves toward the root). We describe top-down 
transducers first. 

Intuitively, a top-down tree transducer generates output in steps as it reads 
from the root toward the leaves of a tree. Depending on its current state at a 
node ~ and the label of ~, the transducer generates an output subtree u and 
starts 0, 1, or more subcomputations on each subtree of ~. The  output subtrees 
generated from the subtrees of ~ are substituted at specially marked leaves of u. 
I f  o~ has no subtrees or if no subcomputations are started on subtrees of c~, then 
this subcomputation is complete. The transducer has completed its computation 
when all subcomputations are complete. Note that the number  of subcomputa- 
tions may grow exponentially with the size of the input tree. In  general, a top- 
down tree transducer may be nondeterministic so that it has several possible 
outputs at some nodes and possibly no defined output at other nodes. 

The  central mechanism in the action of tree transducers is the insertion of 
subtrees at specially marked leaves of another tree. This process of "tree sub- 
stitution" is defined as follows. 

DEFINITION. Let Z be a ranked alphabet, with A o _C 27 o . For each d ~ A0, 
let Ta C Z . .  For t ~ Z . ,  the set of trees obtained by substituting trees from T a 
at leaves labeled d, for each d ~/ t  o , is written t(d: T a [ d ~ Ao) and is defined 
inductively as follows: 

(1) If  t E Z 0 - - / t o ,  then t(d: T a l d E/to) = {t}; 

(2) I f  t e A0, then t(d: T a I d E/to) = Ta ; 
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(3) I f  t - -  b[tl,... , tn] ~ 27.,  then 

t(a: Ta I d e Ao) = {bEul ,..., u,]l for 1 4 i ~ n, u~ e h(d: Ta [ d~  A0)}. 

I f  each Ta is a singleton set, i.e., Ta = {ta} for some tree ta,  we abuse the 
above notation by writing simply t(d: ra id  ~ Ao). 

EXAMPLE. If t = 
h[b, b], then t(s: t s ] 
{h[a, b], h[a, a]} and 
the four trees: 

g[ f  [hi, c, g[d, b, d]], A 0 = {b, e), and tb = h[a, a], t c ~-- 
s ~ Ao) -~ g [ f  [h[a, a]], h[b, b], g[d, h[a, a], d]]. I f  Tb = 
Tc ~ {bib, b]} then t(s: T, is e Ao) is the set containing 

g [ f  [h[a, b]], h[b, b], g[d, h[a, hi, d]], 

g[ f  [h[a, a]], h(b, b], g(d, h[a, hi, d]], 

g[ f  [h[a, b]], h(b, b], g[d, h[a, a], d]], 

g [ f  [h[a, a]], h[b, b], g[d, h[a, a], d]]. 

As described above, the output tree generated in a step of a computation of a 
top-down tree transducer contains markers which specify which sons of the 
current input node to read next and which states to continue in. The sons are 
specified by means of a special infinite set of symbols X ~ {xi ] i = 1, 2,...}, 
where xi =/= x~ for i @ j. Thus, xi refers to the ith son of the current input node. 
I f  a tree transducer has a set of states Q, then by convention Q × X will be a set 
of  symbols of rank 0. For each n > 0, let Xn ~ {Xl ,..., x~}, and let X o -~ ~ .  

DEFINITION. A (nondeterministic) top-down tree transducer is a 5-tuple 
3/1 = (Q, 27, A, R, Qo) where 

(1) Q is a finite set of states, 

(2) 27 is a finite ranked alphabet called the input alphabet, 

(3) A is a finite ranked alphabet called the output alphabet, 

(4) Qo __c Q is a set of starting states, and 

(5) R is a finite set of rules, 

R c U (Q x 27.) x (.a v (Q x x @ , .  

A rule is written in the form (q,b)--+ w, where q e Q ,  b e Z n ,  and 
~ (A u (g  x x n ) ) ,  for some n. 
The behavior of a top-down transducer is defined inductively in terms of the 

output  produced from a tree starting in state q. 

DEFINITION. Let 21/I = (Q, z', A, R, Q0) be a top-down tree transducer, and 
let q a Q. For a tree t e Z ' , ,  the set of trees output from t by M starting in state q 
is denoted by M(q, t) and is defined inductively as follows. 
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(1) I f  t = b e 20 ,  then M(q, t) -~ {w I (q, b) -~ w e R}; 

(2) I f  t = bit1 ,..., tn] E 27,, then 

M(q,t)  = U w(<p,x~>:M(p, t j ) ] p e Q ,  1 ~ j < ~ n ) .  
(q,b)-->weR 

We illustrate top-down transducers in the following examples. 

EXAMPLE. Let  27 = {b, c} be a ranked alphabet, in which b has rank 2 and c 
has rank 0. Let  A = if ,  g, d} be a ranked alphabet in which f and g have rank 2 
and d has rank 0. Then  M = ({q0}, 27,/1, R, {q0}) is a nondeterministic top-down 
tree transducer, where 

R = {qo, b) --*f[<qo, x~>, <qo, x~>], (go, b) ---*g[<qo, xa>, <qo, x,>], (qo, c) --* d}. 

At each node labeled b, M generates either an f or a g and starts two computa-  
tions on the left subtree. Therefore,  if s is a tree in Z ,  such that the path from 
the root to the leftmost  leaf has exactly k nodes, then M(qo, s) is the set of all 
balanced binary trees in A* of depth h. 

EXAMPLE. An arithmetic expression involving addition, multiplication, 
a constant c, and a variable y may be represented by a tree over the alphabet 
Z = {+ ,  *,y,  c}, where + and * have rank 2 and y and c have rank 0. We 
construct a deterministic top-down transducer M which takes the formal 
derivative with respect to y of the expression represented by an input tree in Z . .  
Let  A = Z La {1, 0}, where 1 and 0 have rank 0. Let  M = ({D, I}, Z, A, R, {D}) 
be a top-down transducer, where R contains the following rules: 

(D, + )  --~ +[<D,  xl>, <D, x2>], 

(D, *) --* +[*[<D,  xl> , <I, x2>], *[<I, xl>, <D, x2>]], 

( D , y ) - - + I ,  ( D , c ) - + 0 ,  (I,a)-->cr for a e { y , c } ,  and 

(I, ~) --. ~[<~, x~>, <I, x~>] for ~ ~ { + ,  *}. 

For t = +[*[c, y], y], M(t) = + [ + [ * [ 0 ,  y], *[c, 1]], 1]. In  general, for a tree 
t m Z . ,  M(I, t ) =  it} and M(D, t) is the singleton set containing the tree 
representing the formal derivative of the expression represented by t. 

Next, we describe the behavior of bot tom-up tree transducers. A bo t tom-up  
tree transducer reads an input tree t by starting at the leaves and working 
upward toward the root of t. At each leaf ~, the label of e¢ determines the possible 
output trees and states to be entered; the transducer outputs a tree and enters 
some state which is then associated with c4 When all the sons of a node 13 of 
rank greater than 0 have been read, the label of 13 and the states associated with 
the sons offi  determine an output tree u and a state q; the transducer substitutes 
the output trees produced from the subtrees of 13 at specially marked leaves of u 
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and state q becomes associated with ft. The  output generated from the /th 
subtree of fi may be substituted at 0, 1, or more leaves of the tree output at ti- 
The  computation ends when the transducer has read the root of the input tree. 
I t  is an accepting computation if the transducer has entered a final state at the 
root. 

Unlike a top-down transducer, a bottom-up transducer reads each input node 
exactly once. Instead of starting several computations on a subtree and using 
the output from each exactly once, the bottom-up transducer generates one 
output tree from an input subtree and makes copies of it. As the transducer can 
make several copies of output trees at each input node as it works its way up 
toward the root, the size of the output tree may grow exponentially with the size 
of the input tree. 

DEFINITION. A (nondeterministic) bottom-up tree transducer is a 5-tuple 
M = (Q, Z ,  A, R,  F), where 

(1) Q is a finite set of states, 

(2) 27 is a finite ranked alphabet called the input alphabet, 

(3) A is a finite ranked alphabet called the output alphabet, 

(4) F _C Q is a set of accepting or f ina l  states, 

(5) R is a finite set of rules, 

R c U (&  x g'9 x (O x (.a v x,~),). 
,n~>O 

A rule is written in the form (b, ql ,..., qn ) -+  (q, t), where b 6 27n, n ) 0 ,  
q, q l , . . . , q n e Q ,  and t ~ ( A  W X n ) , .  

The  behavior of a bottom-up transducer on an input tree is defined inductively 
as follows. 

DEFINITION. Let M = (Q, 27, A, R ,F )  be a bottom-up tree transducer, and 
let q ~ Q. For a tree t E 2; ' . ,  the set of trees which M can output from t ending 
in state q is denoted by M(q,  t) and is defined inductively as follows: 

(1) For b ~ Go, M(q ,  b) = {w I b--~ (q, w) 6 R } ,  

(2) For t = b[t~ ..... t~] z Z ,  , 

3//(q, t) • {v I for some rule (b, ql ,..., qn) --+ (q, w) ~ R,  
some i, 1 ~ i ~ n, and some ui c M(q i  , ti), v c W ( x  i : ui) } 

Note that in the second part of the above definition, the same tree u i in 
M ( q i ,  ti) is substituted at every occurrence of x i in w. If  M ( q i ,  ti) = Z,  then 
no output can be generated from b[t 1 ,..., t~] even if xi does not occur in the 
right side of the rule (b, ql .... , q~) - *  (q, w). 
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EXAMPLE. Let  Z = {b, c} be a ranked alphabet with b of rank 2 and c of 
rank 0. Let  A = {f, g, d} be a ranked alphabet in w h i c h f  and g have rank 2 and 
d has rank 0. Let  M = ({q0}, Z, A, R, {q0}) be a bot tom-up transducer, where 

R = {e--+ (qo, d), (b, qo, qo) --+ (qo , f [ x , ,  xl] ), (b, qo, qo) ---*g[xl, x~]}. 

Thus,  at each node labeled b, M generates either an f or a g and makes two 
copies of the subtree it has already generated from the left input subtree. I f  s is 
a tree in Z ,  such that the path from the root to the leftmost leaf has exactly k 
nodes, then 

M(s) = {t e A .  I every path from the root to a leaf in t has exactly k 
nodes and the same sequence of labels}. 

Also, Y(M(s)) = {d~'-~}. 

DEFINITION. Let  M = (~, Z, A, R, P) be a top-down or bot tom-up tree 
transducer. For a tree t, the set of all trees output from t by M is M(t) = 
~)~,, M(p,  t). For a set T of trees, the set of trees generated from T by M is 
M(T) = Ut~r M(t). The  transduction performed by M is a relation consisting 
of input-output  pairs of M, where _[_ denotes the lack of any output:  

T(M) = {<s, t ) e27 ,  × A ,  I teM(s)}  tJ{(s, I ) I  s ~ 2 7 , ,  M(s) = ~}. 

T h e  special symbol _[_ is used so that T(M) specifies all input trees, including 
the ones without any output. 

Since tree transductions are relations, they may be composed. Thus,  

T(Me) o T(M~) ~ {<s, u)j for some t, <s, t} ~ T(M~) and (t,  u) c T(M~)}. 

I f  B and C are classes of transductions, B o C = {T~ o Tc I Tc e C and Ts E B}. 
Also, B l = B , a n d f o r n  ~> 1, B ~ + I = B o B  n. 

Several restrictions on tree transducers are important in this paper. A top-down 
or bot tom-up transducer M is linear if no variable xj occurs more than once in 
the right side of any rule of 214. M is full or nondeleting if for each rule of M, if n 
is the rank of the input symbol in the left side, then the right side has at least 
one occurrence of each x~, 1 ~< j ~< n. A top-down transducer M = (Q, Z, A, 
R, Q0) is deterministic if ~0 is a singleton set and for each b ~ 27 and each q e Q, 
there is exactly one rule with left side (q, b). A bot tom-up transducer M=-  
(~, 27, A, R ,F)  is deterministic if for each n >/ 0, each b c Z~ ,  and each 
qt ,..., qn c ~, there is exactly one rule with left side (b, q~ ,..., qn). 

The  restrictions on tree transducers are abbreviated as follows: T, top-down; 
B, bot tom-up;  N, nondeterministic; D, deterministic; L, linear; F, full (non- 
deleting) and O, one-state. For example, N T  in the class of nondeterministic 
top-down transductions, and FDLT is the class of full deterministic linear top- 
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down transductions. Sir/ce D O  T ~ D O B  (Engelfriet, 1975) this class is generally 
written as DO.  Note that N T  n and N B  ~ denote the composition of n non- 
deterministic top-down transductions and n nondeterministic bottom-up 
transductions, respectively. 

A deterministic bottom-up transducer M = (Q, 2:, 27, R, F) is a deterministic 

bottom-up finite tree automaton if each rule is of the form b--~ (q, b) where 
b ~ 2Jo, q ~ Q or of the form (b, ql ,..., q~) -+ (q, b[x~. .... , x.]), where b ff Z'~ and 
q, ql ,..., % ~ ~. A set of trees T is recognizable if T = {s ] M(s) :/: 2~} for some 
deterministic bottom-up finite tree automaton M. 

We conclude this section by defining a hierarchy of families of tree languages 
and showing how it is generated by top-down and bottom-up transductions. 

DEFINITION. Let D O denote the family of recognizable sets. For n / >  0, let 
U~+~ --  DO(D~), and let D~ = N L T ( U ~ ) .  

Since the identity transduction is a total deterministic one-state linear top- 
down transduction, we have defined a hierarchy of families of tree languages: 
D O C U s _C D 1 C U 2 _C .... We will refer to this hierarchy as the D-U hierarchy. 
Another characterization of the D-U hierarchy is given in Theorem 1. 

THEOREM 1. For n > 0, Dn = NT~(Do).  For n > 0, Un -~ NBT~(Do). 

Proof. Baker (submitted for publication) and Engelfriet (1975) showed that 
N T = N L T o D O  while N B  = D O o N L T .  Therefore, for n > 0 ,  Dn = 
NLT(DO(D~_~))  - -  ( N L T o  DO)(D~_I) ~= NT(D~_I) .  The first part of the 
theorem is obtained by induction on n. 

D O is closed under linear top-down transductions (Thatcher, 1973). Therefore 
UI = DO(Do) = D O ( N L T ( D o )  ) = (DO o NLT)(Do)  = NB(Do).  For n > 1, 
Un = DO(Dn_~) - DO(NLT(U~_I ) )  : (DO o NLT) (U~_I )  : NB(U~_~).  The 
second part of the theorem is obtained by induction on n. 

This theorem is a generalization of Engelfriet's result that U 1 = DO(Do) 

(Engelfriet, 1975). 
Thus, the D~ families in the D-U hierarchy are obtained by starting with the 

recognizable sets and applying successive top-down transductions. Similarly, 
the U~ families in the D- U hierarchy are obtained by starting with the recogniz- 
able sets and applying successive bottom-up transductions. The interesting 
point about the above result is that the families generated by top-down trans- 
ductions and the families generated by bottom-up transductions alternate in a 
single hierarchy. The top-down families D~ have been studied previously by 
Ogden and Rounds (1972), who conjecture that for every n, D~ C D~+ 1 . They 
were able to prove only that D O C D 1 2 D2. Engelfriet (1975) showed that 
D O C U 1 C D~. For the D - U  hierarchy, we make the following conjecture. 

Conjecture. For n ~/0,  D~ C U~+ 1 2 D~+t. 
A second hierarchy, called the Y(D)  - -  Y ( U )  hierarchy, may be obtained 
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from the D - U  hierarchy by the yield operation: Y(Do) C Y(Ua) _C y(D1) C_ .... 
We conjecture that each inclusion is proper for this hierarchy as well. 

Conjecture. For n ~ O, Y(D~) C Y(U,~+I) C Y(D,+~). 
Although the conjectures remain open, this paper proves some results 

concerning the families in these hierarchies. In particular, the closure properties 
of these families under various operations are studied in Sections 2 and 3, and 
some results bearing on the conjectures are presented in Section 4. 

SECTION 2 

Many families of string languages which have been extensively studied (such 
as the families of context-free languages, context-sensitive languages, recursive 
sets, and regular sets) are closed under certain string operations such as homo- 
morphism, concatenation, substitution, or intersection with regular sets. It is 
natural to wonder whether there are any operations on trees which preserve 
membership in the families in the D-U hierarchy. Some natural operations to 
consider are tree substitution, intersection with recognizable sets, and various 
subclasses of tree transductions. In fact, the families in the D-U hierarchy are 
closed under some of these operations. 

It is trivial to show that each family in the D-U hierarchy is closed under 
union. Several additional closure results may be obtained by applying informa- 
tion about the closure of certain classes of transducers under composition to 
Theorem 1. Since DB o N B  ~ N B  (Engelfriet, 1975) and for n > 0, U n 
NBn(Do) (Theorem 1), we have the following proposition. 

PROPOSITION 2. For n > O, Un is closed under deterministic bottom-up 
tr ansductions. 

Engelfriet (1975) showed that the class of nondeterministic linear bottom-up 
transductions is closed under composition, and that N L T  o N L T  = NLB.  Baker 
(submitted for publication) showed that N T  ~.~ N L B  o N T  ~ for n > 1. By 
(Thatcher, 1973 and Rounds, 1970), Do and D 1 are closed under linear top-down 
transductions. The above observations and the fact that each D~ ~ NT~(Do) 
yield closure for each D~, n > 1 under linear transductions. 

PROPOSITION 3. For n >/O, D~ is closed under nondeterministic linear top- 
down and bottom-up transduetions. 

From the above propositions and the definition of each U~+ 1 as DO(D,)  and 
D~ as NLT(Un) ,  the relationship between the top-down and bottom-up families 
in the hierarchy may be described as follows. 

PROPOSITION 4. For every n ~ O, U.+I is the closure of D~ under deterministic 
one-state transductions and also under deterministic bottom-up transductions. For 
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every n > O, D~ is the closure of U n under nondeterministic linear top-down 
transductions and under nondeterministic linear bottom-up transductions. 

Ogden and Rounds (1972) have shown that each family D n is closed under 
intersection with recognizable sets. Engelfriet (1975) showed that U 1 is closed 
under intersection with recognizable sets. Thus, the following result is not 
unexpected. 

PROPOSITION 5. For n > 0, U,~ is closed under intersection with recognizable 
sets. 

Proof. If  R is a recognizable set, R is the domain of a deterministic bottom-up 
transducer M such that T(M) = {(t, t )  [ t ~ R}. For a set T a  U,~, M(T)  = 
T n R is in U~ since U~ is closed under deterministic bottom-up transductions 
(Proposition 2). | 

Next, we consider closure under a restricted form of substitution called tree 
concatenation. 

Notation. In  Section I, the notation t(d: W a l d e A o )  was introduced to 
represent the set of trees obtained by substituting trees in We at all leaves in t 
labeled with d. For b ~ Ao, let t(b : W) denote the set of trees obtained by 
substituting trees in W for all leaves in t labeled b. For a set of trees T, let 
T(b : W) = {t(b : W) [ t ~ T}. 

DEFINITION. Let F be a family of tree languages. F is closed under tree 
concatenation if for every Ta, T 2 ~F, T 1 ___ 27,,  and every b ~ Zo, Tl(b : T2) ~F. 

THEOREM 6. For every n ~ 0, D~ is closed under tree concatenation. 

Proof. Thatcher and Wright (1968) showed that D o is closed under tree 
concatenation. For every n, D n contains the recognizable sets and is closed under 
linear top-down transductions (Proposition 3). We show that for any family F 
which contains the recognizable sets and is closed under tree concatenation and 
deterministic linear one-state transductions, NT(F)  is also closed under tree 
concatenation. The  theorem follows by induction on n. 

Let F be a family of tree languages which contains the recognizable sets and 
is closed under tree concatenation and deterministic linear one-state transduc- 
tions. Let  Z, W ~ NT(F)  with Z, W C ~ , ,  and b ~ X 0 . We show that Z(b : W) 
NT(F)  by constructing a set V in F and a nondeterministic top-down transducer 
N such that N(V)  = Z(b : W). 

First, consider how the sets Z and Ware  obtained from sets i n F  by top-down 
transductions. There exist a ranked alphabet A, a tree language S ~ F  with 
N C A . ,  and a top-down transducer M = (Q, A, Z, P, {%}) such that M(S)  = Z. 
.Similarly, there exist a ranked alphabet/~, a tree language S b ~ F  with S b _C/ ' . ,  
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and a top-down transducer Mb = (Kb,  F, 27, Pb, {kb)) such that M~(Sb) = W. 
Without loss of generality, we may assume that the sets X, A, and F are all 
pairwise disjoint. 

Each tree v in V will be obtained from a tree s ~ S. The intent of the construc- 
tion is that the new transducer N produces from v what M would produce 
from s, except that whenever M outputs b, v provides N with access to a tree 
in Sb, and N imitates Mb to output a tree in W rather than b. The  construction 
is complicated by the fact that for arbitrarily large s, M may be able to output 
arbitrarily many b's from a single node of s, and a distinct tree in W may be 
substituted at each occurrence of b in M ' s  output. Therefore, v is constructed as 
follows: We obtain from Sb a set U consisting of trees of the form g[s 1 , g[s~ ,..., 
g i s t ,  s~+l] ""]], where m >/1  and s 1 .... , s,~+l e S~. Then  we nondeterministically 
insert a tree in U at each node of s to obtain v. 

Formally, the construction of V has three stages: 

(1) Let f be a new symbol of rank 0, and let g be a new symbol of rank 2. 
Let  R be the set of trees defined inductively as follows: f ~  R,  and for any tree 
t ~ G, g[f,  t] ~ R. Clearly, R is a recognizable set, and is therefore in F. 

Set U -~ R ( f  : Sb). Since F is closed under tree concatenation, U is in F. 
Note that each tree in U is of the form g(tl, g[t2, g[t 3 .... ,g[t~,  t~+l] "-']]] 

where n > /1  and t 1 ,..., tn+ a ~ Sb • Also, for every n >/ 1 and t 1 , t 2 ,..., t,+a ~ Sb, 

g [ h  , g [ t2  . . . .  , g [ t ~  , t~+d .-]]] ~ u .  

(2) For each symbol c ~A n,  n ~> 0, let g be a new symbol with rank 
n + 1. Let  zJ = {g I c ~ A} u { f }. Let  D = ({ p}, A, Z~, RD, { p}) be a one-state 
deterministic linear top-down transducer, where 

R• = {(p, c)--~ g [ / ] l c  ~ A0} U {(p, c)--~ el / ,  (p, xl),...,(p, xn)JIn  > 0, c ~ An}. 

Clearly, at each node labelled c ~ A, D simply relabels it g and adds a new subtree 
f to the left of all previous subtrees of  the node. Set S '  = D(S).  Since F is closed 
under deterministic linear one-state top-down transdnctions, S '  ~F. 

(3) Set V = S ' ( f :  U). Since S',  U ~ F  and F is closed under tree con- 
catenation, g 6F .  

Next, we define a top-down transducer N s u c h  that N ( V )  z(b : w). Intuitively, 
we want N to imitate M on input symbols in z~, except that whenever M would 
generate an output symbol b, N begins to scan one of the subtrees in R. Now, 
this tree in U has two or more subtrees which are in Sb, and N nondeter- 
ministically selects one of these, and then imitates M s on this subtree. Thus ,  
whenever M would output a b, N instead generates a tree in W. 

Formally, we let N = (Q k9 Ks ,  z~ k) F u {g}, 27, Rlv, {q0}), where q0 is the 
starting state of M,  and RN is given as follows: Let 

h: (A w 2: u X w Q w 1-I)* ~ ( ~  w 27w X w Q w I I  w {k~))* 
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be the homomorphism determined by h ( c ) ~ - ~  for c c A ,  h ( b ) ~ - ( k ~ ,  xl)  , 

h(x~) ~ x~+~ for n ~> 1, and h(a) = a otherwise. Then  

RN = PB W {h(u) ~ h(v) t u --~ v ~ P}  V {(k~, g) --> (kv, x~), (k~, g) --~ (kb, xz)}. 

Let  us examine how N behaves on an input  tree v in V. For  some s ~ S ' ,  
v ~ p(s). Thus,  v is obtained by  substituting trees in U at leaves of s labeled f .  
By applying rules of the form h(u) ~ h(v), where u --> v ~ P,  N imitates M on s; 
thus the " u p p e r "  port ion of the output  corresponds to a tree u in M(s) .  However,  
whenever M would output  a leaf labeled b, N instead enters the state k b (the 
starting state of Mb) and reads the leftmost subtree of its input  node (since 
h(b) -= (k~,  x~)). This  subtree must  be of the form g [ q ,  g(s 2 ..... g[s~_a, s,~]-..]] 
where m ) 2 and s 1 ,..., s~. E Sb.  N applies the rule (k~, g) -+ (kb,  x2) 0 or more 
times, and finally either reaches s~ or applies the rule (k~, g) --~ (kb,  xl)  and 
begins to read s i , for some i < m. At  this point, N imitates Mb on this subtree 
in Sb to generate a subtree in /iV. The  result of this process is that M outputs  
from v a tree in M(s)(b : W) .  

Next, we describe for an arbitrary tree u in Z(b : W )  how to find a tree v in V 
and a computat ion of N which generates u from v. Suppose that  s is in S, and t 
is in M(s)  C Z,  and u E t(b : W) .  Suppose that t contains exactly m >~ 0 occur- 
rences of the symbol b. For  some tl ,..., G ~ / 4 '  and some z l ,  z2 .... , zm+l in 
(~ v//)*, 

t = z~bz2b "." z,~bzm+l 

and 

u = z l t lz~t  2 "'" zmtmZm+ 1 . 

Choose trees q ,  s~ ,..., s,~ such that for j -~ 1, 2 ..... m, t i e Mv(si). Note that  
there is a tree y = g[s l ,  g[s~ .... , g[s~ ,  s,~) ""]] in U. Further ,  beginning in state 
kb, N can generate from y any tree in Mb(Sl) , Mb(@,. . .  , Mb(s~,), including 

t 1 , . . . ,  t m . 

Let  s' = D(s). Consider a tree v in s ' ( f :  U ) C  V obtained by substi tut ing 
y at each leaf of s labeled f .  There  is a computation of N on v which 

(1) imitates M on the nodes of v labeled from z~ to produce a tree z,  such 
that  z is the tree obtained from t by  substituting the tree (kb,  g [ q ,  g[s~ ,..., 

g i s t ,  s~] ""]]) at each leaf of t labeled b, and 

(2) then produces ti from the ith occurrence (from the left) of  
(k, g [ h ,  g[s2 ..... g[s,~, s~]]), for i := 1, 2,..., m. The  result of this computat ion 
is the tree obtained from t by substi tuting t~ for the i th occurrence of b in t, for 
i --- 1, 2,..., m. But this tree is precisely u. Thus,  we have found a tree v in g 
and a computat ion of N on v which produces output  u. 

F r o m  the above arguments, it is clear that  N ( v )  = Z(b : W) .  | 
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Next, we consider an operation closely related to tree concatenation. 

DEFImTIO~. Let F 1 and F 2 be families of tree languages. Define 

SubT(F x ,F2) ~- {T(b  : W~ [ b ~  27o) I T EF2,  T C _ Z ,  , and for each 

b~27o, W~ cFi)}. 

F 1 is closed under tree substitution if SubT(F1, F1)__CF 1 . fi'l is closed under tree 
substitution into F 2 if SubT(F1, F~) _CF 1 . 

Since tree concatenation is a restricted form of tree substitution, it is natural to 
investigate whether Dn is also closed under tree substitution. 

THEOREM 7. For every n >/O, Dn is closed under tree substitution. 

Proof. Suppose T ~ D n , T C 27,,  and for every b ~ Zo , Wb ~ Dn . We show 
that T(b : W b I b e 270) E D~.  For each b e 270, let/~ be a new symbol of rank 0 
(in particular, f~ does not appear in any We). Since D~ contains the singleton sets 
of  trees and is closed under tree concatenation, T ' =  T ( b : [ ~ l b  e Z o ) =  
T ( b ~ : / ~ ) ' " ( b ~ : / ~ )  is in Dn,  where Z 0 ~-{b~,... ,b~} and b i ~ : b j  for 
i =/= j. Moreover, T'(b 1 : Wbl ) "'" (3ra : Wb m) ~- T(b : Wb I b e 27o) ~ D n. | 

An important factor in the proof that D~ is closed under tree concatenation is 
the ability of a nondeterministic top-down transducer N to generate different 
trees in W from the same input subtree and substitute them at different occur- 
rences of the symbol b. In  a single computation, a bottom-up transducer cannot 
output  two distinct trees in W from the same input subtree. In  Section 4, it will 
be shown that the class of bottom-up transducers does not preserve closure 
under  tree concatenation; in fact, U 1 is not closed under tree concatenation. 
However, the class of bottom-up transducers does preserve closure of tree 
substitution into the recognizable sets. 

THEOREM 8. For every n > O, U n is closed under tree substitution into the 

recognizable sets. 

Proof. By Theorem 7, D O is closed under tree substitution. We show that 
for each n, if U n is closed under tree substitution into the recognizable sets, 
Un+ 1 is also closed under tree substitution into the recognizable sets. The 
theorem follows by induction on n. 

Let R be a recognizable set with R C_ 27.,  and for each b E 270, let W~ ~ U~+I, 
W b C 2 . .  We show that R(b : W b ] b ~ 27o) ~ Un+~ by obtaining a set V ~ U~ and 
a bottom-u p transducer N such that N ( V )  -~ R(b : Wb ] b e 270)" 

For each b ~ Zo, there exist a ranked alphabet / '~ ,  a tree language S~ C (F0) , , 
S b ~ Un, and a bottom-up transducer M s - ~  ( Q o , / ~ ,  27, P~ , F  b) such that 
Mb(Sb ) = Wb.  Let F ~ 0b~z ° F~. Without loss of generality we may assume 



TREE TRANSDUCERS AND TREE LANGUAGES 2 5 5  

that the sets Fb, Q0, and Z are pairwise disjoint. (If not, each So may be 
relabeled in a new alphabet by a deterministic linear bottom-up transducer, 
and corresponding changes may be made in each Mb • Since each U~ is closed 
under deterministic bottom-up transductions, each relabeled So is in U~ .) 

Set V ~- R(b : So i b ~ Zo). Since F is closed under tree substitution into 
recognizable sets, V ~ F. 

Let f be a new state, and let Q' ~ ( f }  u U b ~  ° Q~, F '  = {f} • Ub~oF ~ . 
Construct a bottom-up transducer N = (Q',  2 u I ,  Z,  PN , F)  by setting 

PN = {(c, f l  ,-..,fn) --* ( f ,  c[xl ,..., x~]) In >~ 1, c a2J~ and f l  , . . . , f ~ F ' }  

~J U P o .  
be~ o 

When N reads a tree t ~ V, it imitates Mb on subtrees of t which are in S~, 
and is the identity on symbols in Z. We show that N ( V )  - -  R(b : Wb i b ~ Zo) 
by giving a proof by induction on the depth of r that for every r a Z . ,  
t ~ r(b : Wb I b ~ Xo) if and only if t ~ N(r(b : So l b ~ Zo) ). 

For r ~ Xo ,  t ~ r(b : IC b [ b E Z0) if and only if t e W r if and only if t a _~r~(sr) 
if and only if t ~ N( r (b  : Sb [ b E 20) ). For some k >/ 1, assume that the assertion 
holds whenever r has depth at most k. Suppose r = B[r  1 .... , r~] E Z .  has depth 
k + 1, and t ~ r ( b : W b l b  a Zo). There exist trees t 1,..., t ~ a E .  such that 
t - -  B[t~ .... , t~] and for each i, t i ~ ri(b : W b I b ~ Zo). The induction hypothesis 
may be applied to each ri to show that for each i, there are a final state f l  ~ F '  
and a tree ui ~ ri(b : Wb ] b E Zo) such that t i ~ N ( f i ,  Ui). Since N has a rule 
(B, fl,..., f~) ~ (f, B[Xl . . . . .  Xn]), t = Bit1,.. . ,  t,] ~ N(B[ul , . . . ,  u,]) _C N(r (b  : Wb I 
b ~ No) ). This argument is easily reversed for the other direction of the asser- 
tion. | 

We conclude this section by observing that the union of all the families in 
the D - U  hierarchy is closed under all the operations studied above. 

THEOREM 9. On~=oD~ = ~Jn~o U~ is closed under bottom-up and top-down 
transductions, tree substitution, and intersection with recognizable sets. 

Proof. Obviously, for any language T in 0n~o D~, the image of T under a 
top-down or bottom-up transduction is in D~, for some n, and thus is in 

D 0n=0 ~. Also, since every language in Un=0 D~ is in Dn for some n, and D~ is 
closed under both tree substitution and intersection with recognizable sets, 

D 0~=0 ~ is closed under tree substitution and intersection with recognizable 
sets. II 

SECTION 3 

A natural question to ask about the Y(D)  - -  Y ( U ) h i e r a r c h y  is whether the 
families in it are closed under the string operations which have been commonly 

64313713-2 
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studied in formal language theory. In this section, we show that they are closed 
under a number of string operations. However, since Y(Dn) and Y(Un) cannot 
contain the empty string (denoted by e), they cannot be closed under operations 
such as homomorphism which generate the empty string. Therefore, we define 
an extended yield operation Y, on families of languages, defined by 

Y~(F) = ( T, T V {e} 1 T ~ F} 

for each family of tree languages F. The closure properties of each Y(Dn) , 
Y~(Dn), Y(Un) , and Y~(U~) presented in this section are all derived from the 
closure properties of Dn and U n studied in Section 2. 

Rounds (1970) showed that for any regular set R, R _CZ'o*, Y~I(R) -~ 
{t ~ 27, I Y ( t )~  R)  is a recognizable set. Ogden and Rounds (1972) applied this 
fact and the closure of each Dn under intersection with recognizable sets to 
show that for T E D n ,  T C 2 7 . ,  n ~ 0 ,  Y ( T ) n R  ~- Y (Tc~  Y ~ ( R ) )  is in 
Y(D~). That is, each Y(D~) is closed under intersection with regular sets. 
Obviously, each Ye(D,,) is also closed under intersection with regular sets. The  
same argument may be applied to each U~ to obtain the following proposition. 

PROPOSITION 10. For n > O, Y(U~) and Y,(Un) are closed under intersection 
with regular sets. 

The above result cannot be strengthened to state that Y(Dn) and Y(Un) are 
closed under intersection, since the intersection of the context-free languages 
is not contained in On°~=o Y(On) (Baker, to appear). 

LEMMA 11. For every n >~ O, Y,(D,~) and Y , (U , )  are closed under string 
homomorphism. 

Proof. Let h: 27o*--* A0* be a string homomorphism, and T 2  27.. Since 
each D ,  and Un is closed under deterministic linear transductions by Proposi- 
tions 2 and 3, it suffices to construct a deterministic linear bottom-up tree 
transducer M such that Y ( M ( T ) )  ~- h (Y(T) )  - -  {e}. 

If h is nonerasing, it may be performed by a deterministic linear bottom-up 
transducer which simply replaces each b ~ 27o by a subtree whose yield is h(b). 
If h can erase, the transducer may do this replacement when h(b) ~ e, but it 
must also delete every input tree whose leaves are all erased by h. 

Let m be the maximum rank of any symbol in A. Let £' = {g~ ] 0 ~ i ~ m}, 
where gi has rank i. Construct a deterministic bottom-up transducer M 
(K, 27, F, X ,  P, {N}) where K ---- {E, n}, and P is given as follows. 

(1) For b ~ 270, if h(b) = e, then the rule b --> (E, go) is in P. If h(b) = 
ala ~ "" a n ~ e, each a~ ~ A0, then the rule b --> (N, gn[a~ , a 2 ,..., an] ) is in P. 

(2) Suppose that b ~ 27~, m ~ 1, and S1, S 2,..., Sm ~ K. If  S 1 = S~ 
. . . .  S~ = E, then the rule (b, S 1 ..... Sm)-~ (E, go) is in P. If  1 ~ k ~ m, 
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1 ~ j ~  < j 2  < " "  < J k  ~<m, and S h - - S j ~  ~ - ' "  = S j k = N ,  while S ~ = E  
for i q!{j~ ,J2 .... ,j~}, then the rule (b, S 1 ,..., S~)---~ (N,g~[x~-, xj~ ,..., x j ) i s  
in P. 

M starts at the leaves of an input tree t and determines which leaves are erased 
by the homomorphism h. At any point during M ' s  computation when M has 
read all of a subtree t I of t, M has reached state E if every leaf of this subtree is 
to be erased, and state N otherwise. I f  M has reached state N, then the output 
from the subtree t 1 is a tree whose yield is h(yield(tl) ) :/: e. I f  M has reached 
state E, then h(yield(tl) ) = e, and the output from the subtree t 1 will be deleted 
in the next step. Since the only final state is N, M produces a tree as output from t 
only if not all the leaves are erased by the homomorphism h. Thus, yield(M(T)) = 
h(yield(T)) - -  {e}. | 

The  next operation to be considered is string substitution, which is defined 
as follows. 

(1) 
(2) 

define 

DEFINITION. Let F be a family of string languages, and 22 an alphabet. 
An F-(string) substitution is a function r: 27 --+ F. It  is extended to X* by 

-r(e) = {e}: 

for al ,..., a~ ~ 22, "r(al "'" as) ~ "r(al) "'" -r(a~). For families F~ and F 2 , 

and 

Subs(F1, F2) = {r(L) [ L e Fe and ~- is an Fl-substitution } 

Sub~v(F1, F2) : {r(L) [L eFe and ~- is an Fl-substitution such that 
for every b, r(b) 4= {e}}. 

A family F1 is closed under substitution if Subs(F 1 , F1) _C F t ; closed under non- 
erasing substitution if SUbN(F1, F1) _C F t ; closed under substitution into a family F2 
if Subs(F1, F~)_CF~; and closed under nonerasing substitution into F 2 if 
SubN(Fa, F2) C F1. 

LEMMA 12. For every n ~ 0, Y(D,~) and Y,(Ds) are closed under string 
substitution. For every n > O, Y(  Us) is closed under string substitution into the e-free 
context-free languages and Y~(Us) is closed under substitution into the context-free 
languages. 

Proof. The lemma is obtained from closure properties of D s and U~ by 
showing that for any families F 1 and F 2 of tree languages, Y(SubT(FI,  F2) ) --  
Subs(Y(F~), Y(F2) ). Suppose T ~ F ~  with T _  27, and r:  Z o --~ Y(F1) is a string 
substitution. For each b ~ 270, there is a tree language S~ ~ F 1 with Y(Sb) ~ r(b). 
We claim that Y(T(b: So] b ~ Zo) ) = "r(Y(T)). For suppose that w ~'c(Y(T)). 
For some t ~ tlb~te...t~bmt~+ ~ ~ Twith  each b; ~ 270 and each t~ e ((27 w H)  - Z:0)* 
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and some ul,..., u~, with each uj ~ S~j, w : Y(ul) "'" Y(u~). But w' : tlu~t 2 "" 
t~u~,t~+~ ~ T(b : S~ ] b e Zo) and Y(w') = Y(ul) ... Y(u,,) -- w. Therefore, 
-r(Y(T)) C_ Y(T(b : Sb ] b ~ 2:0) ). The argument is easily reversed to show that 
Y(T(b : Sb I b ~ Zo) ) C T(Y(T)). 

By Theorem 7, Subs(Y(Dn), Y(Dn) ) = Y(Subr(Dn, Dn)) = Y(D,~). Since 
Y(Do) is the family of e-free context-free languages [10] and Un is closed under 
tree substitution into recognizable sets (Theorem 8), Subs(Y(U~), e-free CF) = 
Subs(Y(U~), Y(Do) ) = Y(Subr(Un, Do) ) = Y(U~). If , is an F-substitution 
which erases some symbols, z can be accomplished by applying first a homo- 
morphism which erases the appropriate symbols and then a nonerasing F- 
substitution. Since Ye(D~) and Ye(U~) are closed under homomorphism 
(Lemma 11), Subs(Y~(D~ ), Y~(D~))= Y~(Dn) and Subs(Y~(Un), Y~(Do) ) =- 

The next theorem summarizes the known positive closure results for the 
families in the Ye(D) -- Y~(U) hierarchy. 

TIIEOItEM 13. For every n >/O, the family Y~(Dn) is a substitution-closed full 
abstract family of languages (AFL); that is, it is closed under union, concatenation, 
Kleene *, arbitrary homomorphism, inverse homomorphism, intersection with regular 
sets, and string substitution. For every n >/O, Y~( Un) is closed under union, concaten- 
ation, Kleene *, arbitrary homomorphism, intersection with regular sets, and string 
substitution into the context-free languages. 

Proof. Let ~ denote the family of regular sets, and ~0 the family of regular 
sets not containing the empty string. Ginsburg and Spanier (1970) showed that a 
family ~ of string languages is a full AFL if N0 C ~ ,  Subs(N , £z °) C of, 
Subs( ~°, ~0) C oL~ o, and ~ is closed under intersection with regular sets. Since 
~o C_~ C Y~(D~) and Y,(D~) is closed under string substitution (Lemma 12), 
and intersection with regular sets (Hopcroft and Ullman, i969), Y,(Un) is a 
substitution-closed full AFL. 

For every n >/O, Ye(Un) is closed under substitution into context-free 
languages (Lemma 12), homomorphism (Lemma 11), and intersection with 
regular sets (Proposition 10). Closure under union, concatenation, and Kleene * 
follows since any family of languages closed under substitution into regular sets 
is also closed under union, concatenation, and Kleene * (Ginsburg and Spanier, 
1970). | 

The above theorem does not state that each Y~(U~) is closed under inverse 
homomorphism. In fact, it is shown in Section 4 that Y~(U~) is closed under 
inverse homomorphism if and only if Y(D~_I) ~ Y(Un). Therefore, we con- 
jecture that each Y~(U~) is not dosed under inverse homomorphism and is not 
an AFL. 

T h e  proofs in this section derive the closure properties of the families in the 
Y ( D ) -  Y(U) hierarchy from the closure properties of the families in the 
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D - U  hierarchy. This  proof technique may be applied to other families of tree 
languages and their yields; it provides a means of studying string languages 
derived f rom tree languages without directly specifying the string languages 
except as the yield of the tree languages. 

SECTION 4 

Earlier, it was conjectured that the D - U  hierarchy and the Y ( D ) -  Y ( U )  
hierarchy are infinite. The  closure properties obtained in Sections 2 and 3 are 
applied here to obtain some results related to these conjectures. The  basic 
theorems of this section are that for every n, if D~ ~ Un+l, then U~+I C D~+ 1 , 
and if Y(D~)C  Y(U~+I), then Y(U~+I)C Y(D~+I). I t  would follow that the 
hierarchies are infinite if proofs could be found that for every n, if Un ~ D ,  then 
Dn C U~+I and if Y ( U , )  ~ Y(Dn) then Y(D, )  C Y(U~). Unfortunately, attempts 
to prove the latter statements have been unsuccessful. Nevertheless, the theorems 
prawed here lead to some strong statements about the number  of families in the 
hierarchies if the hierarchies are finite. 

In  order to make the proofs of the theorems a little simpler, we first prove a 
proposition concerning one-state transductions. 

PROPOSITION 14. DO = F D O B  o DOLB.  

Proof. Since F D O B  and D O L B  are contained in the class of deterministic 
one-state transductions, which is closed under composition (Engelfriet, 1975), 

F D O B  o D O L B  C DO 

For the reverse inclusion, let M = ({q}, 2:, A, R, {q}) be a deterministic one-state 
bo t tom-up  transducer, We construct a one-state deterministic linear bot tom-up 
transducer M 1 and a full one-state deterministic bot tom-up transducer M 2 such 
that T(M2) o T(M~) = T(M) .  The  strategy is to have 21//1 imitate M, except that 
M 1 merely records a rule number  of M at each node and deletes whatever 
subtrees M deletes in that rule. F rom each rule number,  M s generates the 
output  contained in the right side of the rule. 

Order the rules of R. I f  R contains m rules, l e t / "  = {r 1 ..... r,~} be a set of m 
distinct new ranked symbols. For i = 1,..., m, the rank of r~ is k if the right side 
of rule i contains occurrences of exactly k distinct variables (symbols of the form 
xj). Let  1141 = ({q}, 27,/~, R1, {q}) be a bot tom-up transducer, where 

R 1 = {u --* r~ I the right side of rule i contains no variables} 
u {u -+ ri[x~ 1 ,..., * J  1 k > 0 and the variables occurring in 

the right side of rule i are , q  ..... x~ k , l ~ il < "'" < ii~}. 
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Let M 2 = ({q}, F, A, R z ,  {q}) be a bottom-up transducer, where 

R2 = {ri --~ u l u is the right side of rule i and u a A,} 
t_) {(ri,  q,..., q) --+ u I if the right side v of rule i contains distinct 

variables xil ,..., xi~ , 1 <~ i 1 < "" < i s , then u is obtained by 

replacing each xij in v by xj}. 

I t  is straightforward to prove by induction on the depth of s that u ~ M(s) if and 
only if there exists t ~ Ml(s  ) such that u ~ M2(t ). Therefore, T(M)= 
T(M2) o T(M~). | 

THEOREM 15. For every n ~ O, i f  D~ C U~+I , then U~+ 1 C D~+ 1 . 

Proof. We will prove that for any family G of tree languages closed under 
one-state linear bottom-up transductions, if G CDO(G) ,  then D O ( G ) C  

Subr(D0, DO(G)).  The theorem follows by setting G = D,,,  since U,,+I = 
DO(D~) : DO(G) and SubT(Do, DO(G)) = SubT(Do, Un+l) C_ SubT(Do, Dn+a) _C 
Dn+ 1 by Theorem 7. 

So let G be a family of tree languages closed under one-state linear bottom-up 
transductions. Suppose T ~ DO(G)  - -  G, T C_ 27. .  From T, we construct a tree 
language E ~ Subr(Do, DO(G)) - -  DO(G).  

Intuitively, E is obtained from T by substituting chains containing any 
number of b's at the leaves of T, where b is a new symbol. In order to demonstrate 
that E ~ D O ( G ) = F D O B ( G )  (Proposition 14), we assume initally that 
E ~ DO(G), and obtain a contradiction by exploiting the fact that bottom-up 
transducers copy subtrees after producing output. In particular, we find a 
subset V of E such that all the subtrees of certain nodes of trees in V are distinct. 
Since copying by bottom-up transducers results in two or more identicaI sub- 
trees, we show that any deterministic nondeleting one-state bottom-up trans- 
ducer generating E from a tree language in F must generate some set Z, 
V C Z C E, by using only linear rules. Thus, Z ~ G. Finally, T can be recovered 
from Z by a one-state linear transduction, implying that T ~ G, which contradicts 
the choice of T ~ G. 

We begin by constructing E from T. Let b and a be new symbols of ranks 1 
and 0, respectively. For each c ~ 27o, let c 1 be a new symbol of rank 1. Let 
f '  = 2J k3 {a, b} (3 {q [ c ~ 22}. For each c ~ 220, let W c be the smallest set of trees 
such that q[a] ~ We ,  and for each tree q[t] E W e ,  q[b[t]] ~ W e . Clearly, each 
W e is a recognizable set. 

Set E = T(c : We [ c ~ 270). Since T a DO(G),  E E Sub(D0, DO(G)).  We 
obtain a contradiction from supposing that E is also in DO(G). 

Suppose E ~ DO(G).  By Proposition 14, DO = F D O B  o DOLB.  Since G is 
closed under one-state linear bottom-up transductions, there exist a tree language 
S ~ G, S C A , ,  and a full total deterministic one-state bottom-up transducer 
M = ({r}, A, F, P, {r}) such that E ~ M ( S ) .  
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Let  p denote the maximum number  of symbols in the right side of any rule. 

Consider  the subset V of E, defined by  

V -~ {t E E I if t = ultlu 2 "" umt~um+l, where each t~- e W, for some c and 
each u~- ~ (Z' k) /7)* ,  then for i 5a j ,  ti and tj differ in length (as strings) 
by at least p + 1 symbols}. 

In  particular,  consider a computat ion of M on a tree s ~ S with output  u ~ V. 
Suppose that a nonlinear rule y - ~  z is applied during this computation. For  
some i, z contains at least two occurrences of xi • When  this rule is applied, some 
tree t is subst i tuted for each occurrence of xl in z in obtaining the output  w 
from this step. Consequently,  an applicat ion of this nonlinear rule results in 
one of the following two situations, according to whether or not t ~ W c for some 

C @ z ~  0 • 

(1) I f  t ff W c for some c ~ 20 ,  suppose z ~ zlxiz~xiz 3 . Since a tree in W, 
has no symbols of rank greater than one, but  z does, at least two subtrees Yl 
and Y2 in Wc are generated in this step, such that t is a subtree of each of them. 
M6reover,  neither Yl nor Y2 contains more than I t I + P symbols, since z con- 
tains at most p symbols, but  each contains at least [ t [ symbols. 

(2) I f  t ~ We,  then t has a proper  subtree in We, for some e a Z' 0 . Copying 
t causes the output  to contain two identical trees in Wc • 

Since M is full and total, both of the above cases force the final output  u from 
the computat ion not  to be in V. We conclude that  M never applies a nonlinear 
rule in a computat ion which generates a tree in V. Therefore,  if 21//1 is the one- 
state linear bo t tom-up  transducer obtained by  deleting all nonlinear rules from 
M, V C MI (S  ) C_ M(S) .  

Final ly we construct a one-state linear bot tom-up transducer M 2 such that 
M2(M~(S)) = T. In  particular, let M 2 = ({p}, F, X, R2,  {p}) where R 2 = 

{~-~(p, ~)1 c ~z0} u { ( q , p ) - , ( p ,  ~) r ~ ~2o} u {(b, p) ~ (p, x~)} w {(~, p,..., p ) -+  
(p, d[xl,..., xn]) } n > 0, d e X~}. All that M~ does to a tree in M ( S )  is to erase all 
of  the a's and b's and change c~'s back to c's. Thus,  it  is clear that M2(M~(S)) C_ T. 
On the other hand, for every t ~ T, t(c : We [ c ~ 270) n V = ~ .  Consequently, for 
every t e T, there exists u ~ V C MI (S  ) such that M 2 ( u ) =  t. Thus,  T = 
JVI2( M~( S) ). 

Since M 1 and M e are one-state linear bo t tom-up transducers and F is closed 
under  such transductions, T ~ G. But T was chosen so that  T ~ G. Therefore,  
the assumption E ~ DO(G) is false. We conclude that  E ~ Sub(Do,  DO(G)) - -  
DO(G). II 

The  above proof  can be modified to obtain the corresponding theorem for 
the Y(D) --  Y (U)  hierarchy. 

THEOREM 16. For every n ~ O, {f Y(D,~) C Y(U~+:), then Y(Un+I) ~ Y(D~+:). 



262 BRENDA S. BAKER 

Proof. Let  L z be any language in Y(U~+I) - -  Y(D,~), L~ C_ Zo*. From L 1 we 
construct a language L~ e Y(D~+a) - -  Y(Un+I).  In  particular,  let a be a new 
symbol, and let h: ( Z  o u {a})*-+ Zo* be the homomorphism determined by 
h(a) = e, h(b) = b for b ~ Z' 0 . Set L 2 = h-X(L~). Since Y(D~+~) is closed under  
inverse homomorphism,  L a ~ Y(Dn+I). 

We will obtain a contraduction by  assuming that L~ ~ Y(U,~+I ). Suppose 

L2 ~ Y(U~+~). Since U,~+I = DO(Dn) ,  D O  = F D O B  D O L B ,  and D~ is closed 
under  linear transductions,  U~+ 1 = F D O B ( D ~ ) .  Therefore,  for some S E D~ 
and some full determinist ic bot tom-up transducer M ,  L 2 = Y ( M ( S ) ) .  Let  
W = M ( S ) .  

Let  V be the subset of W defined by  

V -~ {t ~ W I if  Y( t )  = u~aqu~ "" umai"um+x, where each u~. ~ Z0* , 

then for k ~= j ,  f~ v~ it}. 

Consider a computat ion of M on a tree s ~ S with output  u ~ V. Suppose a 
nonlinear rule y --~ z is applied during this computation. For  some i, z contains 
at least two occurrences of x i . When  this rule is applied, some tree t is sub- 
st i tuted for each occurrence of xi in z to obtain the output  at this step. Moreover,  
this output  cannot be deleted later in the computat ion since M is nondeleting 
and total. I f  Y(s)  contains a substring ba~c, with b, c ~ 270, the final output  u 
contains at least two occurrences of ba~c in its yield, and therefore is not  
in V. 

We will construct  a linear bot tom-up transducer N which imitates computa-  
tions of M which never copy more than one symbol of Z o ,  except that  N 
generates no a ' s :  that  is, if M outputs w, N outputs h(w). 

The  new transducer N will operate by  using its states to keep track of whether 
0, 1, or more symbols in Z 0 have been generated in each output  subtree. Let  
Q '  = Q kd (Z  0 td {e, 2}). Let  r denote the maximum number  of symbols occurring 
in the right hand side of any rule. For  each k, 0 ~ k ~ r, let b k be a new symbol 
of rank k; let /2 denote the set consisting of these new symbols. Let  M = 
(Q', A, 2J L3 f2, R' ,  F × (2J 0 k3 {2}) be a bot tom-up transducer,  where R '  is 
constructed as follows. 

Fo r  each rule (b, q i , . . . , q n ) ~ ( q , u ) a R ,  where n ~ 0 ,  and for each 
c 1 ..... % E Z 0 w {2, e} such that c 5 4= 2 whenever x~ occurs more than once in u, 
a rule (b, (ql ,  q),--., (q~, c~) -+  ((q, c), u') is added to R' ,  where c and u' are 
obtained as follows. Let  g: (Z  w {a} w / 7  u X)*  ~ (Z  o u X)*  be a homo- 
morphism determined by  g(b) ~- b for b c Zo , g(xj)  = xj  if  x~- occurs at most  
once in u, g(xj)  = c s i fx j  occurs at least twice in u, andg(b) = e if b ~ (Z - -  Z0) ~A 
{a} U / / .  Then  

(1) i fg(u)  = e, u'  = b o and c = e; 

(2) i fg(u)  = d ~ Zo , U' =- c = d; 
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(3) if g(u) = f ~ ' "  d ~ Z o * ,  m > 0, each d ~ e X  o U X,  and g(u) ¢ Xo, 
then u' = bm[d 1 ,..., d~] and c = 2. 

Intuitively, N enters state e whenever M has output no symbols in 270 . 
N outputs a place-marking symbol b 0 which will be deleted later if symbols in Z' o 
are generated. I f  M has output exactly one symbol c e 270, N outputs c and 
enters state c. I f  M has output more than one symbol of 270, and has never 
copied a subtree containing more than one symbol of 270, then N enters state 2 
and outputs individually any symbols which M copied. If  M tries to copy a 
subtree containing more than one symbol in 270, N ' s  action is undefined. 

I t  is straightforward to prove by induction on the depth of s that for 
w a N((q, c), s), either (1) w = b 0 , c = e, and e a h(Y(M(q,  s))) or (2) Y(w) = 
h(Y(w'))  for some w' a M(q, s) and either c --  2 and Y(w) contains two or more 
symbols of X o or c = h(Y(w)) e Z 0 . Therefore, Y(M(S) )  C h(Y(M(S)) )  --  L t . 

On the other hand, it is easy to see that if w is generated by M in a computation 
which never copies more than one symbol of Z'o, there is a computation of N 
which generates a tree y with Y(y)  = h(Y(w)). Therefore, L~ C_ h(V) C Y(N(S)) .  | 

The above theorem may be applied to obtain an example of a language in 

Y ( D 1 ) -  Y(U1). 

COROLLARY 17. Y(Do) ~ y (ua )  C y(D1). In particular, L 1 = {b ~ ] n > 0} e 
Y(Ut)  --  Y(Dt) and L2 ~- {w ~ {a, b}* I for some n > O, w contains 2" b's} 
Y ( D ~ ) -  Y(U~). 

Proof. Since Y(Do) is the family of e-free context-free languages, L 1 6 Y(Do). 
I t  is trivial to show that L 1 e Y(U~). By the proof of Theorem 16, L2 = h-~(L1) 
Y(D1) -- Y(U1), where h is a homomorphism which erases a 's and is the identity 
on b's. | 

We now apply various results from this section and the previous section to 
obtain more information about the number of distinct families in the D - U  
hierarchy. 

LEMMA 18. For n > O, i f  D~ = U . ,  then for m ~ n, D~ = U~m = U~. 
For n >/O, i f  U.+I = D . ,  then for m > n, D.~ = U~ = Dn.  

Proof. For n > O ,  if D ,  = U~, then U,+ z = D O ( D ~ )  = D O ( U , ) - =  U,~ 
(by Proposition 2). 

Similarly, if U,+ 1 = D , ,  then D,+  z = NLT(U,+I)  = N L T ( D , )  = Dn (by 
Proposition 3). The lemma follows by induction on m. U 

LEMMA 19. Either for every n >~ 0, D ,  C U,+I C D , + I ,  or there exists n > 0 
such that for i < n, Di C Ui+l ~ Di+l and for i > n, D i = Us = D ,  . Therefore, 
i f  the D - U  hierarchy is finite, it contains an odd number of distinct families. 
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Proof. Let M be the set of all m ) 0 such that Dm = U~+ 1 . I f  M :  ~ ,  
then by Lemma 18, for every n >/0,  Dn C Us+l 2 Dn+l and the hierarchy is 
infinite. If  M =/= 25, let k be the least element of M, so that Dk = U~+I • Since 
D o C U1, k / >  1. By choice of k, Dk-~ C U~. But then, by Theorem 15, Uk C D k. 
Therefore, by Lemma 18, for i < k, D i C Ui÷l C Di÷l.  Moreover, by Lemma 18, 
for r e > k ,  D~ = U~ = D ~ .  Finally, since D 0 C U  1 C D  1 C . . . C U e ~ D ~ ,  
and all other families in the hierarchy are equal to Dk,  the hierarchy must 
contain an odd number of distinct families. | 

Now, we can show that the D-U hierarchy must contain at least five distinct 
families. 

LEMMA 20. D o ~ U I _ ~ D 1 C U 2 ~ D s .  

Proof. Ogden and Rounds (1972) have shown that D o C D 1 C D s . If D 1 = U~, 
then by Lemma 18, D 2 = U 2 = D 1 . Therefore, D 1 ~ U2, and by Theorem 15, 
U s C D  s . B u t b y L e m m a 1 8 , U s C D  simpliesthatD 0 C U  1 C D  1 C U  2 C D  2. | 

In Section 2 it was shown that for every n, D n is closed under tree substitution. 
I t  seems unlikely that any U~, n ~ 0, is closed under tree substitution, for 
reasons discussed in Section 2. In fact, the proof of Theorem 15 showed that if 
D s C Un+I, then Un+ 1 C Subr(D0, Un+l). Therefore, we have the following 
xesult. 

LEMMA 21. For every n ~ 0, D~ C U,,+i C_ Dn+l if  and only i f  U~+ x is not 
closed under tree substitution. 

The closure of each D~ under deterministic one-state transductions and the 
closure of each U~ under linear transductions yield a result similar to Lemma 21. 

PROPOSITION 22. For every n > O, Un C_ Dn C Us+l i f  and only if D~ is not 
,closed under deterministic one-state transductions. For every n ~ 0, Dn ~ Un+l C 
Dn+l i f  and only i f  U,~ is not closed under linear top-down transductions. 

Proof. For each n > O, D~ = NLT(U,~) and Us ~ DO(D~-I). Also, for 
each n ~ 0, D~ is closed under linear top-down transductions (Proposition 3) 
:and Un+ 1 is closed under deterministic one-state transductions (Proposition 2). 
Therefore, for n 2> 0, NLT(Un)  = Us if and only if Us = D~ -- NLT(U~),  
.and for n >/O, DO(D~) ~- D~ if and only if D~ = Un+~ = DO(D~). | 

COROLLARY 23. D O and D 1 are not closed under deterministic one-state trans- 
ductions. U 1 and U 2 are not closed under linear top-down transductions or under tree 
substitution. 

The closure properties of the families in the D-U hierarchy are summarized 
in Table 1. 
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TABLE 1 

Closure Properties of the Tree Heirarchy. "Yes" Indicates the Family is 
Closed under the Operation. "No" that the family is not Closed under the Operation 

Dn,n >~ O, if Un,n > O, if 
U D.  

D,~CU~+~ U~D,~ ~=o 

Linear top-down yes no yes 
and bottom-up Proposition 3 Proposition 22 Theorem 9 
transductions 

Deterministic no yes yes 
bottom-up Proposition 22 Proposition 2 Theorem 9 
transductions 

Deterministic yes yes , yes 
one-state Proposition 22 Proposition 2 Theorem 9 
transductions 

Tree substitution yes no yes 
Theorem 7 Lemma 21 Theorem 9 

Tree substitution into yes yes yes 
the recognizable sets Theorem 7 Theorem 8 Theorem 9 

Intersection with yes yes yes 
recognizable sets (Ogden and Proposition 5 Theorem 9 

Rounds, 1972) 

Techniques similar to the above may be applied to the Y(D) - Y(U) hierarchy. 

LEMMA 24. For every n >/O, Y~(Dn) C Y~(Un+I) C Y,(D~+I) if and only if 
Y,(Un+I) is not closed under inverse homomorphism. 

Proof. For  each n, Y,(D~) and Y,(Dn+I) , and therefore Y(D~) and Y(D~+t) 
as well, are closed under  inverse homomorphism (Theorem 13). Thus,  if Y(U~+I) 
is not  closed under  inverse homomorphism,  Y(Dn)~ Y(U,~+I) C Y(Dn+I). 
Conversely, if Y(D~)~ Y(U~+I), then Y(U~+I) is not closed under  inverse 
homomorphism by the proof  of Theorem 16. | 

The  results in this paper  indicate that the families Y~(Dn) and Ye(U~) are 
"na tu ra l "  families of languages, since their closure propert ies are similar to 
those of other "na tura l "  families like the context-free languages and context- 
sensitive languages. The  differences in the known closure propert ies of the top-  
down and bot tom-up families shed light on the conjecture that the hierarchy 
is infinite. 

Perrault  (1975) announced the result that Y(D1) C Y(U~). By Theorem 16, 
Y(U2) C Y(D2). Therefore,  we have the following theorem. 
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THEOREM 25. Y(Do) ~ Y(U1) C Y(DI) C_ y(U2) C Y(D~). 

Finally,  we no te  that  for every  n, Y(D~) and Y(Un) are proper ly  contained in  

the  family  of context-sensi t ive  languages (Baker, to appear).  
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