
INFORMATION AND CONTROL 37, 241-266 (1978)

Tree Transducers and Tree Languages*

B~ENDA S. BAKER

Bell Laboratories, 600 _Mountain Avenue, ~Ylurray Hill, New Jersey 07974

Tree transducers (automata which read finite labeled trees and output finite
labeled trees) are used to define a hierarchy of families of "tree languages"
(sets of trees). In this hierarchy, families generated by "top-down" tree trans-
ducers (which read trees from the root toward the leaves) alternate with families
generated by "bottom-up" tree transducers (which read trees from the leaves
toward the root). A hierarchy of families of string languages is obtained from the
first hierarchy by the "yield" operation (concatenating the labels of the leaves of

• the trees). Both hierarchies are conjectured to be infinite, and some results are
presented concerning this conjecture. A study is made of the closure properties
of the top-down and bottom-up families in the hierarchies under various tree and
string operations. The families are shown to be closed under certain operations
if and only if the hierarchies are finite.

INTRODUCTION

Most automata which have been studied in formal language theory read
strings. However, Doner (1970) and Thatcher and Wright (1968) discovered

that finite-state automata could be generalized to read finite labeled trees;
instead of reading a string from left to right, a finite tree automaton reads a tree
from the leaves toward the root ("bot tom-up") or from the ~root toward the

leaves ("top-down"). A set of trees ("tree language") accepted by a finite tree
automaton is called a recognizable set. By generalizing proof techniques of
finite string automata, Donor and Thatcher and Wright proved that the family
of recognizable sets is closed under union, intersection, complement, and
generalized forms of concatenation and Kleene +.

Associated with each tree t is a string called its yield (denoted by Y(t)),
obtained by concatenating the labels of the leaves of t from left to right. Thus,
the yield operation generates a string language from each tree language. Now

* This research was done while the author was at Harvard University. This research
was supported in part by the National Science Foundation under Grant NSF-GJ-30409.
Part of the research was done while the author held a National Science Foundation
Graduate Fellowship. Some of the results were included in the author's doctoral disserta-
tion, Tree transductions and families of tree languages, Harvard University, 1973, and
were announced at the Fifth Annual ACNI Symposium on Theory of Computing, May,
1973.

241
0019-9958/78/0373-0241502.0010

Copyright © 1978 by Academic Press, Inc.
All rights of reproduction in any form reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82828941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

242 BRENDA S. BAKER

such a string language is the yield of a recognizable set of trees if and only if it
is an e-free context-free language (i.e., a context-free language not containing
the empty string) (Thatcher, 1970). Therefore, the yields of recognizable sets
are closed under union, concatenation, Kleene+, substitution, and certain other
operations (Hopcroft and Ullman, 1969).

Rounds (1968) and Thatcher (1970) added output functions to tree automata
to obtain "tree transducers." A tree transducer reads an input tree either top-
down or bottom-up, and generates a tree as output. Recognizability is not
preserved by either top-down or bottom-up tree transductions (Thatcher,
1973). Moreover, neither the class of top-down transductions nor the class of
bottom-up transductions is closed under composition (Thatcher, 1970 and
Engelfriet, 1975). Therefore, the composition of tree transductions may be
applied to recognizable sets of trees to obtain more complex tree languages.
Let D O denote the family of recognizable sets. For each n, let Dn denote the
family of tree languages generated from the recognizable sets by the composition
of n top-down tree transductions. Also, let U~ denote the family of tree languages
generated from the recognizable sets by the composition of n bottom-up
tree transductions. Section 1 proves the surprising result that for each n,
D n _C gn+ 1 C On+ 1 ; that is, the families generated by the top-down transductions
alternate with the families generated by the bottom-up transductions in a single
hierarchy. We conjecture that for each n, D~ C U~+ 1 C D~+I, so that the
hierarchy is infinite; in Section 4 a proof is given that D O C U 1 ~ D I C U2 ~ D2.
Taking the yield of each family in this D-U hierarchy produces a hierarchy of
families of string languages; for each n, Y(D,~) C Y(Un+I) C Y(D~÷I). Again,
we conjecture that each inclusion is proper; in Section 4 we prove that Y(Do)
Y(U1) ~ Y(D1) ~ Y(U2) C Y(D2).

It is natural to wonder what properties all top-down (bottom-up) families
share simply b~ause they are generated by the same kind of tree transducer
and how the differences between top-down and bottom-up tree transducers are
reflected in properties of the families in the hierarchies.

Section 2 shows that certain compositional properties of top-down and
bottom-up tree transducers translate into closure properties of the families in
the hierarchies. By this method, it is shown that each family D n is closed under
transductions performed by "linear" tree transducers (tree transducers which
cannot generate more than one output subtree from any input subtree), while
each family Un is closed under deterministic bottom-up transductions. The
ability of top-down transducers (but not bottom-up transducers) to generate
several distinct output subtrees from the same input subtree is exploited to
show that each Dn is closed under tree concatenation and a related operation
called tree substitution. Each U~ is closed under tree substitution into the
recognizable sets (a restricted form of tree substitution), but results in Section 4
prove that at least U 1 and U2 are not closed under unrestricted tree
substitution. On the other hand, all the families in the hierarchy are closed

TREE TRANSDUCERS AND TREE LANGUAGES 243

under intersection with recognizable sets (Ogden and Rounds, 1972, and
Section 2).

In Section 3, it is shown that the families Y(D~) and Y(Us) are closed under
many string operations which have been commonly studied in formal language
theory. In particular, the "extended" yield (i.e., the yield modified by adding
the empty string) of each D~ and Us is closed under union, concatenation,
Kleene*, homomorphism, intersection with regular sets, and substitution into
context-free sets. In addition, the extended yield of each Ds is closed under
inverse homomorphism and substitution.

Section 4 presents some results bearing on the conjecture that the hierarchies
are infinite. In particular, for every n, if D n ~ Us+l, then Un+l C Ds+l • More-
over, for every n, if Y(Dn) C Y(Un+~) , then Y(Un+~) C Y(Ds+l). I f it could be
shown that for every n, if U~ C D n then D~ ~ Us+l, and if Y(Us) C Y(Dn) then
Y(Ds) C Y(U~+I) , we would have a proof that each hierarchy is infinite.
Remarkably, the differences in the known closure properties of the top-down
and bottom-up families noted above also are related to the conjecture that the
hierarchies are infinite. I t is shown that for every n, D s C Un+ 1 C Dn+ 1 if and
only if Us+l is not closed under tree substitution. Also, for every n, Y(D~)2
Y(U~+I) C Y(Ds+I) if and only if Y(U~+I) is not closed under inverse homo-
morphism. Although it is not known whether either hierarchy is finite, a proof
is given that if the D - U hierarchy is finite, it must have an odd number k of
distinct families, with K >~ 5. Recently, Perrault (1975) announced the result
that Y(D1) C Y(U2). This result is used to show that the Y(D) -- Y(U) hierarchy
contains at least five distinct families.

The results in this paper indicate that tree transducers generate "natural"
families of tree languages, in that these families are closed under some interesting
operations while their yields are closed under many of the same string operations
as the "natural" families of regular, context-free, and context-sensitive languages.

SECTION 1

Finite labeled trees may be defined formally as strings constructed from
"ranked" alphabets. An alphabet Z is ranked by a function r: 2J ~ N which
assigns a rank to each member of 2:. For each n, 2J~ =- r-~(n) denotes the set of
symbols in Z which have rank n. Intuitively, the rank of a symbol is the number
of sons it has when it labels a node in a tree.

Let H denote the set containing left and right brackets and comma. To avoid
possible confusion, ranked alphabets are not allowed to include elements of /7.
For a ranked alphabet Z, the set Z , of (finite labeled) trees over the alphabet Z
is the least set of strings in (27 k3 H)* such that

(1) Z 0_CZ,, and

(2) for n > 0, b c Z s , and t l , t 2 , . . . , t n ~ Z , , b[tl, t~ ts] ~ Z , .

244 BRENDA S. BAKER

By convention, if t - = bit 1 ,..., tn] ~27 . , it may be assumed that n > 0,
b ~ Z n , and t 1 ,..., t n ~ Z . , unless otherwise specified.

An important parameter of a tree is its depth, which is defined inductively
as follows:

(1) For b ~ Z o , depth(b) = 1;

(2) For t = b[tl, . . . , t~] ~ Z , , depth(t) = 1 + max{depth(ti) I 1 ~ i ~ n}.

Associated with each tree t is a string called its yield and denoted by Y(t).
The yield of a tree is obtained by concatenating the labels of its leaves from
left to right according to the following inductive definition:

(1) ~or b E Zo, Y(b) = b;

(2) For t = b[t 1 ,..., t,~] ~ Z . , Y(t) = Y (q) Y (t~) " " Y(t~) E Zo*.

For a set of trees T, Y (T) = {Y(t) l t ~ T}. I f F is a family of tree languages,
Y (F) ~-- {Y(T) I T ~F}.

For the purpose of informal discussion, trees may be represented in the usual
way by directed ordered graphs, drawn so that the "root" of the tree is at the
" top" and the "leaves" of the tree are at the "bot tom." With this convention,
a tree transducer may read trees either " top-down" (from the root toward the
leaves) or "bot tom-up" (from the leaves toward the root). We describe top-down
transducers first.

Intuitively, a top-down tree transducer generates output in steps as it reads
from the root toward the leaves of a tree. Depending on its current state at a
node ~ and the label of ~, the transducer generates an output subtree u and
starts 0, 1, or more subcomputations on each subtree of ~. The output subtrees
generated from the subtrees of ~ are substituted at specially marked leaves of u.
I f o~ has no subtrees or if no subcomputations are started on subtrees of c~, then
this subcomputation is complete. The transducer has completed its computation
when all subcomputations are complete. Note that the number of subcomputa-
tions may grow exponentially with the size of the input tree. In general, a top-
down tree transducer may be nondeterministic so that it has several possible
outputs at some nodes and possibly no defined output at other nodes.

The central mechanism in the action of tree transducers is the insertion of
subtrees at specially marked leaves of another tree. This process of "tree sub-
stitution" is defined as follows.

DEFINITION. Let Z be a ranked alphabet, with A o _C 27 o . For each d ~ A0,
let Ta C Z . . For t ~ Z . , the set of trees obtained by substituting trees from T a
at leaves labeled d, for each d ~/ t o , is written t(d: T a [d ~ Ao) and is defined
inductively as follows:

(1) If t E Z 0 - - / t o , then t(d: T a l d E/to) = {t};

(2) I f t e A0, then t(d: T a I d E/to) = Ta ;

TREE TRANSDUCERS AND TREE LANGUAGES 245

(3) I f t - - b[tl,... , tn] ~ 27., then

t(a: Ta I d e Ao) = {bEul ,..., u,]l for 1 4 i ~ n, u~ e h(d: Ta [d~ A0)}.

I f each Ta is a singleton set, i.e., Ta = {ta} for some tree ta, we abuse the
above notation by writing simply t(d: ra id ~ Ao).

EXAMPLE. If t =
h[b, b], then t(s: t s]
{h[a, b], h[a, a]} and
the four trees:

g[f [hi, c, g[d, b, d]], A 0 = {b, e), and tb = h[a, a], t c ~--
s ~ Ao) -~ g [f [h[a, a]], h[b, b], g[d, h[a, a], d]]. I f Tb =
Tc ~ {bib, b]} then t(s: T, is e Ao) is the set containing

g [f [h[a, b]], h[b, b], g[d, h[a, hi, d]],

g[f [h[a, a]], h(b, b], g(d, h[a, hi, d]],

g[f [h[a, b]], h(b, b], g[d, h[a, a], d]],

g [f [h[a, a]], h[b, b], g[d, h[a, a], d]].

As described above, the output tree generated in a step of a computation of a
top-down tree transducer contains markers which specify which sons of the
current input node to read next and which states to continue in. The sons are
specified by means of a special infinite set of symbols X ~ {xi] i = 1, 2,...},
where xi =/= x~ for i @ j. Thus, xi refers to the ith son of the current input node.
I f a tree transducer has a set of states Q, then by convention Q × X will be a set
of symbols of rank 0. For each n > 0, let Xn ~ {Xl ,..., x~}, and let X o -~ ~ .

DEFINITION. A (nondeterministic) top-down tree transducer is a 5-tuple
3/1 = (Q, 27, A, R, Qo) where

(1) Q is a finite set of states,

(2) 27 is a finite ranked alphabet called the input alphabet,

(3) A is a finite ranked alphabet called the output alphabet,

(4) Qo __c Q is a set of starting states, and

(5) R is a finite set of rules,

R c U (Q x 27.) x (.a v (Q x x @ , .

A rule is written in the form (q,b)--+ w, where q e Q , b e Z n , and
~ (A u (g x x n)) , for some n.
The behavior of a top-down transducer is defined inductively in terms of the

output produced from a tree starting in state q.

DEFINITION. Let 21/I = (Q, z', A, R, Q0) be a top-down tree transducer, and
let q a Q. For a tree t e Z ' , , the set of trees output from t by M starting in state q
is denoted by M(q, t) and is defined inductively as follows.

246 BRENDA 8. BAKER

(1) I f t = b e 20 , then M(q, t) -~ {w I (q, b) -~ w e R};

(2) I f t = bit1 ,..., tn] E 27,, then

M(q,t) = U w(<p,x~>:M(p, t j)] p e Q , 1 ~ j < ~ n) .
(q,b)-->weR

We illustrate top-down transducers in the following examples.

EXAMPLE. Let 27 = {b, c} be a ranked alphabet, in which b has rank 2 and c
has rank 0. Let A = if , g, d} be a ranked alphabet in which f and g have rank 2
and d has rank 0. Then M = ({q0}, 27,/1, R, {q0}) is a nondeterministic top-down
tree transducer, where

R = {qo, b) --*f[<qo, x~>, <qo, x~>], (go, b) ---*g[<qo, xa>, <qo, x,>], (qo, c) --* d}.

At each node labeled b, M generates either an f or a g and starts two computa-
tions on the left subtree. Therefore, if s is a tree in Z , such that the path from
the root to the leftmost leaf has exactly k nodes, then M(qo, s) is the set of all
balanced binary trees in A* of depth h.

EXAMPLE. An arithmetic expression involving addition, multiplication,
a constant c, and a variable y may be represented by a tree over the alphabet
Z = {+ , *,y, c}, where + and * have rank 2 and y and c have rank 0. We
construct a deterministic top-down transducer M which takes the formal
derivative with respect to y of the expression represented by an input tree in Z . .
Let A = Z La {1, 0}, where 1 and 0 have rank 0. Let M = ({D, I}, Z, A, R, {D})
be a top-down transducer, where R contains the following rules:

(D, +) --~ +[<D, xl>, <D, x2>],

(D, *) --* +[*[<D, xl> , <I, x2>], *[<I, xl>, <D, x2>]],

(D , y) - - + I , (D , c) - + 0 , (I,a)-->cr for a e { y , c } , and

(I, ~) --. ~[<~, x~>, <I, x~>] for ~ ~ { + , *}.

For t = +[*[c, y], y], M(t) = + [+ [* [0 , y], *[c, 1]], 1]. In general, for a tree
t m Z . , M(I, t) = it} and M(D, t) is the singleton set containing the tree
representing the formal derivative of the expression represented by t.

Next, we describe the behavior of bot tom-up tree transducers. A bo t tom-up
tree transducer reads an input tree t by starting at the leaves and working
upward toward the root of t. At each leaf ~, the label of e¢ determines the possible
output trees and states to be entered; the transducer outputs a tree and enters
some state which is then associated with c4 When all the sons of a node 13 of
rank greater than 0 have been read, the label of 13 and the states associated with
the sons offi determine an output tree u and a state q; the transducer substitutes
the output trees produced from the subtrees of 13 at specially marked leaves of u

TREE TRANSDUCERS AND TREE LANGUAGES 247

and state q becomes associated with ft. The output generated from the /th
subtree of fi may be substituted at 0, 1, or more leaves of the tree output at ti-
The computation ends when the transducer has read the root of the input tree.
I t is an accepting computation if the transducer has entered a final state at the
root.

Unlike a top-down transducer, a bottom-up transducer reads each input node
exactly once. Instead of starting several computations on a subtree and using
the output from each exactly once, the bottom-up transducer generates one
output tree from an input subtree and makes copies of it. As the transducer can
make several copies of output trees at each input node as it works its way up
toward the root, the size of the output tree may grow exponentially with the size
of the input tree.

DEFINITION. A (nondeterministic) bottom-up tree transducer is a 5-tuple
M = (Q, Z , A, R, F), where

(1) Q is a finite set of states,

(2) 27 is a finite ranked alphabet called the input alphabet,

(3) A is a finite ranked alphabet called the output alphabet,

(4) F _C Q is a set of accepting or f ina l states,

(5) R is a finite set of rules,

R c U (& x g'9 x (O x (.a v x,~),).
,n~>O

A rule is written in the form (b, ql ,..., qn) -+ (q, t), where b 6 27n, n) 0 ,
q, q l , . . . , q n e Q , and t ~ (A W X n) , .

The behavior of a bottom-up transducer on an input tree is defined inductively
as follows.

DEFINITION. Let M = (Q, 27, A, R ,F) be a bottom-up tree transducer, and
let q ~ Q. For a tree t E 2; ' . , the set of trees which M can output from t ending
in state q is denoted by M(q, t) and is defined inductively as follows:

(1) For b ~ Go, M(q , b) = {w I b--~ (q, w) 6 R } ,

(2) For t = b[t~ t~] z Z , ,

3//(q, t) • {v I for some rule (b, ql ,..., qn) --+ (q, w) ~ R,
some i, 1 ~ i ~ n, and some ui c M(q i , ti), v c W (x i : ui) }

Note that in the second part of the above definition, the same tree u i in
M (q i , ti) is substituted at every occurrence of x i in w. If M (q i , ti) = Z, then
no output can be generated from b[t 1 ,..., t~] even if xi does not occur in the
right side of the rule (b, ql , q~) - * (q, w).

248 BRENDA S. BAKER

EXAMPLE. Let Z = {b, c} be a ranked alphabet with b of rank 2 and c of
rank 0. Let A = {f, g, d} be a ranked alphabet in w h i c h f and g have rank 2 and
d has rank 0. Let M = ({q0}, Z, A, R, {q0}) be a bot tom-up transducer, where

R = {e--+ (qo, d), (b, qo, qo) --+ (qo , f [x , , xl]), (b, qo, qo) ---*g[xl, x~]}.

Thus, at each node labeled b, M generates either an f or a g and makes two
copies of the subtree it has already generated from the left input subtree. I f s is
a tree in Z , such that the path from the root to the leftmost leaf has exactly k
nodes, then

M(s) = {t e A . I every path from the root to a leaf in t has exactly k
nodes and the same sequence of labels}.

Also, Y(M(s)) = {d~'-~}.

DEFINITION. Let M = (~, Z, A, R, P) be a top-down or bot tom-up tree
transducer. For a tree t, the set of all trees output from t by M is M(t) =
~)~,, M(p, t). For a set T of trees, the set of trees generated from T by M is
M(T) = Ut~r M(t). The transduction performed by M is a relation consisting
of input-output pairs of M, where _[_ denotes the lack of any output:

T(M) = {<s, t) e27 , × A , I teM(s)} tJ{(s, I) I s ~ 2 7 , , M(s) = ~}.

T h e special symbol _[_ is used so that T(M) specifies all input trees, including
the ones without any output.

Since tree transductions are relations, they may be composed. Thus,

T(Me) o T(M~) ~ {<s, u)j for some t, <s, t} ~ T(M~) and (t, u) c T(M~)}.

I f B and C are classes of transductions, B o C = {T~ o Tc I Tc e C and Ts E B}.
Also, B l = B , a n d f o r n ~> 1, B ~ + I = B o B n.

Several restrictions on tree transducers are important in this paper. A top-down
or bot tom-up transducer M is linear if no variable xj occurs more than once in
the right side of any rule of 214. M is full or nondeleting if for each rule of M, if n
is the rank of the input symbol in the left side, then the right side has at least
one occurrence of each x~, 1 ~< j ~< n. A top-down transducer M = (Q, Z, A,
R, Q0) is deterministic if ~0 is a singleton set and for each b ~ 27 and each q e Q,
there is exactly one rule with left side (q, b). A bot tom-up transducer M=-
(~, 27, A, R ,F) is deterministic if for each n >/ 0, each b c Z~ , and each
qt ,..., qn c ~, there is exactly one rule with left side (b, q~ ,..., qn).

The restrictions on tree transducers are abbreviated as follows: T, top-down;
B, bot tom-up; N, nondeterministic; D, deterministic; L, linear; F, full (non-
deleting) and O, one-state. For example, N T in the class of nondeterministic
top-down transductions, and FDLT is the class of full deterministic linear top-

TREE TRANSDUCERS AND TREE LANGUAGES 249

down transductions. Sir/ce D O T ~ D O B (Engelfriet, 1975) this class is generally
written as DO. Note that N T n and N B ~ denote the composition of n non-
deterministic top-down transductions and n nondeterministic bottom-up
transductions, respectively.

A deterministic bottom-up transducer M = (Q, 2:, 27, R, F) is a deterministic

bottom-up finite tree automaton if each rule is of the form b--~ (q, b) where
b ~ 2Jo, q ~ Q or of the form (b, ql ,..., q~) -+ (q, b[x~. , x.]), where b ff Z'~ and
q, ql ,..., % ~ ~. A set of trees T is recognizable if T = {s] M(s) :/: 2~} for some
deterministic bottom-up finite tree automaton M.

We conclude this section by defining a hierarchy of families of tree languages
and showing how it is generated by top-down and bottom-up transductions.

DEFINITION. Let D O denote the family of recognizable sets. For n / > 0, let
U~+~ -- DO(D~), and let D~ = N L T (U ~) .

Since the identity transduction is a total deterministic one-state linear top-
down transduction, we have defined a hierarchy of families of tree languages:
D O C U s _C D 1 C U 2 _C We will refer to this hierarchy as the D-U hierarchy.
Another characterization of the D-U hierarchy is given in Theorem 1.

THEOREM 1. For n > 0, Dn = NT~(Do). For n > 0, Un -~ NBT~(Do).

Proof. Baker (submitted for publication) and Engelfriet (1975) showed that
N T = N L T o D O while N B = D O o N L T . Therefore, for n > 0 , Dn =
NLT(DO(D~_~)) - - (N L T o DO)(D~_I) ~= NT(D~_I) . The first part of the
theorem is obtained by induction on n.

D O is closed under linear top-down transductions (Thatcher, 1973). Therefore
UI = DO(Do) = D O (N L T (D o)) = (DO o NLT)(Do) = NB(Do). For n > 1,
Un = DO(Dn_~) - DO(NLT(U~_I)) : (DO o NLT) (U~_I) : NB(U~_~). The
second part of the theorem is obtained by induction on n.

This theorem is a generalization of Engelfriet's result that U 1 = DO(Do)

(Engelfriet, 1975).
Thus, the D~ families in the D-U hierarchy are obtained by starting with the

recognizable sets and applying successive top-down transductions. Similarly,
the U~ families in the D- U hierarchy are obtained by starting with the recogniz-
able sets and applying successive bottom-up transductions. The interesting
point about the above result is that the families generated by top-down trans-
ductions and the families generated by bottom-up transductions alternate in a
single hierarchy. The top-down families D~ have been studied previously by
Ogden and Rounds (1972), who conjecture that for every n, D~ C D~+ 1 . They
were able to prove only that D O C D 1 2 D2. Engelfriet (1975) showed that
D O C U 1 C D~. For the D - U hierarchy, we make the following conjecture.

Conjecture. For n ~/0, D~ C U~+ 1 2 D~+t.
A second hierarchy, called the Y(D) - - Y (U) hierarchy, may be obtained

250 BRENDA S. BAKER

from the D - U hierarchy by the yield operation: Y(Do) C Y(Ua) _C y(D1) C_
We conjecture that each inclusion is proper for this hierarchy as well.

Conjecture. For n ~ O, Y(D~) C Y(U,~+I) C Y(D,+~).
Although the conjectures remain open, this paper proves some results

concerning the families in these hierarchies. In particular, the closure properties
of these families under various operations are studied in Sections 2 and 3, and
some results bearing on the conjectures are presented in Section 4.

SECTION 2

Many families of string languages which have been extensively studied (such
as the families of context-free languages, context-sensitive languages, recursive
sets, and regular sets) are closed under certain string operations such as homo-
morphism, concatenation, substitution, or intersection with regular sets. It is
natural to wonder whether there are any operations on trees which preserve
membership in the families in the D-U hierarchy. Some natural operations to
consider are tree substitution, intersection with recognizable sets, and various
subclasses of tree transductions. In fact, the families in the D-U hierarchy are
closed under some of these operations.

It is trivial to show that each family in the D-U hierarchy is closed under
union. Several additional closure results may be obtained by applying informa-
tion about the closure of certain classes of transducers under composition to
Theorem 1. Since DB o N B ~ N B (Engelfriet, 1975) and for n > 0, U n
NBn(Do) (Theorem 1), we have the following proposition.

PROPOSITION 2. For n > O, Un is closed under deterministic bottom-up
tr ansductions.

Engelfriet (1975) showed that the class of nondeterministic linear bottom-up
transductions is closed under composition, and that N L T o N L T = NLB. Baker
(submitted for publication) showed that N T ~.~ N L B o N T ~ for n > 1. By
(Thatcher, 1973 and Rounds, 1970), Do and D 1 are closed under linear top-down
transductions. The above observations and the fact that each D~ ~ NT~(Do)
yield closure for each D~, n > 1 under linear transductions.

PROPOSITION 3. For n >/O, D~ is closed under nondeterministic linear top-
down and bottom-up transduetions.

From the above propositions and the definition of each U~+ 1 as DO(D,) and
D~ as NLT(Un) , the relationship between the top-down and bottom-up families
in the hierarchy may be described as follows.

PROPOSITION 4. For every n ~ O, U.+I is the closure of D~ under deterministic
one-state transductions and also under deterministic bottom-up transductions. For

TREE TRANSDUCERS AND TREE LANGUAGES 251

every n > O, D~ is the closure of U n under nondeterministic linear top-down
transductions and under nondeterministic linear bottom-up transductions.

Ogden and Rounds (1972) have shown that each family D n is closed under
intersection with recognizable sets. Engelfriet (1975) showed that U 1 is closed
under intersection with recognizable sets. Thus, the following result is not
unexpected.

PROPOSITION 5. For n > 0, U,~ is closed under intersection with recognizable
sets.

Proof. If R is a recognizable set, R is the domain of a deterministic bottom-up
transducer M such that T(M) = {(t, t) [t ~ R}. For a set T a U,~, M(T) =
T n R is in U~ since U~ is closed under deterministic bottom-up transductions
(Proposition 2). |

Next, we consider closure under a restricted form of substitution called tree
concatenation.

Notation. In Section I, the notation t(d: W a l d e A o) was introduced to
represent the set of trees obtained by substituting trees in We at all leaves in t
labeled with d. For b ~ Ao, let t(b : W) denote the set of trees obtained by
substituting trees in W for all leaves in t labeled b. For a set of trees T, let
T(b : W) = {t(b : W) [t ~ T}.

DEFINITION. Let F be a family of tree languages. F is closed under tree
concatenation if for every Ta, T 2 ~F, T 1 ___ 27,, and every b ~ Zo, Tl(b : T2) ~F.

THEOREM 6. For every n ~ 0, D~ is closed under tree concatenation.

Proof. Thatcher and Wright (1968) showed that D o is closed under tree
concatenation. For every n, D n contains the recognizable sets and is closed under
linear top-down transductions (Proposition 3). We show that for any family F
which contains the recognizable sets and is closed under tree concatenation and
deterministic linear one-state transductions, NT(F) is also closed under tree
concatenation. The theorem follows by induction on n.

Let F be a family of tree languages which contains the recognizable sets and
is closed under tree concatenation and deterministic linear one-state transduc-
tions. Let Z, W ~ NT(F) with Z, W C ~ , , and b ~ X 0 . We show that Z(b : W)
NT(F) by constructing a set V in F and a nondeterministic top-down transducer
N such that N(V) = Z(b : W).

First, consider how the sets Z and Ware obtained from sets i n F by top-down
transductions. There exist a ranked alphabet A, a tree language S ~ F with
N C A . , and a top-down transducer M = (Q, A, Z, P, {%}) such that M(S) = Z.
.Similarly, there exist a ranked alphabet/~, a tree language S b ~ F with S b _C/ ' . ,

252 BRENDA S. BAKER

and a top-down transducer Mb = (Kb, F, 27, Pb, {kb)) such that M~(Sb) = W.
Without loss of generality, we may assume that the sets X, A, and F are all
pairwise disjoint.

Each tree v in V will be obtained from a tree s ~ S. The intent of the construc-
tion is that the new transducer N produces from v what M would produce
from s, except that whenever M outputs b, v provides N with access to a tree
in Sb, and N imitates Mb to output a tree in W rather than b. The construction
is complicated by the fact that for arbitrarily large s, M may be able to output
arbitrarily many b's from a single node of s, and a distinct tree in W may be
substituted at each occurrence of b in M ' s output. Therefore, v is constructed as
follows: We obtain from Sb a set U consisting of trees of the form g[s 1 , g[s~ ,...,
g i s t , s~+l] ""]], where m >/1 and s 1 , s,~+l e S~. Then we nondeterministically
insert a tree in U at each node of s to obtain v.

Formally, the construction of V has three stages:

(1) Let f be a new symbol of rank 0, and let g be a new symbol of rank 2.
Let R be the set of trees defined inductively as follows: f ~ R, and for any tree
t ~ G, g[f, t] ~ R. Clearly, R is a recognizable set, and is therefore in F.

Set U -~ R (f : Sb). Since F is closed under tree concatenation, U is in F.
Note that each tree in U is of the form g(tl, g[t2, g[t 3 ,g[t~, t~+l] "-']]]

where n > /1 and t 1 ,..., tn+ a ~ Sb • Also, for every n >/ 1 and t 1 , t 2 ,..., t,+a ~ Sb,

g [h , g [t2 , g [t ~ , t~+d .-]]] ~ u .

(2) For each symbol c ~A n, n ~> 0, let g be a new symbol with rank
n + 1. Let zJ = {g I c ~ A} u { f }. Let D = ({ p}, A, Z~, RD, { p}) be a one-state
deterministic linear top-down transducer, where

R• = {(p, c)--~ g [/] l c ~ A0} U {(p, c)--~ el / , (p, xl),...,(p, xn)JIn > 0, c ~ An}.

Clearly, at each node labelled c ~ A, D simply relabels it g and adds a new subtree
f to the left of all previous subtrees of the node. Set S ' = D(S). Since F is closed
under deterministic linear one-state top-down transdnctions, S ' ~F.

(3) Set V = S ' (f : U). Since S', U ~ F and F is closed under tree con-
catenation, g 6F .

Next, we define a top-down transducer N s u c h that N (V) z(b : w). Intuitively,
we want N to imitate M on input symbols in z~, except that whenever M would
generate an output symbol b, N begins to scan one of the subtrees in R. Now,
this tree in U has two or more subtrees which are in Sb, and N nondeter-
ministically selects one of these, and then imitates M s on this subtree. Thus ,
whenever M would output a b, N instead generates a tree in W.

Formally, we let N = (Q k9 Ks , z~ k) F u {g}, 27, Rlv, {q0}), where q0 is the
starting state of M, and RN is given as follows: Let

h: (A w 2: u X w Q w 1-I)* ~ (~ w 27w X w Q w I I w {k~))*

TREE TRANSDUCERS AND TREE LANGUAGES 2 5 3

be the homomorphism determined by h (c) ~ - ~ for c c A , h (b) ~ - (k ~ , xl) ,

h(x~) ~ x~+~ for n ~> 1, and h(a) = a otherwise. Then

RN = PB W {h(u) ~ h(v) t u --~ v ~ P} V {(k~, g) --> (kv, x~), (k~, g) --~ (kb, xz)}.

Let us examine how N behaves on an input tree v in V. For some s ~ S ' ,
v ~ p(s). Thus, v is obtained by substituting trees in U at leaves of s labeled f .
By applying rules of the form h(u) ~ h(v), where u --> v ~ P, N imitates M on s;
thus the " u p p e r " port ion of the output corresponds to a tree u in M(s) . However,
whenever M would output a leaf labeled b, N instead enters the state k b (the
starting state of Mb) and reads the leftmost subtree of its input node (since
h(b) -= (k~, x~)). This subtree must be of the form g [q , g(s 2 g[s~_a, s,~]-..]]
where m) 2 and s 1 ,..., s~. E Sb. N applies the rule (k~, g) -+ (kb, x2) 0 or more
times, and finally either reaches s~ or applies the rule (k~, g) --~ (kb, xl) and
begins to read s i , for some i < m. At this point, N imitates Mb on this subtree
in Sb to generate a subtree in /iV. The result of this process is that M outputs
from v a tree in M(s)(b : W) .

Next, we describe for an arbitrary tree u in Z(b : W) how to find a tree v in V
and a computat ion of N which generates u from v. Suppose that s is in S, and t
is in M(s) C Z, and u E t(b : W) . Suppose that t contains exactly m >~ 0 occur-
rences of the symbol b. For some tl ,..., G ~ / 4 ' and some z l , z2 , zm+l in
(~ v//)*,

t = z~bz2b "." z,~bzm+l

and

u = z l t lz~t 2 "'" zmtmZm+ 1 .

Choose trees q , s~ ,..., s,~ such that for j -~ 1, 2 m, t i e Mv(si). Note that
there is a tree y = g[s l , g[s~ , g[s~ , s,~) ""]] in U. Further , beginning in state
kb, N can generate from y any tree in Mb(Sl) , Mb(@,. . . , Mb(s~,), including

t 1 , . . . , t m .

Let s' = D(s). Consider a tree v in s ' (f : U) C V obtained by substi tut ing
y at each leaf of s labeled f . There is a computation of N on v which

(1) imitates M on the nodes of v labeled from z~ to produce a tree z, such
that z is the tree obtained from t by substituting the tree (kb, g [q , g[s~ ,...,

g i s t , s~] ""]]) at each leaf of t labeled b, and

(2) then produces ti from the ith occurrence (from the left) of
(k, g [h , g[s2 g[s,~, s~]]), for i := 1, 2,..., m. The result of this computat ion
is the tree obtained from t by substi tuting t~ for the i th occurrence of b in t, for
i --- 1, 2,..., m. But this tree is precisely u. Thus, we have found a tree v in g
and a computat ion of N on v which produces output u.

F r o m the above arguments, it is clear that N (v) = Z(b : W) . |

2 5 4 BRENDA S. BAKER

Next, we consider an operation closely related to tree concatenation.

DEFImTIO~. Let F 1 and F 2 be families of tree languages. Define

SubT(F x ,F2) ~- {T(b : W~ [b ~ 27o) I T EF2, T C _ Z , , and for each

b~27o, W~ cFi)}.

F 1 is closed under tree substitution if SubT(F1, F1)__CF 1 . fi'l is closed under tree
substitution into F 2 if SubT(F1, F~) _CF 1 .

Since tree concatenation is a restricted form of tree substitution, it is natural to
investigate whether Dn is also closed under tree substitution.

THEOREM 7. For every n >/O, Dn is closed under tree substitution.

Proof. Suppose T ~ D n , T C 27,, and for every b ~ Zo , Wb ~ Dn . We show
that T(b : W b I b e 270) E D~. For each b e 270, let/~ be a new symbol of rank 0
(in particular, f~ does not appear in any We). Since D~ contains the singleton sets
of trees and is closed under tree concatenation, T ' = T (b : [~ l b e Z o) =
T (b ~ : / ~) ' " (b ~ : / ~) is in Dn, where Z 0 ~-{b~,... ,b~} and b i ~ : b j for
i =/= j. Moreover, T'(b 1 : Wbl) "'" (3ra : Wb m) ~- T(b : Wb I b e 27o) ~ D n. |

An important factor in the proof that D~ is closed under tree concatenation is
the ability of a nondeterministic top-down transducer N to generate different
trees in W from the same input subtree and substitute them at different occur-
rences of the symbol b. In a single computation, a bottom-up transducer cannot
output two distinct trees in W from the same input subtree. In Section 4, it will
be shown that the class of bottom-up transducers does not preserve closure
under tree concatenation; in fact, U 1 is not closed under tree concatenation.
However, the class of bottom-up transducers does preserve closure of tree
substitution into the recognizable sets.

THEOREM 8. For every n > O, U n is closed under tree substitution into the

recognizable sets.

Proof. By Theorem 7, D O is closed under tree substitution. We show that
for each n, if U n is closed under tree substitution into the recognizable sets,
Un+ 1 is also closed under tree substitution into the recognizable sets. The
theorem follows by induction on n.

Let R be a recognizable set with R C_ 27., and for each b E 270, let W~ ~ U~+I,
W b C 2 . . We show that R(b : W b] b ~ 27o) ~ Un+~ by obtaining a set V ~ U~ and
a bottom-u p transducer N such that N (V) -~ R(b : Wb] b e 270)"

For each b ~ Zo, there exist a ranked alphabet / '~ , a tree language S~ C (F0) , ,
S b ~ Un, and a bottom-up transducer M s - ~ (Q o , / ~ , 27, P~ , F b) such that
Mb(Sb) = Wb. Let F ~ 0b~z ° F~. Without loss of generality we may assume

TREE TRANSDUCERS AND TREE LANGUAGES 2 5 5

that the sets Fb, Q0, and Z are pairwise disjoint. (If not, each So may be
relabeled in a new alphabet by a deterministic linear bottom-up transducer,
and corresponding changes may be made in each Mb • Since each U~ is closed
under deterministic bottom-up transductions, each relabeled So is in U~ .)

Set V ~- R(b : So i b ~ Zo). Since F is closed under tree substitution into
recognizable sets, V ~ F.

Let f be a new state, and let Q' ~ (f } u U b ~ ° Q~, F ' = {f} • Ub~oF ~ .
Construct a bottom-up transducer N = (Q', 2 u I , Z, PN , F) by setting

PN = {(c, f l ,-..,fn) --* (f , c[xl ,..., x~]) In >~ 1, c a2J~ and f l , . . . , f ~ F ' }

~J U P o .
be~ o

When N reads a tree t ~ V, it imitates Mb on subtrees of t which are in S~,
and is the identity on symbols in Z. We show that N (V) - - R(b : Wb i b ~ Zo)
by giving a proof by induction on the depth of r that for every r a Z . ,
t ~ r(b : Wb I b ~ Xo) if and only if t ~ N(r(b : So l b ~ Zo)).

For r ~ Xo , t ~ r(b : IC b [b E Z0) if and only if t e W r if and only if t a _~r~(sr)
if and only if t ~ N(r (b : Sb [b E 20)). For some k >/ 1, assume that the assertion
holds whenever r has depth at most k. Suppose r = B[r 1 , r~] E Z . has depth
k + 1, and t ~ r (b : W b l b a Zo). There exist trees t 1,..., t ~ a E . such that
t - - B[t~ , t~] and for each i, t i ~ ri(b : W b I b ~ Zo). The induction hypothesis
may be applied to each ri to show that for each i, there are a final state f l ~ F '
and a tree ui ~ ri(b : Wb] b E Zo) such that t i ~ N (f i , Ui). Since N has a rule
(B, fl,..., f~) ~ (f, B[Xl Xn]), t = Bit1,.. . , t,] ~ N(B[ul , . . . , u,]) _C N(r (b : Wb I
b ~ No)). This argument is easily reversed for the other direction of the asser-
tion. |

We conclude this section by observing that the union of all the families in
the D - U hierarchy is closed under all the operations studied above.

THEOREM 9. On~=oD~ = ~Jn~o U~ is closed under bottom-up and top-down
transductions, tree substitution, and intersection with recognizable sets.

Proof. Obviously, for any language T in 0n~o D~, the image of T under a
top-down or bottom-up transduction is in D~, for some n, and thus is in

D 0n=0 ~. Also, since every language in Un=0 D~ is in Dn for some n, and D~ is
closed under both tree substitution and intersection with recognizable sets,

D 0~=0 ~ is closed under tree substitution and intersection with recognizable
sets. II

SECTION 3

A natural question to ask about the Y(D) - - Y (U) h i e r a r c h y is whether the
families in it are closed under the string operations which have been commonly

64313713-2

256 BRENDA S. BAKER

studied in formal language theory. In this section, we show that they are closed
under a number of string operations. However, since Y(Dn) and Y(Un) cannot
contain the empty string (denoted by e), they cannot be closed under operations
such as homomorphism which generate the empty string. Therefore, we define
an extended yield operation Y, on families of languages, defined by

Y~(F) = (T, T V {e} 1 T ~ F}

for each family of tree languages F. The closure properties of each Y(Dn) ,
Y~(Dn), Y(Un) , and Y~(U~) presented in this section are all derived from the
closure properties of Dn and U n studied in Section 2.

Rounds (1970) showed that for any regular set R, R _CZ'o*, Y~I(R) -~
{t ~ 27, I Y (t)~ R) is a recognizable set. Ogden and Rounds (1972) applied this
fact and the closure of each Dn under intersection with recognizable sets to
show that for T E D n , T C 2 7 . , n ~ 0 , Y (T) n R ~- Y (Tc~ Y ~ (R)) is in
Y(D~). That is, each Y(D~) is closed under intersection with regular sets.
Obviously, each Ye(D,,) is also closed under intersection with regular sets. The
same argument may be applied to each U~ to obtain the following proposition.

PROPOSITION 10. For n > O, Y(U~) and Y,(Un) are closed under intersection
with regular sets.

The above result cannot be strengthened to state that Y(Dn) and Y(Un) are
closed under intersection, since the intersection of the context-free languages
is not contained in On°~=o Y(On) (Baker, to appear).

LEMMA 11. For every n >~ O, Y,(D,~) and Y , (U ,) are closed under string
homomorphism.

Proof. Let h: 27o*--* A0* be a string homomorphism, and T 2 27.. Since
each D , and Un is closed under deterministic linear transductions by Proposi-
tions 2 and 3, it suffices to construct a deterministic linear bottom-up tree
transducer M such that Y (M (T)) ~- h (Y(T)) - - {e}.

If h is nonerasing, it may be performed by a deterministic linear bottom-up
transducer which simply replaces each b ~ 27o by a subtree whose yield is h(b).
If h can erase, the transducer may do this replacement when h(b) ~ e, but it
must also delete every input tree whose leaves are all erased by h.

Let m be the maximum rank of any symbol in A. Let £' = {g~] 0 ~ i ~ m},
where gi has rank i. Construct a deterministic bottom-up transducer M
(K, 27, F, X , P, {N}) where K ---- {E, n}, and P is given as follows.

(1) For b ~ 270, if h(b) = e, then the rule b --> (E, go) is in P. If h(b) =
ala ~ "" a n ~ e, each a~ ~ A0, then the rule b --> (N, gn[a~ , a 2 ,..., an]) is in P.

(2) Suppose that b ~ 27~, m ~ 1, and S1, S 2,..., Sm ~ K. If S 1 = S~
. . . . S~ = E, then the rule (b, S 1 Sm)-~ (E, go) is in P. If 1 ~ k ~ m,

TREE TRANSDUCERS AND TREE" LANGUAGES 257

1 ~ j ~ < j 2 < " " < J k ~<m, and S h - - S j ~ ~ - ' " = S j k = N , while S ~ = E
for i q!{j~ ,J2 ,j~}, then the rule (b, S 1 ,..., S~)---~ (N,g~[x~-, xj~ ,..., x j) i s
in P.

M starts at the leaves of an input tree t and determines which leaves are erased
by the homomorphism h. At any point during M ' s computation when M has
read all of a subtree t I of t, M has reached state E if every leaf of this subtree is
to be erased, and state N otherwise. I f M has reached state N, then the output
from the subtree t 1 is a tree whose yield is h(yield(tl)) :/: e. I f M has reached
state E, then h(yield(tl)) = e, and the output from the subtree t 1 will be deleted
in the next step. Since the only final state is N, M produces a tree as output from t
only if not all the leaves are erased by the homomorphism h. Thus, yield(M(T)) =
h(yield(T)) - - {e}. |

The next operation to be considered is string substitution, which is defined
as follows.

(1)
(2)

define

DEFINITION. Let F be a family of string languages, and 22 an alphabet.
An F-(string) substitution is a function r: 27 --+ F. It is extended to X* by

-r(e) = {e}:

for al ,..., a~ ~ 22, "r(al "'" as) ~ "r(al) "'" -r(a~). For families F~ and F 2 ,

and

Subs(F1, F2) = {r(L) [L e Fe and ~- is an Fl-substitution }

Sub~v(F1, F2) : {r(L) [L eFe and ~- is an Fl-substitution such that
for every b, r(b) 4= {e}}.

A family F1 is closed under substitution if Subs(F 1 , F1) _C F t ; closed under non-
erasing substitution if SUbN(F1, F1) _C F t ; closed under substitution into a family F2
if Subs(F1, F~)_CF~; and closed under nonerasing substitution into F 2 if
SubN(Fa, F2) C F1.

LEMMA 12. For every n ~ 0, Y(D,~) and Y,(Ds) are closed under string
substitution. For every n > O, Y(Us) is closed under string substitution into the e-free
context-free languages and Y~(Us) is closed under substitution into the context-free
languages.

Proof. The lemma is obtained from closure properties of D s and U~ by
showing that for any families F 1 and F 2 of tree languages, Y(SubT(FI, F2)) --
Subs(Y(F~), Y(F2)). Suppose T ~ F ~ with T _ 27, and r: Z o --~ Y(F1) is a string
substitution. For each b ~ 270, there is a tree language S~ ~ F 1 with Y(Sb) ~ r(b).
We claim that Y(T(b: So] b ~ Zo)) = "r(Y(T)). For suppose that w ~'c(Y(T)).
For some t ~ tlb~te...t~bmt~+ ~ ~ Twith each b; ~ 270 and each t~ e ((27 w H) - Z:0)*

258 BRENDA S. BAKER

and some ul,..., u~, with each uj ~ S~j, w : Y(ul) "'" Y(u~). But w' : tlu~t 2 ""
t~u~,t~+~ ~ T(b : S~] b e Zo) and Y(w') = Y(ul) ... Y(u,,) -- w. Therefore,
-r(Y(T)) C_ Y(T(b : Sb] b ~ 2:0)). The argument is easily reversed to show that
Y(T(b : Sb I b ~ Zo)) C T(Y(T)).

By Theorem 7, Subs(Y(Dn), Y(Dn)) = Y(Subr(Dn, Dn)) = Y(D,~). Since
Y(Do) is the family of e-free context-free languages [10] and Un is closed under
tree substitution into recognizable sets (Theorem 8), Subs(Y(U~), e-free CF) =
Subs(Y(U~), Y(Do)) = Y(Subr(Un, Do)) = Y(U~). If , is an F-substitution
which erases some symbols, z can be accomplished by applying first a homo-
morphism which erases the appropriate symbols and then a nonerasing F-
substitution. Since Ye(D~) and Ye(U~) are closed under homomorphism
(Lemma 11), Subs(Y~(D~), Y~(D~))= Y~(Dn) and Subs(Y~(Un), Y~(Do)) =-

The next theorem summarizes the known positive closure results for the
families in the Ye(D) -- Y~(U) hierarchy.

TIIEOItEM 13. For every n >/O, the family Y~(Dn) is a substitution-closed full
abstract family of languages (AFL); that is, it is closed under union, concatenation,
Kleene *, arbitrary homomorphism, inverse homomorphism, intersection with regular
sets, and string substitution. For every n >/O, Y~(Un) is closed under union, concaten-
ation, Kleene *, arbitrary homomorphism, intersection with regular sets, and string
substitution into the context-free languages.

Proof. Let ~ denote the family of regular sets, and ~0 the family of regular
sets not containing the empty string. Ginsburg and Spanier (1970) showed that a
family ~ of string languages is a full AFL if N0 C ~ , Subs(N , £z °) C of,
Subs(~°, ~0) C oL~ o, and ~ is closed under intersection with regular sets. Since
~o C_~ C Y~(D~) and Y,(D~) is closed under string substitution (Lemma 12),
and intersection with regular sets (Hopcroft and Ullman, i969), Y,(Un) is a
substitution-closed full AFL.

For every n >/O, Ye(Un) is closed under substitution into context-free
languages (Lemma 12), homomorphism (Lemma 11), and intersection with
regular sets (Proposition 10). Closure under union, concatenation, and Kleene *
follows since any family of languages closed under substitution into regular sets
is also closed under union, concatenation, and Kleene * (Ginsburg and Spanier,
1970). |

The above theorem does not state that each Y~(U~) is closed under inverse
homomorphism. In fact, it is shown in Section 4 that Y~(U~) is closed under
inverse homomorphism if and only if Y(D~_I) ~ Y(Un). Therefore, we con-
jecture that each Y~(U~) is not dosed under inverse homomorphism and is not
an AFL.

T h e proofs in this section derive the closure properties of the families in the
Y (D) - Y(U) hierarchy from the closure properties of the families in the

TREE TRANSDUCERS AND TREE LANGUAGES 259

D - U hierarchy. This proof technique may be applied to other families of tree
languages and their yields; it provides a means of studying string languages
derived f rom tree languages without directly specifying the string languages
except as the yield of the tree languages.

SECTION 4

Earlier, it was conjectured that the D - U hierarchy and the Y (D) - Y (U)
hierarchy are infinite. The closure properties obtained in Sections 2 and 3 are
applied here to obtain some results related to these conjectures. The basic
theorems of this section are that for every n, if D~ ~ Un+l, then U~+I C D~+ 1 ,
and if Y(D~)C Y(U~+I), then Y(U~+I)C Y(D~+I). I t would follow that the
hierarchies are infinite if proofs could be found that for every n, if Un ~ D , then
Dn C U~+I and if Y (U ,) ~ Y(Dn) then Y(D,) C Y(U~). Unfortunately, attempts
to prove the latter statements have been unsuccessful. Nevertheless, the theorems
prawed here lead to some strong statements about the number of families in the
hierarchies if the hierarchies are finite.

In order to make the proofs of the theorems a little simpler, we first prove a
proposition concerning one-state transductions.

PROPOSITION 14. DO = F D O B o DOLB.

Proof. Since F D O B and D O L B are contained in the class of deterministic
one-state transductions, which is closed under composition (Engelfriet, 1975),

F D O B o D O L B C DO

For the reverse inclusion, let M = ({q}, 2:, A, R, {q}) be a deterministic one-state
bo t tom-up transducer, We construct a one-state deterministic linear bot tom-up
transducer M 1 and a full one-state deterministic bot tom-up transducer M 2 such
that T(M2) o T(M~) = T(M) . The strategy is to have 21//1 imitate M, except that
M 1 merely records a rule number of M at each node and deletes whatever
subtrees M deletes in that rule. F rom each rule number, M s generates the
output contained in the right side of the rule.

Order the rules of R. I f R contains m rules, l e t / " = {r 1 r,~} be a set of m
distinct new ranked symbols. For i = 1,..., m, the rank of r~ is k if the right side
of rule i contains occurrences of exactly k distinct variables (symbols of the form
xj). Let 1141 = ({q}, 27,/~, R1, {q}) be a bot tom-up transducer, where

R 1 = {u --* r~ I the right side of rule i contains no variables}
u {u -+ ri[x~ 1 ,..., * J 1 k > 0 and the variables occurring in

the right side of rule i are , q x~ k , l ~ il < "'" < ii~}.

260 BRENDA S. BAKER

Let M 2 = ({q}, F, A, R z , {q}) be a bottom-up transducer, where

R2 = {ri --~ u l u is the right side of rule i and u a A,}
t_) {(ri, q,..., q) --+ u I if the right side v of rule i contains distinct

variables xil ,..., xi~ , 1 <~ i 1 < "" < i s , then u is obtained by

replacing each xij in v by xj}.

I t is straightforward to prove by induction on the depth of s that u ~ M(s) if and
only if there exists t ~ Ml(s) such that u ~ M2(t). Therefore, T(M)=
T(M2) o T(M~). |

THEOREM 15. For every n ~ O, i f D~ C U~+I , then U~+ 1 C D~+ 1 .

Proof. We will prove that for any family G of tree languages closed under
one-state linear bottom-up transductions, if G CDO(G) , then D O (G) C

Subr(D0, DO(G)). The theorem follows by setting G = D,,, since U,,+I =
DO(D~) : DO(G) and SubT(Do, DO(G)) = SubT(Do, Un+l) C_ SubT(Do, Dn+a) _C
Dn+ 1 by Theorem 7.

So let G be a family of tree languages closed under one-state linear bottom-up
transductions. Suppose T ~ DO(G) - - G, T C_ 27. . From T, we construct a tree
language E ~ Subr(Do, DO(G)) - - DO(G).

Intuitively, E is obtained from T by substituting chains containing any
number of b's at the leaves of T, where b is a new symbol. In order to demonstrate
that E ~ D O (G) = F D O B (G) (Proposition 14), we assume initally that
E ~ DO(G), and obtain a contradiction by exploiting the fact that bottom-up
transducers copy subtrees after producing output. In particular, we find a
subset V of E such that all the subtrees of certain nodes of trees in V are distinct.
Since copying by bottom-up transducers results in two or more identicaI sub-
trees, we show that any deterministic nondeleting one-state bottom-up trans-
ducer generating E from a tree language in F must generate some set Z,
V C Z C E, by using only linear rules. Thus, Z ~ G. Finally, T can be recovered
from Z by a one-state linear transduction, implying that T ~ G, which contradicts
the choice of T ~ G.

We begin by constructing E from T. Let b and a be new symbols of ranks 1
and 0, respectively. For each c ~ 27o, let c 1 be a new symbol of rank 1. Let
f ' = 2J k3 {a, b} (3 {q [c ~ 22}. For each c ~ 220, let W c be the smallest set of trees
such that q[a] ~ We , and for each tree q[t] E W e , q[b[t]] ~ W e . Clearly, each
W e is a recognizable set.

Set E = T(c : We [c ~ 270). Since T a DO(G), E E Sub(D0, DO(G)). We
obtain a contradiction from supposing that E is also in DO(G).

Suppose E ~ DO(G). By Proposition 14, DO = F D O B o DOLB. Since G is
closed under one-state linear bottom-up transductions, there exist a tree language
S ~ G, S C A , , and a full total deterministic one-state bottom-up transducer
M = ({r}, A, F, P, {r}) such that E ~ M (S) .

TREE TRANSDUCERS AND TREE LANGUAGES 261

Let p denote the maximum number of symbols in the right side of any rule.

Consider the subset V of E, defined by

V -~ {t E E I if t = ultlu 2 "" umt~um+l, where each t~- e W, for some c and
each u~- ~ (Z' k) /7)* , then for i 5a j , ti and tj differ in length (as strings)
by at least p + 1 symbols}.

In particular, consider a computat ion of M on a tree s ~ S with output u ~ V.
Suppose that a nonlinear rule y - ~ z is applied during this computation. For
some i, z contains at least two occurrences of xi • When this rule is applied, some
tree t is subst i tuted for each occurrence of xl in z in obtaining the output w
from this step. Consequently, an applicat ion of this nonlinear rule results in
one of the following two situations, according to whether or not t ~ W c for some

C @ z ~ 0 •

(1) I f t ff W c for some c ~ 20 , suppose z ~ zlxiz~xiz 3 . Since a tree in W,
has no symbols of rank greater than one, but z does, at least two subtrees Yl
and Y2 in Wc are generated in this step, such that t is a subtree of each of them.
M6reover, neither Yl nor Y2 contains more than I t I + P symbols, since z con-
tains at most p symbols, but each contains at least [t [symbols.

(2) I f t ~ We, then t has a proper subtree in We, for some e a Z' 0 . Copying
t causes the output to contain two identical trees in Wc •

Since M is full and total, both of the above cases force the final output u from
the computat ion not to be in V. We conclude that M never applies a nonlinear
rule in a computat ion which generates a tree in V. Therefore, if 21//1 is the one-
state linear bo t tom-up transducer obtained by deleting all nonlinear rules from
M, V C MI (S) C_ M(S) .

Final ly we construct a one-state linear bot tom-up transducer M 2 such that
M2(M~(S)) = T. In particular, let M 2 = ({p}, F, X, R2, {p}) where R 2 =

{~-~(p, ~)1 c ~z0} u { (q , p) - , (p , ~) r ~ ~2o} u {(b, p) ~ (p, x~)} w {(~, p,..., p) -+
(p, d[xl,..., xn]) } n > 0, d e X~}. All that M~ does to a tree in M (S) is to erase all
of the a's and b's and change c~'s back to c's. Thus, it is clear that M2(M~(S)) C_ T.
On the other hand, for every t ~ T, t(c : We [c ~ 270) n V = ~ . Consequently, for
every t e T, there exists u ~ V C MI (S) such that M 2 (u) = t. Thus, T =
JVI2(M~(S)).

Since M 1 and M e are one-state linear bo t tom-up transducers and F is closed
under such transductions, T ~ G. But T was chosen so that T ~ G. Therefore,
the assumption E ~ DO(G) is false. We conclude that E ~ Sub(Do, DO(G)) - -
DO(G). II

The above proof can be modified to obtain the corresponding theorem for
the Y(D) -- Y (U) hierarchy.

THEOREM 16. For every n ~ O, {f Y(D,~) C Y(U~+:), then Y(Un+I) ~ Y(D~+:).

262 BRENDA S. BAKER

Proof. Let L z be any language in Y(U~+I) - - Y(D,~), L~ C_ Zo*. From L 1 we
construct a language L~ e Y(D~+a) - - Y(Un+I). In particular, let a be a new
symbol, and let h: (Z o u {a})*-+ Zo* be the homomorphism determined by
h(a) = e, h(b) = b for b ~ Z' 0 . Set L 2 = h-X(L~). Since Y(D~+~) is closed under
inverse homomorphism, L a ~ Y(Dn+I).

We will obtain a contraduction by assuming that L~ ~ Y(U,~+I). Suppose

L2 ~ Y(U~+~). Since U,~+I = DO(Dn) , D O = F D O B D O L B , and D~ is closed
under linear transductions, U~+ 1 = F D O B (D ~) . Therefore, for some S E D~
and some full determinist ic bot tom-up transducer M , L 2 = Y (M (S)) . Let
W = M (S) .

Let V be the subset of W defined by

V -~ {t ~ W I if Y(t) = u~aqu~ "" umai"um+x, where each u~. ~ Z0* ,

then for k ~= j , f~ v~ it}.

Consider a computat ion of M on a tree s ~ S with output u ~ V. Suppose a
nonlinear rule y --~ z is applied during this computation. For some i, z contains
at least two occurrences of x i . When this rule is applied, some tree t is sub-
st i tuted for each occurrence of xi in z to obtain the output at this step. Moreover,
this output cannot be deleted later in the computat ion since M is nondeleting
and total. I f Y(s) contains a substring ba~c, with b, c ~ 270, the final output u
contains at least two occurrences of ba~c in its yield, and therefore is not
in V.

We will construct a linear bot tom-up transducer N which imitates computa-
tions of M which never copy more than one symbol of Z o , except that N
generates no a ' s : that is, if M outputs w, N outputs h(w).

The new transducer N will operate by using its states to keep track of whether
0, 1, or more symbols in Z 0 have been generated in each output subtree. Let
Q ' = Q kd (Z 0 td {e, 2}). Let r denote the maximum number of symbols occurring
in the right hand side of any rule. For each k, 0 ~ k ~ r, let b k be a new symbol
of rank k; let /2 denote the set consisting of these new symbols. Let M =
(Q', A, 2J L3 f2, R' , F × (2J 0 k3 {2}) be a bot tom-up transducer, where R ' is
constructed as follows.

Fo r each rule (b, q i , . . . , q n) ~ (q , u) a R , where n ~ 0 , and for each
c 1 % E Z 0 w {2, e} such that c 5 4= 2 whenever x~ occurs more than once in u,
a rule (b, (ql , q),--., (q~, c~) -+ ((q, c), u') is added to R' , where c and u' are
obtained as follows. Let g: (Z w {a} w / 7 u X)* ~ (Z o u X)* be a homo-
morphism determined by g(b) ~- b for b c Zo , g(xj) = xj if x~- occurs at most
once in u, g(xj) = c s i fx j occurs at least twice in u, andg(b) = e if b ~ (Z - - Z0) ~A
{a} U / / . Then

(1) i fg(u) = e, u' = b o and c = e;

(2) i fg(u) = d ~ Zo , U' =- c = d;

TREE TRANSDUCERS AND TREE LANGUAGES 263

(3) if g(u) = f ~ ' " d ~ Z o * , m > 0, each d ~ e X o U X, and g(u) ¢ Xo,
then u' = bm[d 1 ,..., d~] and c = 2.

Intuitively, N enters state e whenever M has output no symbols in 270 .
N outputs a place-marking symbol b 0 which will be deleted later if symbols in Z' o
are generated. I f M has output exactly one symbol c e 270, N outputs c and
enters state c. I f M has output more than one symbol of 270, and has never
copied a subtree containing more than one symbol of 270, then N enters state 2
and outputs individually any symbols which M copied. If M tries to copy a
subtree containing more than one symbol in 270, N ' s action is undefined.

I t is straightforward to prove by induction on the depth of s that for
w a N((q, c), s), either (1) w = b 0 , c = e, and e a h(Y(M(q, s))) or (2) Y(w) =
h(Y(w')) for some w' a M(q, s) and either c -- 2 and Y(w) contains two or more
symbols of X o or c = h(Y(w)) e Z 0 . Therefore, Y(M(S)) C h(Y(M(S))) -- L t .

On the other hand, it is easy to see that if w is generated by M in a computation
which never copies more than one symbol of Z'o, there is a computation of N
which generates a tree y with Y(y) = h(Y(w)). Therefore, L~ C_ h(V) C Y(N(S)) . |

The above theorem may be applied to obtain an example of a language in

Y (D 1) - Y(U1).

COROLLARY 17. Y(Do) ~ y (ua) C y(D1). In particular, L 1 = {b ~] n > 0} e
Y(Ut) -- Y(Dt) and L2 ~- {w ~ {a, b}* I for some n > O, w contains 2" b's}
Y (D ~) - Y(U~).

Proof. Since Y(Do) is the family of e-free context-free languages, L 1 6 Y(Do).
I t is trivial to show that L 1 e Y(U~). By the proof of Theorem 16, L2 = h-~(L1)
Y(D1) -- Y(U1), where h is a homomorphism which erases a 's and is the identity
on b's. |

We now apply various results from this section and the previous section to
obtain more information about the number of distinct families in the D - U
hierarchy.

LEMMA 18. For n > O, i f D~ = U . , then for m ~ n, D~ = U~m = U~.
For n >/O, i f U.+I = D . , then for m > n, D.~ = U~ = Dn.

Proof. For n > O , if D , = U~, then U,+ z = D O (D ~) = D O (U ,) - = U,~
(by Proposition 2).

Similarly, if U,+ 1 = D , , then D,+ z = NLT(U,+I) = N L T (D ,) = Dn (by
Proposition 3). The lemma follows by induction on m. U

LEMMA 19. Either for every n >~ 0, D , C U,+I C D , + I , or there exists n > 0
such that for i < n, Di C Ui+l ~ Di+l and for i > n, D i = Us = D , . Therefore,
i f the D - U hierarchy is finite, it contains an odd number of distinct families.

2 6 4 BRENDA S. BAKER

Proof. Let M be the set of all m) 0 such that Dm = U~+ 1 . I f M : ~ ,
then by Lemma 18, for every n >/0, Dn C Us+l 2 Dn+l and the hierarchy is
infinite. If M =/= 25, let k be the least element of M, so that Dk = U~+I • Since
D o C U1, k / > 1. By choice of k, Dk-~ C U~. But then, by Theorem 15, Uk C D k.
Therefore, by Lemma 18, for i < k, D i C Ui÷l C Di÷l. Moreover, by Lemma 18,
for r e > k , D~ = U~ = D ~ . Finally, since D 0 C U 1 C D 1 C . . . C U e ~ D ~ ,
and all other families in the hierarchy are equal to Dk, the hierarchy must
contain an odd number of distinct families. |

Now, we can show that the D-U hierarchy must contain at least five distinct
families.

LEMMA 20. D o ~ U I _ ~ D 1 C U 2 ~ D s .

Proof. Ogden and Rounds (1972) have shown that D o C D 1 C D s . If D 1 = U~,
then by Lemma 18, D 2 = U 2 = D 1 . Therefore, D 1 ~ U2, and by Theorem 15,
U s C D s . B u t b y L e m m a 1 8 , U s C D simpliesthatD 0 C U 1 C D 1 C U 2 C D 2. |

In Section 2 it was shown that for every n, D n is closed under tree substitution.
I t seems unlikely that any U~, n ~ 0, is closed under tree substitution, for
reasons discussed in Section 2. In fact, the proof of Theorem 15 showed that if
D s C Un+I, then Un+ 1 C Subr(D0, Un+l). Therefore, we have the following
xesult.

LEMMA 21. For every n ~ 0, D~ C U,,+i C_ Dn+l if and only i f U~+ x is not
closed under tree substitution.

The closure of each D~ under deterministic one-state transductions and the
closure of each U~ under linear transductions yield a result similar to Lemma 21.

PROPOSITION 22. For every n > O, Un C_ Dn C Us+l i f and only if D~ is not
,closed under deterministic one-state transductions. For every n ~ 0, Dn ~ Un+l C
Dn+l i f and only i f U,~ is not closed under linear top-down transductions.

Proof. For each n > O, D~ = NLT(U,~) and Us ~ DO(D~-I). Also, for
each n ~ 0, D~ is closed under linear top-down transductions (Proposition 3)
:and Un+ 1 is closed under deterministic one-state transductions (Proposition 2).
Therefore, for n 2> 0, NLT(Un) = Us if and only if Us = D~ -- NLT(U~),
.and for n >/O, DO(D~) ~- D~ if and only if D~ = Un+~ = DO(D~). |

COROLLARY 23. D O and D 1 are not closed under deterministic one-state trans-
ductions. U 1 and U 2 are not closed under linear top-down transductions or under tree
substitution.

The closure properties of the families in the D-U hierarchy are summarized
in Table 1.

TREE TRANSDUCERS AND TREE LANGUAGES 265

TABLE 1

Closure Properties of the Tree Heirarchy. "Yes" Indicates the Family is
Closed under the Operation. "No" that the family is not Closed under the Operation

Dn,n >~ O, if Un,n > O, if
U D.

D,~CU~+~ U~D,~ ~=o

Linear top-down yes no yes
and bottom-up Proposition 3 Proposition 22 Theorem 9
transductions

Deterministic no yes yes
bottom-up Proposition 22 Proposition 2 Theorem 9
transductions

Deterministic yes yes , yes
one-state Proposition 22 Proposition 2 Theorem 9
transductions

Tree substitution yes no yes
Theorem 7 Lemma 21 Theorem 9

Tree substitution into yes yes yes
the recognizable sets Theorem 7 Theorem 8 Theorem 9

Intersection with yes yes yes
recognizable sets (Ogden and Proposition 5 Theorem 9

Rounds, 1972)

Techniques similar to the above may be applied to the Y(D) - Y(U) hierarchy.

LEMMA 24. For every n >/O, Y~(Dn) C Y~(Un+I) C Y,(D~+I) if and only if
Y,(Un+I) is not closed under inverse homomorphism.

Proof. For each n, Y,(D~) and Y,(Dn+I) , and therefore Y(D~) and Y(D~+t)
as well, are closed under inverse homomorphism (Theorem 13). Thus, if Y(U~+I)
is not closed under inverse homomorphism, Y(Dn)~ Y(U,~+I) C Y(Dn+I).
Conversely, if Y(D~)~ Y(U~+I), then Y(U~+I) is not closed under inverse
homomorphism by the proof of Theorem 16. |

The results in this paper indicate that the families Y~(Dn) and Ye(U~) are
"na tu ra l " families of languages, since their closure propert ies are similar to
those of other "na tura l " families like the context-free languages and context-
sensitive languages. The differences in the known closure propert ies of the top-
down and bot tom-up families shed light on the conjecture that the hierarchy
is infinite.

Perrault (1975) announced the result that Y(D1) C Y(U~). By Theorem 16,
Y(U2) C Y(D2). Therefore, we have the following theorem.

266 BRENDA S. BAKER

THEOREM 25. Y(Do) ~ Y(U1) C Y(DI) C_ y(U2) C Y(D~).

Finally, we no te that for every n, Y(D~) and Y(Un) are proper ly contained in

the family of context-sensi t ive languages (Baker, to appear).

ACKNOWLEDGMENT

The author would like to thank R. V. Book for his many helpful comments concerning
results of this paper.

RECEIVED: December 31, 1975; m~VISED: April 29, 1977

REFERENCES

BA~I~, B. Composition of top-down and bottom-up tree transducers, submitted for
publication.

BAK~I~, B. Generalized syntax directed translation, tree transducers, and linear space,
SIAM J. on Computing, to appear.

DONER, I. (1970), Tree acceptors and some of their applications, J. Comput. and System
Sci. 4, 406-451.

ENGELFRIET, I. (1975), Bottom-up and top-down tree transformations, Math. Systems
Theory 9, 198-231.

GINSBU//G, S., AND SPANIER, E. (1970), Substitution in families of languages, Info. Sci. 2,
83-110.

HOPCROFT, J., AND ULLMAN, J. (1969), Formal Languages and Their Relation to Automata~
Addison-Wesley, Reading, Massachusetts.

OGDEN, W., AND ROUNDS, W. (1972), Compositions of n tree transducers, in "Proceedings
Fourth ACM Symposium on Theory of Computing," pp. 198-206.

PERRAULT, C. R. (1975), Intercalation theorems for tree transducer languages, in
"Proceedings of Seventh ACM Symposium on Theory of Computing," 126-136.

ROUNDS, W. (1968), Trees, transducers, and transformations, Ph.D. thesis, Stanford
University.

ROUNDS, W. (1970), Mappings and grammers on trees, Math. Systems Theory 4, 257-287.
THATCHER, J. (1970), Generalized sequential machine maps,]. Comput. and System Sci. 4,

339-367.
THATCHER, J. (1973), Tree automata, an informal survey, in Currents in the Theory of

Computing (A. Aho, Ed.), Prentice-Hall, Englewood Cliffs, New Jersey.
THATCHER, J., AND WRIGHT, J. (1968), Generalized finite automata theory with an

application to a decision problem of second-order logic, Math. Systems Theory2, 57-81.

