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An Improved Bound for Weight-Balanced Tree 

YASUICHI HORIBE 
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An improved upper  bound  is obtained on the averaged path  length of an 
alphabetical binary tree (or equivalently on the averaged word length of  the 
alphabetical binary code) which is constructed by weight balancing. 

The  object of this paper is to improve the results due to Rissanen [5] according 
to his interesting line of argument. 

1. BINARY TREE 

In a binary (rooted and ordered) tree, (Knuth [4]), suppose that there are 
n external nodes l,..., n, an external node (leaf) being one without son. We 
have, therefore, n - -  1 internal nodes, an internal node having just two sons 
(see Fig. 1). The  (alphabetical) binary tree can be viewed as a graphic representa- 
tion of successive dichotomies of the set {1,..., n}, each resulting subset con- 
sisting of consecu t i ve  integers. Thus  an internal node corresponds to a subset 
{i, i + 1,...,j} such that i < j ,  and the subtree whose root is this internal 
node has external nodes i, i + 1,...,j. The  internal node corresponding to 
{i, i + 1,...,j} may therefore be denoted by ( i , j ) ,  (i, i )  ~-  i ---- external node i. 

FIG, i. 
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Weight balanced tree for p~ = P3 ~ P4 = P~ = E, p~ = p~ ~ ½ -- 2e. 
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Each external node in the tree can be naturally identified with a binary word 
(0 = left branching, 1 = right branching). T h e  length l~ of the word for external 
node i is the length of the unique path from i to the root of the tree. 

Suppose further that external node i has probability or weight Pi > 0, 
i = 1,..., n, Pl q- "'" + P ~  = 1. The  averaged word length or the averaged 

1 path length is defined by L = ~2i=1P~ i • Let  us denote by I the set of all internal 
nodes, and write p(i,j) = Pi q- Pi+l q- "'" q-P~, i <~ j. Then  it is easily seen 
that 

L = E p(i,j) .  (1) 
( i , j )eI  

2. ENTROPY 

The  following is the well-known decomposition of entropy H 
H(px ,..., p,~) = --Z,~=x p¢ log p, [11. 

H(p~ ,..., p~) = H(p(1,  k), p(k + 1, n)) 

Pl P~ + k) H (p(x, k) '"" k)) 

P~+I P,~ ), 
+ p(k + l, n) H ( p(h + l, n) .... ' p(k + l, n) 

where i ~< k < n and the log base is 2. The  successive applications of this 
decomposition yield the following weighted sum of binary entropies: 

= Z p(i , j)  H (-P(i' k) p(k + 1,j) .), i <~ k < j ,  (2) H 
(i,J)~I p(i, j)  ' p(i, j) 

where (i, k), (k ->  1,j) are left son and right son, respectively (external or 
internal), of the internal node (i,j). 

By (1) and (2) we have 

L - - H =  ~ p ( i , j ) I 1 - - H (  p(i 'h) p ( k +  1 , j ) ) l  
.,j)~i p(i, j) ' p(i, j) " 

We can prove that the inequality 0 ~ 1 - -  H(p, q) <~ I P --  q : , P q- q 1, 
holds for v ~< 2, but the case v = 1 is convenient for our purposes, which gives 

H ~ L ~ A @ H ,  

A = ~ [p(i, k ) - - p ( k  + 1,j)], 
(i,j)~I 

i ~< k < j. (3) 
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3. WEIGHT BALANCING 

Gilbert and Moore [2] have shown that in the optimum alphabetical binary 
tree (the one with minimum L), we have L < 2 -t- H. Hu  and Tucker [3] 
give a remarkable algorithm for constructing an optimum alphabetical binary 
tree. 

In some cases, however, especially when n is large as in the searching problem 
[4], a simpler and more straight-forward algorithm might be desirable if a 
nearly optimum tree could be constructed. Equation (3) suggests such an 
algorithm. For the root (1, n) c / ,  take (1, k), (k @ 1, n) as its left and right sons, 
respectively, such that [ p(1, h) -- p(h + 1, n)[ = minl<~< ~ [ p(l ,  l) -- p(1 + 1, n)[; 
i.e., k is chosen in order that left and right weights are most balancing. 

In general for ( i , j ) s I ,  take (i,k), (k + 1,j) as its left and right sons, 
respectively, such that 

[ p(i, k) -- p(k + 1, J)l = min I p(i, l) --  p(l + 1, j)]. (4) 

This  " top-down" algorithm for constructing a binary tree will be called 
weight balancing. We denote by A(i, j)  the minimum value of (4). 

4. UPPER BOUND 

THEOREM. The binary tree constructed by weight balancing gives A ~ 3 
(hence L ~ 3 + H). 

/c=1 

Therefore 3 <~ 2 --  (n q- 2)pmin • 

Proof. For the internal node (i, j), i < j, in the tree constructed by weight 
balancing, suppose A(i, j)  = lp( i ,k)  - -p (k  q- 1,j)] for some k, i ~< k < j .  
First consider what happens when p(i, k) >/p(k + 1, j). I f  i < k < j ("left- 
interior"), then we must have p(i, k -- 1) < p(k,j) ,  otherwise it would violate 
the weight balancing rule. Hence A(i, j)  ~ p(k, j )  - -p( i ,  k -- 1) by the mini- 
mality of A(i,j). We see 

A(i, j)  ~ p(k , j )  -- p(i, k -- 1) 

= (Pk + p ( k  + 1,j)) - -  (p(i, k) --Pk) 

= 2pk --  A(i,j),  

hence A(i, j)  ~ Pl~ for this left-interior case. I f  k = i ("left-boundary"),  clearly 
A(i, j)  = Pk - - p ( k  + 1,j) ~ Pk --  pmJn < P~. 
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Whenp( i ,  h) < p(k @ l , j ) ,  by the left-right symmetry  we have d(i,j) <~ Pk+l 
if i < h @ 1 < j  ("r ight- inter ior")  and A(i,j) <~P1~+*--pmin < P ~ + I  if 
h @ 1 = j  (" r ight -boundary") .  Uppe r  bounding each term A(i,j) of A by 

p k o r p k + l ,  we have, since I I  = n - - l ,  

n--1 

A ~< ~ max{pk,  Pk+l}. 
k=l 

Since in any tree there exists at least one internal node of the form (i, i @ 1), and 
hence at least one boundary  case occurs in the construction of the tree, we have 

A <~ S by subtracting Pmin, completing the proof. 
As a corollary we have L ~ H -b 1 - -  2pmin for monotone Pl  ,--., ion • 
The  proof  above suggests the possibility of obtaining a still sharper upper  

bound, but  the bound so obtained seems to have a complex form. 
I t  appears that  only the simplest cases give the equality A = 3. For  example, 

take n = 2 ,  or take n = 3 ,  Pl = P ,  P2 = 1 - - 2 p ,  P a = P  ( 0 < p  ~ ½ ) ,  the 
latter giving A = 8 ~ 2 - -  5p. Observe that the example in Fig. I is easily 
seen to have A ~ 2, L ~ 8 q- H, if e is small. 
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