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Abstract

The following degenerate parabolic system modelling chemotaxis is considered:⎧⎨
⎩

ut = ∇ · (∇um − uq−1∇v), x ∈ R
N, t > 0,

τvt = �v − v + u, x ∈ R
N, t > 0,

u(x,0) = u0(x), τv(x,0) = τv0(x), x ∈ R
N,

(KS)

where m � 1, q � 2, τ = 0 or 1, and N � 1. The aim of this paper is to prove the existence of a time global
weak solution (u,v) of (KS) with the L∞(0,∞;L∞(RN)) bound. Such a global bound is obtained in the
case of (i) m > q − 2

N
for large initial data and (ii) 1 � m � q − 2

N
for small initial data. In the case of (ii),

the decay properties of the solution (u, v) are also discussed.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the following parabolic system of degenerate quasilinear type:⎧⎨
⎩

ut = ∇ · (∇um − uq−1∇v), x ∈ R
N, t > 0,

τvt = �v − v + u, x ∈ R
N, t > 0,

u(x,0) = u0(x), τv(x,0) = τv0(x), x ∈ R
N,

(KS)
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where m � 1, q � 2, τ = 0 or 1, and N � 1. The initial data (u0, v0) is a non-negative function
and in L1 ∩ L∞(RN) × L1 ∩ H 1 ∩ W 1,∞(RN) with um

0 ∈ H 1(RN).
In this paper, we shall give a complete proof of our previous announcement in [25].
Keller and Segel [12] proposed the mathematical model describing the aggregation process of

amoebae by chemotaxis and nowadays it is called Keller–Segel model. We consider the Keller–
Segel model of degenerate type (KS).

Concerning the existence of a weak solution (u,v) of (KS), for example, in our previous
papers [24,26], we restricted to the case q = 2 and established the systematic construction of a
weak solution in the following cases:

(1) When m � 2 and τ = 1, (KS) is globally solvable without any restriction on the size of the
initial data.

(2) When m > 2 − 2
N

and τ = 0, (KS) is globally solvable without any restriction on the size of
the initial data.

(3) When 1 < m � 2− 2
N

and τ = 0, (KS) is globally solvable for small initial data. Furthermore,
the decay of solution in Lp(RN) was obtained.

(Recently, another degenerate case is treated by Laurencot and Wrzosek [16].)

In this paper, we consider the case of q � 2 and prove that:

(i) When m � q and τ = 0,1, (KS) is globally solvable without any restriction on the size of
the initial data.

(ii) When m > q − 2
N

and τ = 0, (KS) is globally solvable without any restriction on the size
of the initial data.

(iii) When 1 � m � q − 2
N

and τ = 0, (KS) is globally solvable for small initial data. Further-
more, the decay of solution in Lp(RN) is shown.

Throughout this paper, we deal with a weak solution of (KS). Our definition of a weak solution
now reads:

Definition 1. Let m � 1, q � 2 and let u0 ∈ L1 ∩ L∞(RN) with um
0 ∈ H 1(RN) and τv0 ∈ L1 ∩

H 1 ∩W 1,∞(RN). A pair (u, v) of non-negative functions defined in R
N ×[0, T ) is called a weak

solution of (KS) on [0, T ) if

(i) u ∈ L∞(0, T ;L2(RN)), um ∈ L2(0, T ;H 1(RN)),
(ii) v ∈ L∞(0, T ;H 1(RN)),

(iii) (u, v) satisfies the equations in the sense of distribution, i.e., that

T∫
0

∫
RN

(∇um · ∇ϕ − uq−1∇v · ∇ϕ − uϕt

)
dx dt =

∫
RN

u0(x)ϕ(x,0) dx,

T∫
0

∫
RN

(∇v · ∇ϕ + vϕ − uϕ − τvϕt ) dx dt = τ

∫
RN

v0(x)ϕ(x,0) dx

for any continuously differentiable function ϕ with compact support in R
N × [0, T ).
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The first theorem gives the existence of a time global weak solution to (KS) with τ = 1 and the
uniform bound of the weak solution when u0 ∈ L1 ∩ L∞(RN) and v0 ∈ L1 ∩ H 1 ∩ W 1,∞(RN).
We note that the initial data is not assumed to be small.

Theorem 1 (Time global existence of τ = 1 case). Let N � 1, τ = 1, 2 � q � m and T > 0. Sup-
pose that u0 and v0 are non-negative everywhere with the property in Definition 1. Then, (KS) has
a weak solution (u, v) on [0, T ). Moreover, um ∈ C((0, T );L2

loc(R
N)) and (u, v) satisfies a uni-

form estimate, i.e., that there exists a constant K1 = K1(‖u0‖L1(RN),‖u0‖L∞(RN),‖v0‖L1(RN),

‖v0‖H 1(RN),‖v0‖W 1,∞(RN),m,q,N,T ) > 0 such that

sup
0<t<T

(∥∥u(t)
∥∥

Lr(RN)
+ ∥∥v(t)

∥∥
Lr(RN)

)
� K1 for all r ∈ [1,∞]. (1.1)

In addition, there exists a positive constant K2 = K2(‖u0‖L1(RN),‖u0‖L2(RN),‖u0‖Lm−q+2(RN),

‖v0‖H 1(RN),m,q,N) independent of T such that

‖vt‖L2(0,T ;L2(RN)) + ∥∥v(t)
∥∥

L2(0,T ;H 2(RN))
� K2. (1.2)

We next consider the case when τ = 0 and m � 1, which includes degenerate versions of “the
Nagai model” for the semilinear Keller–Segel system.

Theorem 2 (Time global existence of τ = 0 case). Let N � 1, τ = 0, m � 1, q � 2, m > q − 2
N

and suppose that u0 is non-negative with the property in Definition 1. In addition, let m > q − 1
in the case of N = 1. Then, (KS) has a weak solution (u,v) on [0,∞). Moreover, it satisfies a
uniform estimate, i.e., that there exists K1 = K1(‖u0‖L1(RN),‖u0‖L∞(RN),m,q,N) such that

sup
0<t<∞

(∥∥u(t)
∥∥

Lr(RN)
+ ∥∥v(t)

∥∥
Lr(RN)

)
� K1 for all r ∈ [1,∞]. (1.3)

In addition, there exists a positive constant K2 = K2(‖u0‖L1(RN),‖u0‖L∞(RN),m,q,N) such
that

sup
0<t<∞

∥∥v(t)
∥∥

W 2,r (RN)
� K2 for all r ∈ (1,∞]. (1.4)

Remark 1. It is known that the semilinear case (m = 1 and τ = 0), the following functional
W0(u(t), v(t)) becomes the Lyapunov function (see Nagai, Senba and Yoshida [18]):

W0(t) =
∫

RN

u(t) logu(t) dx −
∫

RN

u(t)v(t) dx + 1

2

(∥∥∇v(t)
∥∥2

L2 + ∥∥v(t)
∥∥2

L2

)
.

In the quasilinear case: m > 1, the analogous functional W(u(t), v(t)) can be introduced as
follows:

W(t) = m

(m − q + 1)(m − q + 2)

∫
u(t)m−q+2 dx

−
∫

uq−1(t)v(t) dx + 1(∥∥∇v(t)
∥∥2

L2 + ∥∥v(t)
∥∥2

L2

)
.

2
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We show that the above functional W(t) plays a substitutional role as the Lyapunov function for
the quasi-linear case. As a result, the functional W(t) yields the uniform Lm−q+2(RN) bounds
independently of ε,T under the condition m > q − 2

N+2 for any N � 1 (see Appendix A).

Finally, we present the decay property for the weak solution of (KS) in the τ = 0 case under
the smallness assumption on ‖u0‖LN(q−m)/2(RN).

Theorem 3 (Decay property). Let 1 � p < ∞, N � 1, τ = 0, q � 2, 1 � m � q − 2
N

and suppose
that the initial data u0 is non-negative everywhere. Then, there exist an absolute constant M and

a positive number ε depending only on M,p,N,m such that if u0 ∈ L
N(q−m)

2 (RN) satisfies that

‖u0‖L1(RN) = M, ‖u0‖LN(q−m)/2(RN) � ε, (1.5)

then (KS) has a weak solution (u,v) on [0,∞) with the following decay property:

(1 + t)d
(∥∥u(t)

∥∥
Lp(RN)

+ ∥∥v(t)
∥∥

Lp(RN)

)
< ∞, (1.6)

where

d = σ

(
1 − 1

p

)
, σ = N

N(m − 1) + 2
.

Remark 2. Our decay rate in Theorem 3 seems to be optimal. In fact, when m = 1, our decay
rate coincides with the L1–Lr estimate for the linear heat equation.

When we substitute the second equation: �v = v − u into the first equation in (KS), it holds
that

ut = �um − ∇uq−1 · ∇v − uq−1�v = �um + uq − ∇u · ∇v − uq−1v. (E)

The above equation (E) includes the terms ut ,�um and uq . Therefore, we observe that the fol-
lowing equation is analogous to (E):

{
ut = �um + uq, x ∈ R

N, t > 0,

u(x,0) = u0(x), x ∈ R
N.

(PS)

We are interested in finding similarities and differences between (KS) and (PS) in order to ob-
serve the effects of the reaction term −∇(uq−1∇v) in the first equation of (KS).

As for the remarkable difference between (KS) and (PS), we easily find the mass conservation
law (‖u(t)‖L1(RN) = ‖u0‖L1(RN) for all t � 0), which holds for (KS) but not for (PS). In order to
mention similarities and another differences between (KS) and (PS), we divide the situation into
three cases: the first one is of the case 1 � m � q − 2

N
; the second one is of the case q − 2

N
<

m < q; the final one is of the case m � q . Concerning the first case: 1 � m � q − 2
N

, in this
paper we prove that a solution of (KS) exists globally in time for small initial data. On the other
hand, the solution of (PS) with small initial data exists globally in time, too (see, for example,
Samarskii et al. [23]). Thus, we see that (KS) and (PS) are similar to each other in the first case
of 1 � m � q − 2

N
. In the second case: q − 2

N
< m < q , we prove that a solution of (KS) exists

globally in time without any restriction on the size of the initial data. On the other hand, the
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solution of (PS) blows up in a finite time. Also for the third case of m � q , the solution of (PS)
blows up in a finite time, which occurs in some region (see [23] for details.) However, by virtue
of the mass conservation law for (KS), if the solution of (KS) blows up in a finite time, then
singular points cannot have positive measure. Thus, we are led to the following problem: in the
case of m � q , whether solutions of (KS) blow up in discrete points or exist globally in time? In
this paper, we show that (KS) is solvable globally in time without any restriction on the size of
the initial data in the case of m � q . Thus, we make it clear that (KS) and (PS) differ from each
other in the second and third cases, i.e., when m > q − 2

N
.

In the semilinear case: m = 1, we refer to Corrias, Perthame and Zaag [5], Diaz, Nagai and
Rakotoson [7], Herrero and Velázquez [9], Jäger and Luckhaus [11], Nagai, Senba and Yoshida
[18], Nagai [19]. We also refer to Horstmann [10] which summarized various aspects and results
for Keller–Segel models.

Concerning the Keller–Segel system of quasilinear type, we refer to Biler, Nadzieja and
Stanczy [2], Bonami, Hilhorst, Logak and Mimura [3], Calvez and Carrillo [6], Kowalczyk [17]
and Luckhaus and Sugiyama [15]. In those papers, essentially, the problem of the following type
was considered:

(QKS)

{
ut = ∇ · (u∇h(u) − u · ∇v), x ∈ Ω, t > 0,

0 = �v − v + u, x ∈ Ω, t > 0.
(1.7)

The finite time blow-up was first formally obtained by [2] for Neumann problem. They [2] con-
sider the second equation as 0 = �v + u and gave a proof by using Riesz potential. On the other
hand, we [27] gave a rigorous complete proof for the Cauchy problem (KS) (with the absorption
term in the second equation) using the Bessel potential. Those results were obtained indepen-
dently each other. In [17], the time global L∞ bound was obtained for (QKS) of nondegenerate
type and the existence of a solution was not considered.

In the following section, we shall prepare several lemmas which will be often used in this
paper. In Section 3, we organize the proof of the existence of a time global solution of the ap-
proximated problem of (KS). In Section 4, we give a proof of Theorems 1 and 2. Moreover, we
discuss the decay property of the weak solution (u,v) in Section 5.

In what follows, we will use the simplified notations:

(1) ∂i = ∂
∂xi

, ∂2
ij = ∂i∂j , ∇2u = (∂2

11, ∂
2
12, . . .), ‖ · ‖Lr = ‖ · ‖Lr(RN), 1 � r � ∞,

∫ ·dx :=∫
RN ·dx.

(2) QT := R
N × (0, T ).

(3) When the weak derivatives ∇u,∇2u and ut are in Lp(QT ) for some p � 1, we say that
u ∈ W

2,1
p (QT ), i.e.,

W 2,1
p (QT ) := {

u ∈ Lp
(
0, T ;W 2,p

(
R

N
))∩ W 1,p

(
0, T ;Lp

(
R

N
))

:

‖u‖
W

2,1
p (QT )

:= ‖u‖Lp(QT ) + ‖∇u‖Lp(QT ) + ∥∥∇2u
∥∥

Lp(QT )

+ ‖ut‖Lp(QT ) < ∞}
.

2. Some lemmas

In this section, we shall prepare several lemmas which will be used often in the next section.
The following inequalities are easily ensured by Duoandikoetxea [8, p. 110] and Brezis

[4, IX.12].
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Lemma 4. Let w ∈ W 2,r (RN). Then the following inequalities hold:

∥∥∇2w
∥∥

Lr(RN)
� C

(
r2

r − 1

)2

‖�w‖Lr(RN) for 1 < r < ∞, (2.1)

‖w‖L∞(RN) � 2r

r − N
· ‖w‖W 1,r (RN) for r > N, (2.2)

where C is a positive constant depending only on N .

We consider the following Cauchy problem:

{
zt = �z − z + f, x ∈ R

N, t > 0,

z(x,0) = z0(x), x ∈ R
N.

(P)

The following definition is a standard one from semigroup theory. (For instance, see Pazy [22].)

Definition 2. Let X be a Banach space, z0 belong to X, and f ∈ L1(0, T ;X). The function
z(x, t) ∈ C([0, T ];X) given by

z(t) = e−t et�z0 +
t∫

0

e−(t−s) · e(t−s)�f (s) ds, 0 � t � T , (P)

is the mild solution of (P) on [0, T ], where (et�f )(x, t) = ∫
RN G(x − y, t)f (y) dy and G(x, t)

is the heat kernel by G(x, t) = 1
(4πt)N/2 exp(−|x|2

4t
).

It is easily shown that the following Lp estimates hold:

∥∥et�f
∥∥

Lp(RN)
� Ct

−( 1
q
− 1

p

)· N
2 ‖f ‖Lq(RN) for 1 � q � p � ∞, (2.3)

∥∥∇et�f
∥∥

Lp(RN)
� Ct

− 1
2 −( 1

q
− 1

p

)· N
2 ‖f ‖Lq(RN) for 1 � q � p � ∞, (2.4)

where C is a positive constant depending only on p,q and N .
The following lemma is an immediate consequence from (2.3) and (2.4). It plays an important

role in establishing the a priori estimates of solution v in (KS).

Lemma 5. Let 1 � q � p � ∞, 1
q

− 1
p

< 1
N

and suppose that z is the function given by (P) and

z0 ∈ W 1,p(RN). If f ∈ L∞(0,∞;Lq(RN)), then

∥∥z(t)∥∥
Lp(RN)

� ‖z0‖Lp(RN) + C · 
(γ ) sup
0<s<t

∥∥f (s)
∥∥

Lq(RN)
, (2.5)

∥∥∇z(t)
∥∥

Lp(RN)
� ‖∇z0‖Lp(RN) + C · 
(γ̃ ) sup

0<s<t

∥∥f (s)
∥∥

Lq(RN)
(2.6)

for t ∈ [0,∞), where C is a positive constant independent of p, 
(·) is the gamma function, and
γ = 1 − ( 1 − 1 ) · N , γ̃ = 1 − ( 1 − 1 ) · N .
q p 2 2 q p 2
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In addition, let |∇ iz0| ∈ Lp(RN), and f ∈ L2(0, T ;Wi−1,p(RN)) for i = 1,2,3. Then, it
holds that

∥∥∇ iz(t)
∥∥2

Lp(RN)
�
∥∥∇ iz0

∥∥2
Lp(RN)

+ 2(p + N − 2)

t∫
0

∥∥∇ i−1f (s)
∥∥2

Lp(RN)
ds for t ∈ [0,∞).

(2.7)

The following lemma gives us a variant of Gagliardo–Nirenberg inequality, which was ob-
tained in [27, Lemma 2.4]. See also [20]. It will be often used in the following sections, as the
main part of our arguments.

Lemma 6. [27, Lemma 2.4] Let N � 1, m � 1, a > 2, u ∈ Lq1(RN) with q1 � 1 and u
r+m−1

2 ∈
H 1(RN) with r > 0. If q1 ∈ [1, r + m − 1], q2 ∈ [ r+m−1

2 ,
a(r+m−1)

2 ] and

⎧⎨
⎩

1 � q1 � q2 � ∞ when N = 1,

1 � q1 � q2 < ∞ when N = 2,

1 � q1 � q2 � (r+m−1)N
N−2 when N � 3,

(2.8)

then, it holds that

‖u‖Lq2 (RN) � C
2

r+m−1 ‖u‖1−Θ

Lq1 (RN)

∥∥∇u
r+m−1

2
∥∥ 2Θ

r+m−1

L2(RN)
with (2.9)

Θ = r + m − 1

2

(
1

q1
− 1

q2

)(
1

N
− 1

2
+ r + m − 1

2q1

)−1

, (2.10)

where {
C depends only on N and a when q1 � r+m−1

2 ,

C = c
1/β

0 with c0 depending only on N and a when 1 � q1 < r+m−1
2 ,

(2.11)

and

β = q2 − r+m−1
2

q2 − q1

[
2q1

r + m − 1
+
(

1 − 2q1

r + m − 1

)
2N

N + 2

]
. (2.12)

3. Approximated problem

The first equation of (KS) is a quasi-linear parabolic equation of degenerate type with m > 1.
Therefore, we cannot expect the system (KS) to have a classical solution at the point where the
first solution u vanishes. In order to justify all the formal arguments, we need to introduce the
following approximated equation of (KS):

(KS)ε

⎧⎨
⎩

uεt (x, t) = ∇ · (∇(uε + ε)m − (uε + ε)q−2uε · ∇vε), (x, t) ∈ R
N × (0, T ), (1)

τvεt (x, t) = �vε − vε + uε, (x, t) ∈ R
N × (0, T ), (2)

uε(x,0) = u0ε(x), τvε(x,0) = τv0ε(x), x ∈ R
N,

where m � 1, q � 2, τ = 0,1 and ε is a positive parameter.



340 Y. Sugiyama, H. Kunii / J. Differential Equations 227 (2006) 333–364
In the case of N � 2, (u0ε ,v0ε) is an approximation for the initial data (u0,v0) such that

(A.1) 0 � u0ε ∈ L1 ∩ W 2,p(RN) for all p ∈ [ N
N−1 ,N + 3] for all ε ∈ (0,1], 0 � τv0ε ∈ L1 ∩

W 3,p(RN) for all p ∈ [ N
N−1 ,∞], for all ε ∈ (0,1],

(A.2) ‖u0ε‖Lp � ‖u0‖Lp , τ‖v0ε‖W 1,p � τ‖v0‖W 1,p for all p ∈ [1,∞], for all ε ∈ (0,1],
(A.3) ‖∇u0ε‖L2 � ‖∇u0‖L2 for all ε ∈ (0,1],
(A.4) u0ε → u0, τv0ε → τv0 strongly in Lp(RN), as ε → 0 for some p ∈ [ N

N−1 ,∞).

As for the case of N = 1, (u0ε ,v0ε) is an approximation for the initial data (u0,v0) such that

(A.1)′ 0 � u0ε ∈ L1 ∩ W 2,p(R), 0 � τv0ε ∈ L1 ∩ W 3,p(R) for all p ∈ [2,3], for all ε ∈ (0,1],
(A.2)′ ‖u0ε‖Lp � ‖u0‖Lp , τ‖v0ε‖W 1,p � τ‖v0‖W 1,p for all p ∈ [1,∞], for all ε ∈ (0,1],
(A.3)′ ‖∇u0ε‖L2 � ‖∇u0‖L2 for all ε ∈ (0,1],
(A.4)′ u0ε → u0, τv0ε → τv0 strongly in Lp(R), as ε → 0 for some p ∈ [1,∞).

We call (uε, vε) a strong solution of (KS)ε if it belongs to W
2,1
p × W

2,1
p (QT ) for some p � 1

and Eqs. (1), (2) in (KS)ε are satisfied almost everywhere. The strong solution vε coincides with
the mild solution defined in Definition 2 if uε ∈ L1(0, T ;Lp(RN)) with p � 1.

We denote W(QT ) by

W(QT ) := W1(QT ) × W2(QT )

:=
{

(W
2,1
N/(N−1) ∩ W

2,1
N+3(QT )) × W

2,1
N+2(QT ) for N � 2,

W
2,1
3 (QT ) × W

2,1
3 (QT ) for N = 1.

(3.1)

In the definition of W(QT ), the exponent N
N−1 stems from validity of mass conservation law.

Indeed, L1-summability can be obtained by integration by parts of (KS)ε multiplied by some
cut-off function. In such procedure, we need to control the behavior of boundary integral at ∞.
This is the reason why the exponent N

N−1 appears in W(QT ) (see Kozono [13, Lemma 2.1]).

Moreover, in order to justify the energy estimate in the proof of Lemma 13 (which gives LN+2-
a priori bound for �uε), we require the class W

2,1
N+3(QT ).

The main purpose of this section is to construct the time global strong solution of (KS)ε ,
which reads:

Theorem 7 (Time global strong solution). Let N � 1, τ = 0,1, m � 1, q � 2. Suppose that (A.1)
(respectively (A.1)′) is satisfied in the case of N � 2 (respectively N = 1). Then, (KS)ε has the
unique strong solution in the class W(QT ) for all T > 0.

For the proof of Theorem 7, it suffices to show the following three propositions. We first show
the local existence theorem and then its extension criterion. Finally, we will carry out our local
solution satisfies such a criterion for extension.

Proposition 8 (Time local existence). Let the same assumptions as that in Theorem 7 hold.
Then, there exists a number T1 = T1(ε,‖u0ε‖W 2,N+2(RN), τ‖v0ε‖W 3,∞(RN),m,q,N) > 0 such
that (KS)ε has the unique non-negative strong solution (uε, vε) belonging to W(QT1).
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Proposition 9 (Extension criterion). Let the same assumptions as that in Theorem 7 hold and let
T > 0. Suppose that (uε, vε) is a strong solution of (KS)ε in the class W(QT ). If it holds that

sup
0<t<T

∥∥uε(t)
∥∥

L∞(RN)
< ∞,

then there is T
′
> T such that (uε, vε) can be a strong solution of (KS)ε in W(Q

T
′ ).

Proposition 10 (A priori estimate in L∞). Let the same assumptions as that in Theorem 7 hold
and let T > 0. We assume that (uε, vε) is the non-negative strong solution of (KS)ε in W(QT ).
Then, the mass conservation law holds, i.e., that

∥∥uε(t)
∥∥

L1(RN)
= ‖u0ε‖L1(RN) for all t ∈ [0, T ).

Moreover, uε satisfies the following estimates:

(i) For τ = 1, m � q , it holds that

sup
0<t<T

∥∥uε(t)
∥∥

Lr(RN)
� MT

u for all r ∈ [1,∞], (3.2)

where MT
u is a constant depending on ‖u0ε‖L1∩L∞(RN), ‖∇v0ε‖L2∩L∞(RN), m, q , N , T but

not on ε.
(ii) For τ = 0, m > q − 2

N
, it holds that

sup
0<t<T

∥∥uε(t)
∥∥

Lr(RN)
� Mu for all r ∈ [1,∞]. (3.3)

(iii) For τ = 0, 1 < m � q − 2
N

, if ‖u0ε‖
L

N(q−m)
2

is small enough, then (3.3) holds, where Mu is

a constant depending on ‖u0ε‖L1∩L∞(RN), ‖∇v0ε‖L2∩L∞(RN), m, q , N but not on ε, T .

In the following Sections 3.1–3.3, we prove Propositions 8–10.

3.1. Local existence; proof of Proposition 8

To prove Proposition 8, we introduce the following problem (which is not a system):

h(KS)ε

⎧⎪⎪⎨
⎪⎪⎩

uεt (x, t) = ∇ · (m(uε + ε)m−1∇uε − (uε + ε)q−2uε∇h),

(x, t) ∈ R
N × (0, T ), (1)h

vεt (x, t) = �vε − vε + f, (x, t) ∈ R
N × (0, T ), (2)f

uε(x,0) = u0ε(x), τvε(x,0) = τv0ε(x), x ∈ R
N,

where f ∈ Lp(QT ) is a non-negative function and h ∈ L∞(0, T ;W 3,∞(RN)).
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In order to prove the existence of a strong solution uε of (1)h in h(KS)ε , we consider the
following equation:

uεt (x, t) = ∇ · (m(g + ε)m−1∇uε

)− ∇(
(g + ε)q−2uε

) · ∇h − (g + ε)q−2uε�h

= m(g + ε)m−1�uε + (
m∇(g + ε)m−1 − (g + ε)q−2∇h

) · ∇uε

− (∇(g + ε)q−2 · ∇h + (gε + ε)q−2�h
)
uε. (3.4)

Here, we denote XT by

XT := {
g ∈ L∞(

0, T ;W 2,N+2(
R

N
))

, gt ∈ LN+2(QT ): g � 0 in QT ,

‖gt‖LN+2(QT ) + ‖g‖L∞(0,T ;W 2,N+2(RN)) � 2‖u0ε‖W 2,N+2(RN) + 1
}
. (3.5)

Then, Morrey inequality assures that if g ∈ XT , then g satisfies that

∣∣g(x, t) − g(y, s)
∣∣� c

(‖∇g‖LN+2(QT ) + ‖gt‖LN+2(QT )

)∣∣(x, t) − (y, s)
∣∣1− N+1

N+2 . (3.6)

We now remark that it is not difficult to generalize Theorem 9.1 in Ladyzhenskaya, Solon-
nikov and Ural’ceva [14] for Cauchy problem. The modern treatment such as maximal regularity
theorem in Lp can be found in Amann [1, Chapter IV, Theorem 1.5.1]. By virtue of [1, Theo-
rem 1.5.1] or [14, Theorem 9.1], we have the following lemma:

Lemma 11. Let the same assumption as that in Proposition 8 hold. We assume that g ∈ XT , and
h satisfies that

‖∇h‖L∞(QT ) + ‖�h‖L∞(QT ) � B0 (3.7)

for some positive constant B0. Then, Eq. (3.4) corresponding to the initial data u0ε has the
unique non-negative strong solution u

g
ε belonging to W(QT ).

By virtue of Lemma 11, we can define an operator S by

S :g ∈ XT 
→ ug
ε ∈ W(QT ).

We find that the strong solution u
g
ε is a non-negative function as follows.

We multiply (3.4) by |uε|r−2uε with r > 1 and integrate it over R
N . Then, we have

1

r

d

dt

∫
|uε|r dx

� −m(r − 1)

2

∫
(g + ε)m−1|uε|r−2|∇uε|2 dx

+ 1

m(r − 1)

((‖g‖L∞(QT ) + ε
)2q−m−3 + 1

ε−2q+m+3

)
‖∇h‖2

L∞(QT )

∫
|uε|r dx

+ (∥∥∇(g + ε)q−2 · ∇h
∥∥

L∞(QT )
+ ∥∥(g + ε)q−2�h

∥∥
L∞(QT )

)∫ |uε|r dx

for all ε ∈ (0,1] and r > 1.
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Whence follows

∥∥uε(t)
∥∥

Lr

� ‖u0ε‖Lr + 1

m(r − 1)

((‖g‖L∞(QT ) + ε
)2q−m−3 + 1

ε−2q+m+3

)
‖∇h‖2

L∞(QT )

×
t∫

0

∥∥uε(s)
∥∥

Lr ds + (∥∥∇(g + ε)q−2 · ∇h
∥∥

L∞(QT )
+ ∥∥(g + ε)q−2�h

∥∥
L∞(QT )

)

×
t∫

0

∥∥uε(s)
∥∥

Lr ds for all ε ∈ (0,1] and r > 1.

Letting r → ∞, we derive

∥∥uε(t)
∥∥

L∞ � ‖u0ε‖L∞ + (∥∥∇(g + ε)q−2∇h
∥∥

L∞(QT )
+ ∥∥(g + ε)q−2�h

∥∥
L∞(QT )

)

×
t∫

0

∥∥uε(s)
∥∥

L∞ ds.

Using the Gronwall inequality, we have

sup
0<t<T

∥∥uε(t)
∥∥

L∞ � ‖u0ε‖L∞ exp
{(∥∥∇(g + ε)q−2 · ∇h

∥∥
L∞(QT )

+ ∥∥(g + ε)q−2�h
∥∥

L∞(QT )

)
T
}
.

We multiply (3.4) by u−
ε := −min(0, uε) and integrate it over R

N . Then, it holds that

1

2

d

dt

∫
|u−

ε |2 dx

= −m

∫
(g + ε)m−1|∇u−

ε |2 dx +
∫

(g + ε)q−2uε∇h · ∇u−
ε dx

� 1

m

∫
(g + ε)2q−m−3|∇h|2|u−

ε |2 dx

� 1

m

((‖g‖L∞(QT ) + ε
)2q−m−3 + 1

ε−2q+m+3

)
‖∇h‖2

L∞(QT )

∫
|u−

ε |2 dx.

Again using the Gronwall inequality, we obtain

sup
0<t<T

∥∥u−
ε (·, t)∥∥

L2

� exp

{
1
((‖g‖L∞(QT ) + ε

)2q−m−3 + 1
−2q+m+3

)
‖∇h‖2

L∞(QT )T

}∥∥u−
ε (·,0)

∥∥
L2 = 0,
m ε
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which assures that

uε(x, t) � 0 for a.a. x ∈ R
N, for all 0 � t < T . (3.8)

Moreover, by the standard argument, we find that there exists T∗ = T∗(ε,‖h‖W 3,∞(QT ),
‖u0ε‖W 2,N+2 ,m,q,N,T ) such that the above operator S maps XT∗ into itself.

We now introduce the metric on XT by

d(g1, g2) = ‖g1 − g2‖L∞(0,T ;LN+2(RN)). (3.9)

Then, it is easily seen that (XT , d) is the complete metric space. With this metric, we see that
S becomes a contraction from XT∗ into itself. Consequently, S has a fixed point ḡ = S(ḡ) =
uḡ ∈ XT∗ . Thus, we assure the existence of a strong solution u

ḡ
ε of (3.4) on [0, T∗] corresponding

to the initial data u0ε , where T∗ = T∗(ε,‖h‖W 3,∞(QT ),‖u0ε‖W 2,N+2,m,N,q,T ). In addition, by
the comparison principle, we see that for any f � 0 in QT , it holds that

vε(x, t) � 0 for a.a. x ∈ R
N, t ∈ (0, T ). (3.10)

By (3.8) and (3.10), we observe that uε, vε � 0 as long as the strong solution (uε, vε) of h(KS)ε
exists.

Lemma 12. Let the same assumptions as that in Proposition 8 hold. We assume that non-negative
functions f ∈ LN+2(QT ) and h satisfy that

‖∇h‖L∞(QT ) + ‖�h‖L∞(QT ) � B1, (3.11)

‖f ‖LN+2(QT ) � B2 (3.12)

for some positive constants B1 and B2. Then, there exists a positive number T∗ depending on ε,
‖u0ε‖W 2,N+2 ,‖h‖W 3,∞(QT ),m,q,N,T such that h(KS)ε has the unique non-negative strong so-
lution (uε, vε) belonging to W(QT∗).

Moreover, (uε, vε) satisfies the following estimates with N
N−1 � p � N + 3 for N � 2 and

p = 3 for N = 1:

‖uε‖W
2,1
p (QT∗ )

� c1T
1
p∗ ‖u0ε‖W 2,p(RN), (3.13)

‖vε‖LN+2(0,T∗;W 2,N+2(RN)) � c2
(
τ · T

1
N+2∗ ‖v0ε‖W 2,N+2(RN) + ‖f ‖LN+2(QT∗ )

)
(3.14)

for some positive constants c1 = c1(ε,‖u0ε‖W 2,N+2(RN),B1,m,q,N) and c2 = c2(B2).

Proof of Proposition 8. From Lemma 12, we see that:

(i) if u0ε ∈ W
N

N−1 ∩WN+3(RN) (respectively W 2,3(RN)) for N � 2 (respectively N = 1) and
if h belongs to L∞(0, T ;W 2,∞(RN)), then (1)h in h(KS)ε has a unique strong solution ūh ∈
W1(QT∗) defined in (3.1). Moreover, ūh satisfies the following estimate with N

N−1 � p � N + 3
(respectively p = 3) for N � 2 (respectively N = 1):

∥∥ūh
∥∥

W
2,1
p (QT∗ )

� T
1
p∗ · c3 (3.15)

for some constant c3 = c3(ε,‖u0ε‖W 2,p(RN),‖h‖L∞(0,T ;W 2,∞(RN)),m,q,N); and
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(ii) if v0ε ∈ W 3,∞(RN) and if f belongs to LN+2(0, T ;W 2,N+2(RN)), then by Lemma 12,
there exists a unique strong solution v̄f ∈ W

2,1
N+2(QT ) of (2)f in h(KS)ε . Moreover, in both cases

τ = 0 and τ = 1, v̄f satisfies the following estimate:

∥∥v̄f
∥∥

L∞(0,T ;W 3,∞(RN))

� τ
∥∥v̄f

∥∥
L∞(0,T ;W 3,∞(RN))

+ c4(1 − τ)
∥∥v̄f

∥∥
L∞(0,T ;W 4,N+2(RN))

� c4
(
τ‖v0ε‖W 3,∞(RN) + (1 − τ)

∥∥v̄f
∥∥

L∞(0,T ;W 2,N+2(RN))
+ ‖f ‖L∞(0,T ;W 2,N+2(RN))

)
� c4

(
τ‖v0ε‖W 3,∞(RN) + (1 − τ)

∥∥v̄f
∥∥

L∞(0,T ;LN+2(RN))
+ 2‖f ‖L∞(0,T ;W 2,N+2(RN))

)
� c4

(
τ‖v0ε‖W 3,∞(RN) + 3‖f ‖L∞(0,T ;W 2,N+2(RN))

)
, (3.16)

where c4 depends only on N .
By using this strong solution v̄f , h(KS)ε with h = v̄f (denoted by h=v̄f

(KS)ε) has a unique
strong solution (ūh=v̄f

, v̄f ) ∈ W(QT∗).
Here, we recall the Banach space XT with the metric defined in (3.5). From (i) and (ii), we

can define an operator Φ by

Φ :f ∈ XT∗ 
→ ūh=vf ∈ W1(QT∗),

where T∗ is the existence time of ūh=vf
obtained from Lemma 12. Moreover, by (3.15) and

(3.16), we find that there exists T0 = T0(ε,‖u0ε‖W 2,N+2(RN), τ‖v0ε‖W 3,∞(RN),m,q,N,T ) � T∗
such that the above operator Φ maps XT0 into itself. To apply the Banach fixed point theorem,
we now recall the complete metric space (XT , d) defined in (3.9). We denote w by

w := ūh=vf1 − ūh=vf2
.

Then, the multiplication ((1)h=v̄f1 − (1)h=v̄f2 ) by |w|Nw and the integration over R
N give that

1

2

d

dt

∥∥w(t)
∥∥2

LN+2(RN)
� c5

∥∥w(t)
∥∥2

LN+2(RN)
+ c5

∥∥∇vf1(t) − ∇vf2(t)
∥∥2

LN+2(RN)
. (3.17)

Here and in what follows c5 will denote a general constant (not necessarily the same at differ-
ent occurrences) but which depends only on ε,‖u0ε‖W 2,N+2(RN), τ‖∇v0ε‖L∞(RN),m,q and N .
By (2.6) in Lemma 5, (3.17) and Gronwall’s inequality, it holds that

sup
0<t<T0

∥∥w(t)
∥∥2

LN+2(RN)
� c5‖f1 − f2‖2

L2(0,T0;LN+2(RN))
exp{c5T0}.

Therefore, there exists T 0 = T 0(ε,‖u0ε‖W 2,N+2(RN), τ‖∇v0ε‖L∞(RN),m,q,N,T ) � T∗ such
that

sup
0<t<T 0

∥∥w(t)
∥∥

LN+2 �
(
c5T

0) 1
2 · ‖f1 − f2‖L∞(0,T 0;LN+2(RN)) exp{c5T }

� 1‖f1 − f2‖L∞(0,T 0;LN+2(RN)).
2
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Now we apply Banach’s fixed point theorem to find that there exists a positive number T1 =
min(T0, T

0) � T∗ depending on ε,‖u0ε‖W 2,N+2(RN), τ‖v0ε‖W 3,∞(RN),m,q,N,T such that Φ

becomes a contraction from XT1 into itself. Consequently Φ has a fixed point f̄ = Φ(f̄ ) =
uh=v̄f̄ ∈ XT1 . Thus we obtain the desired solution (uh=vf̄

, vf̄ ) in Proposition 8. �
3.2. Extension criterion; proof of Proposition 9

To extend the local solution which is constructed in Proposition 8, it is sufficient to show the
following lemma.

Lemma 13. Let the same assumption as that in Proposition 9 hold. Then, it holds that

sup
0<t<T

∥∥∇uε(t)
∥∥

L∞(RN)
� M∇u, (3.18)

sup
0<t<T

∥∥�uε(t)
∥∥

LN+2(RN)
� M�u, (3.19)

where

M∇u = M∇u

(
ε,M,‖∇u0ε‖L2∩L∞, τ‖v0ε‖W 2,∞,m,q,N,T

)
,

M�u = M�u

(
M∇u,‖�u0ε‖L2∩L∞ , τ‖v0ε‖W 3,∞

)
.

Proof. To establish (3.18), we develop the method by Bernstein [21]. Concretely, we introduce
the decomposition of the domain as follows.

Let ω ∈ R be chosen sufficiently small. Define

Ωk(t) := {
x ∈ R

N : (k − 1)ω � uε(x, t) < kω
}

for k ∈ N.

Then, we find that there exists a constant k0 ∈ N such that

Ωk(t) ∩ Ωj(t) = ∅ for all j, k = 1,2, . . . , k0 and R
N =

k0⋃
k=1

Ωk(t).

For any fixed t ∈ [0, T ], define the operator ψk(ūε) which is given by

uε(x, t) = ψk

(
ūε(x, t)

) := (k − 3)ω + 4eω

ūε(x,t)∫
0

e−s2
ds in x ∈

k+1⋃
i=k−1

Ωi(t).

By virtue of this decomposition, we can obtain the Bochner type inequality for |∇ūε|2 ·η, where η

is a cut-off function defined in
⋃k+1

i=k−1 Ωi(t). Using the boundedness of ψ ′
k(ūε), we establish the

boundedness of supt>0 ‖∇uε(t)‖L∞(Ωk) for all k = 1,2, . . . , k0. Consequently, we prove (3.18)
(see [26, Appendix A] for more details).

We are now going to show (3.19). For the rigorous proof, we should multiply �(1)h by
|�uε|N�uεψ�, where ψ� is a standard cut-off function. If uε(t) belongs to W(QT1), by the
limiting process, we can justify the following formal calculation.
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For the sake of simplicity, we multiply �(1)h by |�uε|N�uε and integrate it over R
N . Then,

there exists a positive constant M∇u depending only on ε,m,q,N,Mu,M
T
u ,M∇u such that

d

dt

∥∥�uε(t)
∥∥N+2

LN+2 � M∇u

(
1 + ∥∥∇vε(t)

∥∥2
L∞

) · ∥∥�uε(t)
∥∥N+2

LN+2 + (
M∇u

(
1 + ∥∥�vε(t)

∥∥2
LN+2

)
+ M∇u

∥∥∇�vε(t)
∥∥2

LN+2

) · ∥∥�uε(t)
∥∥N

LN+2 . (3.20)

The same letter M∇u will be used to denote different constants depending on ε,m,q,N,Mu,
MT

u , M∇u.
By (2.6) in Lemma 5 and Gronwall’s inequality, it is seen that

sup
0<t<T

∥∥�uε(t)
∥∥2

LN+2 �
(‖�u0ε‖2

LN+2 + M∇u

(
1 + T + ‖v0ε‖2

W 3,N+2

)
T
)
eM∇u(1+T +‖∇v0ε‖2

L∞ )T .

Thus, we complete the proof of Lemma 13. �
Proof of Proposition 9. We are now in a position to prove Proposition 9. By Proposition 8,
we see that the local existence time interval can be characterized in terms of ‖u0ε‖W 2,N+2(RN),
τ‖v0ε‖W 3,∞(RN). Hence for the extension of the strong solution (uε, vε) on (0, T ) onto (0, T ′)
with T ′ > T , it suffices to show that

sup
0<t<T

∥∥uε(t)
∥∥

W 2,N+2 < ∞, sup
0<t<T

∥∥vε(t)
∥∥

W 3,∞ < ∞,

which was given by Lemma 13. �
3.3. Proof of Proposition 10

For the sake of simplicity, throughout this subsection, we denote (uε, vε) by (u, v) and give
formal calculations. We denote by c a positive number depending only on m,q,N . The same
letter c will denote a general constant greater than 1 (not necessarily the same at different occur-
rences) but which depends only on m,q,N throughout this paper.

Case (i): τ = 1 and m � q . In this case, we have divided the proof into two steps. The first one
gives Lr bounds for all r with 1 � r < ∞, and the second one gives L∞ bound for the strong
solution uε of Eq. (1) in (KS)ε .

Lemma 14. Let the same assumptions as that in Proposition 10 hold. In addition, let τ = 1
and m � q . Then, there exist positive numbers MT

u,r and MT∇v depending on the initial data
(u0ε, v0ε), T but not ε such that the strong solution (uε, vε) of (KS)ε satisfies

sup
0<t<T

∥∥uε(t)
∥∥

Lr(RN)
� MT

u,r for all r ∈ [1,∞), (3.21)

sup
0<t<T

(∥∥vε(t)
∥∥

L∞(RN)
+ ∥∥∇vε(t)

∥∥
L∞(RN)

)
� MT∇v. (3.22)
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Proof. We multiply (1) in (KS)ε by ur−1, where r > 1, and integrate it over R
N . Then, we have

1

r

d

dt
‖u‖r

Lr � − 4m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + (r − 1)

∫
ur+q−3∇v · ∇udx =: −I + II.

(3.23)

By m (> q − 2
N

) � q − 2 and by taking r � m − 2q + 3, we have

II = 2(r − 1)

r + m − 1

∫
∇u

r+m−1
2 u

r−m+2q−3
2 · ∇v dx

� 2m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + r − 1

2m

∫
ur−m+2q−3|∇v|2 dx

= 1

2
I + r − 1

2m
‖u‖r−m+2q−3

Lr+q−1 ‖∇v‖2
L2(r+q−1)/(m−q+2) . (3.24)

On the other hand, by Hölder’s inequality, it holds that

‖u‖L2(r+q−1)/(m−q+2) � ‖u0ε‖
m−q

2(r+q−2)

L1 ‖u‖1− m−q
2(r+q−2)

Lr+q−1 . (3.25)

Combining (3.25) with (2.7) in Lemma 5, we have

∥∥∇v(t)
∥∥2

L2(r+q−1)/(m−q+2) � ‖∇v0ε‖2
L2(r+q−1)/(m−q+2) + cr

t∫
0

∥∥u(s)
∥∥2

L2(r+q−1)/(m−q+2) ds

� ‖∇v0ε‖2
L2(r+q−1)/(m−q+2) + cr‖u0ε‖

m−q
r+q−2

L1

t∫
0

∥∥u(s)
∥∥2(1− m−q

2(r+q−2)
)

Lr+q−1 ds.

(3.26)

Substituting (3.26) into (3.24), we have

II � 1

2
I + (r − 1)

∥∥u(t)
∥∥r−m+2q−3

Lr+q−1 ‖∇v0ε‖2
L2(r+q−1)/(m−q+2)

+ cr(r − 1)
∥∥u(t)

∥∥r−m+2q−3
Lr+q−1 ‖u0ε‖

m−q
r+q−2

L1

t∫
0

∥∥u(s)
∥∥2(1− m−q

2(r+q−2)
)

Lr+q−1 ds

� 1

2
I + (r − 1)

r+q−1
r−m+2q−3

∥∥u(t)
∥∥r+q−1

Lr+q−1 + ‖∇v0ε‖
2(r+q−1)
m−q+2

L2(r+q−1)/(m−q+2)

+ cr(r − 1)‖u0ε‖
m−q

r+q−2

L1

∥∥u(t)
∥∥r−m+2q−3

Lr+q−1

t∫
0

∥∥u(s)
∥∥2(1− m−q

2(r+q−2)
)

Lr+q−1 ds. (3.27)
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By (3.23) and (3.27),

1

r

d

dt

∥∥u(t)
∥∥r

Lr � − 2m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2 (t)
∥∥2

L2

+ (r − 1)
r+q−1

r−m+2q−3
∥∥u(t)

∥∥r+q−1
Lr+q−1 + ‖∇v0ε‖

2(r+q−1)
m−q+2

L2(r+q−1)/(m−q+2)

+ cr(r − 1)‖u0ε‖
m−q

r+q−2

L1

∥∥u(t)
∥∥r−m+2q−3

Lr+q−1

t∫
0

∥∥u(s)
∥∥2(1− m−q

2(r+q−2)
)

Lr+q−1 ds. (3.28)

By integrating (3.28) from 0 to t ,

1

r

∥∥u(t)
∥∥r

Lr � 1

r
‖u0ε‖r

Lr − 2m(r − 1)

(r + m − 1)2

t∫
0

∥∥∇u
r+m−1

2 (s)
∥∥2

L2 ds

+ (r − 1)
r+q−1

r−m+2q−3

t∫
0

∥∥u(s)
∥∥r+q−1

Lr+q−1 ds + t‖∇v0ε‖
2(r+q−1)
m−q+2

L2(r+q−1)/(m−q+2)

+ cr(r − 1)‖u0ε‖
m−q

r+q−2

L1

×
t∫

0

∥∥u(s)
∥∥r−m+2q−3

Lr+q−1 ds

t∫
0

∥∥u(s)
∥∥2(1− m−q

2(r+q−2)
)

Lr+q−1 ds. (3.29)

Here, we note that

t∫
0

∥∥u(s)
∥∥r−m+2q−3

Lr+q−1 ds

t∫
0

∥∥u(s)
∥∥2(1− m−q

2(r+q−2)
)

Lr+q−1 ds

�
( t∫

0

∥∥u(s)
∥∥r+q−1

Lr+q−1 ds

) r−m+2q−3
r+q−1

t
m−q+2
r+q−1

( t∫
0

∥∥u(s)
∥∥r+q−1

Lr+q−1 ds

) 2(r+q−2)−m+q
(r+q−1)(r+q−2)

t
1− 2(r+q−2)−m+q

(r+q−1)(r+q−2)

=
( t∫

0

∥∥u(s)
∥∥r+q−1

Lr+q−1 ds

) r−m+2q−2
r+q−2

t
r+m−2
r+q−2 for r � 2.

Using the above inequality, for m � q and r � max{2,m − 2q + 3}, we have

cr(r − 1)‖u0ε‖
m−q

r+q−2

L1

t∫ ∥∥u(s)
∥∥r−m+2q−3

Lr+q−1 ds

t∫ ∥∥u(s)
∥∥2(1− m−q

2(r+q−2)
)

Lr+q−1 ds
0 0
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� cr(r − 1)‖u0ε‖
m−q

r+q−2

L1

( t∫
0

∥∥u(s)
∥∥r+q−1

Lr+q−1 ds

) r−m+2q−2
r+q−2

t
r+m−2
r+q−2

� ‖u0ε‖L1 + (
cr(r − 1)

) r+q−2
r−m+2q−2 · t r+m−2

r+2q−m−2

t∫
0

∥∥u(s)
∥∥r+q−1

Lr+q−1 ds. (3.30)

By (3.29) and (3.30), we consequently obtain

1

r

∥∥u(t)
∥∥r

Lr � 1

r
‖u0ε‖r

Lr − 2m(r − 1)

(r + m − 1)2

t∫
0

∥∥∇u
r+m−1

2 (s)
∥∥2

L2 ds

+ (r − 1)
r+q−1

r−m+2q−3

t∫
0

∥∥u(s)
∥∥r+q−1

Lr+q−1 ds + t‖∇v0ε‖2(r+q−1)/(m−q+2)

L2(r+q−1)/(m−q+2)

+ ‖u0ε‖L1 + (
cr(r − 1)

) r+q−2
r−m+2q−2 · t r+m−2

r+2q−m−2

t∫
0

∥∥u(s)
∥∥r+q−1

Lr+q−1 ds

� − 2m(r − 1)

(r + m − 1)2

t∫
0

∥∥∇u
r+m−1

2 (s)
∥∥2

L2 ds

+ 1

r
‖u0ε‖r

Lr + ‖u0ε‖L1 + T ‖∇v0ε‖
2(r+1)

m

L2(r+1)/m

+ (r − 1)
[
r

m−q+2
r−m+2q−3 + r

m−q
r−m+2q−2 (cr)

r+q−2
r−m+2q−2 · T r+m−2

r−m+2q−2
] t∫

0

∥∥u(s)
∥∥r+q−1

Lr+q−1 ds

for m � q, r � max{2,m − 2q + 3} and t ∈ [0, T ). (3.31)

From Lemma 6 with a = 3, it holds that

‖uε‖Lr+q−1 � c
1
β1

· 2
r+m−1 ‖u‖1−θ1

L1

∥∥∇u
r+m−1

2
∥∥ 2θ1

r+m−1

L2 (3.32)

for r � m − 2q + 1, where

β1 := 2N

N + 2
· r − m + 2q − 1

(r + q − 2)(r + m − 1)

(
2

N
+ r + m − 2

)
,

θ1 := r + m − 1

2
·
(

1 − 1

r + q − 1

)
1

1
N

− 1
2 + r+m−1

2

.

It is easy to verify that 2θ1(r+q−1)
r+m−1 < 2 if m > q − 2

N
and 1

β1
� N+2

N
if r � max{2,2(m − q)}.

Therefore, by Young inequality, it holds that
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[
r

m−q+2
r−m+2q+3 + r

m−q
r−m+2q−3 (cr)

r+q−2
r−m+2q−2 · T r+m−2

r+2q−m−2
]∥∥u(t)

∥∥r+q−1
Lr+q−1

� Cr + 2m

(r + m − 1)2

∥∥∇u
r+m−1

2 (t)
∥∥2

L2

for any r ∈ [
max

{
2,2(m − q)

}
,∞)

and m > q − 2

N
, (3.33)

where

Cr = (r + m − 1)
2(r+q−2)
m−q+2/N

×
([

r
m−q+2

r−m+2q−3 + r
m−q

r−m+2q−2 (cr)
r+q−2

r−m+2q−2 · T r+m−2
r+2q−m−2

]

× c
2(N+2)

N
· 2(r+q−1)

r+m−1 ‖u‖
2r/N+m−2+2/N

r+m−2+2/N
+(q−2)(2/N−1)

L1

) r+m−2+2/N
m−q+2/N

. (3.34)

From (3.31) and (3.33), we have

sup
0<t<T

∥∥u(t)
∥∥

Lr �
(‖u0ε‖Lr + r‖u0ε‖L1 + rT ‖∇v0ε‖

2(r+1)
m

L2(r+1)/m + r(r − 1)Cr · T ) 1
r =: MT

u,r

(3.35)

for any r � [max{2,m−2q +3,2(m−q)},∞), and m > q − 2
N

, and for Cr in (3.34). Combining
the mass conservation law for uε(t) with (3.35), we establish (3.21) in Lemma 14.

By Lemma 5 and (3.35), we have

sup
0<t<T

∥∥v(t)
∥∥

L∞ � ‖v0ε‖L∞ + c · 
(γ ) sup
0<t<T

∥∥u(t)
∥∥

Lr0 ,

sup
0<t<T

∥∥∇v(t)
∥∥

L∞ � ‖∇v0ε‖L∞ + c · 
(γ̃ ) sup
0<t<T

∥∥u(t)
∥∥

Lr0

with r0 = max{2,m − 2q + 3,2(m − q)}. Hence, we deduce that

sup
0<t<T

(∥∥v(t)
∥∥

L∞ + ∥∥∇v(t)
∥∥

L∞
)

� ‖v0ε‖L∞ + ‖∇v0ε‖L∞ + c
(

(γ ) + 
(γ̃ )

)
MT

u,r0
=: MT∇v.

Thus, we obtain (3.22) and complete the proof of Lemma 14. �
We are now in a position to prove the uniform L∞(RN) bound for (uε, vε).

Lemma 15. Let the same assumptions as that in Proposition 10 hold. We assume that there exist
positive numbers MT

u,r and MT∇v such that the strong solution (uε, vε) of (KS)ε satisfies

sup
0<t<T

∥∥uε(t)
∥∥

Lr(RN)
� MT

u,r for all r ∈ [1,∞), (3.36)

sup
∥∥∇vε(t)

∥∥
L∞(RN)

� MT∇v. (3.37)

0<t<T
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Then, uε satisfies the following estimate:

sup
0<t<T

∥∥uε(t)
∥∥

L∞(RN)
� MT

u,∞ < ∞, (3.38)

where MT
u,∞ is a constant depending on ‖u0ε‖L1∩L∞ ,MT

u,r1
(with r1 = r1(m,q,N) large

enough), MT∇v,m,q,N,T but not ε.

We multiply (1) in (KS)ε by ur−1, where r > 1, and integrate it over R
N . Then, we have

1

r

d

dt
‖u‖r

Lr � −m(r − 1)

∫
um−1ur−2|∇u|2 dx + (r − 1)

∫
uq−1∇v · ur−2∇udx

� − 2m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + (r − 1)
(
MT∇v

)2‖u‖r−m+2q−3
Lr−m+2q−3 . (3.39)

We divide the cases into two: one is q > 3 − 2
N

; the other one is 2 < q � 3 − 2
N

. Firstly, we treat
the case of q > 3 − 2

N
.

(a) Case of q > 3 − 2
N

. Let � be a natural number which is chosen later. By Lemma 6 with
a = 3, there exists a positive constant r∗ depending only on m,q,N,� such that

‖u‖Lr−m+2q−3 � c
1
β2

· 2
r+m−1 ‖u‖1−θ2

Lr/�

∥∥∇u
r+m−1

2
∥∥ 2θ2

r+m−1

L2 (3.40)

for any r � r∗, where

β2 = r − m + 2q − 3 − r+m−1
2

r − m + 2q − 3 − r
�

[
2

r + m − 1
· r

�
+
(

1 − 2

r + m − 1
· r

�

)
2N

N + 2

]
,

θ2 = r + m − 1

2
·
(

�

r
− 1

r − m + 2q − 3

)
· 1

1
N

− 1
2 + r+m−1

2 · �
r

.

The same letter r∗ will denote a general constant (not necessarily the same at different occur-
rences) but which depends only on m,q,N,� in what follows.

It is easy to verify that 2θ2(r−m+2q−3)
r+m−1 < 2 and 1

β2
� 6 for r � r∗. Therefore, the Young in-

equality and (3.40) yield that

(r − 1)
(
MT∇v

)2‖u‖r−m+2q−3
Lr−m+2q−3

� (r − 1)
(
MT∇v

)2
c

12(r−m+2q−3)
r+m−1 ‖u‖(1−θ2)(r−m+2q−3)

Lr/�

∥∥∇u
r+m−1

2
∥∥ 2θ2(r−m+2q−3)

r+m−1

L2

� m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2

+ (r − 1)(cr)k1
((

MT∇v

)2
c
)k2‖u‖(1−θ2)(r−m+2k−3)·k2

r/� for any r � r∗, (3.41)

L
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where

k1 := θ2(r − m + 2q − 3)

r + m − 1 − θ2(r − m + 2q − 3)
, k2 := r + m − 1

r + m − 1 − θ2(r − m + 2q − 3)
.

We set a by a := q+2/N−3
m−1 . Then, this constant a becomes a positive number by the assumption

q > 3 − 2
N

. In addition, it holds that

{
1 − a > 0 if m > q − 2

N
when N = 2,

1 − a > 0 if m � q − 2
N

when N � 3.

From the above, it is easily seen that there exists a natural number � depending only on m,q,N

such that

1
2 (� − 1)

1
2 (� − 1) + 1

N

> 1 − 1

2
(1 − a). (3.42)

We choose the constant � used in (3.40) such that it satisfies (3.42). Then, it holds that

θ2 = r + m − 1

2
·
(

�

r
− 1

r − m + 2q − 3

)
· 1

1
N

− 1
2 + r+m−1

2 · �
r

−→
1
2 (� − 1)

1
2 (� − 1) + 1

N

as r → ∞.

This assures that

1
2 (� − 1) − 1

2N

1
2 (� − 1) + 1

N

� θ2 �
1
2 (� − 1) + 1

2N

1
2 (� − 1) + 1

N

for r � r∗. (3.43)

Using (3.43), we obtain the following upper bound for k1, k2:

k1 � N�, k2 � N� + 2 for all r � r∗. (3.44)

Combining (3.41) with (3.44), we see that

(r − 1)
(
MT∇v

)2‖u‖r−m+2q−3
Lr−m+2q−3

� m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + rCC‖u‖(1−θ2)(r−m+2k−3)·k2
Lr/� for any r � r∗, (3.45)

where C will denote a general constant (not necessarily the same at different occurrences) but
which depends only on MT∇v,m,q,N, � throughout this Section 3.3.

We apply the Young inequality again for (3.45). To this end, we set

k3 := (1 − θ2)k2 · r − m + 2q − 3 = (1 − θ2) · r − m + 2q − 3 · r + m − 1
.

r r r + m − 1 − θ2r
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From (3.42), we see that

q + 2
N

− 3

m − 1
=: a < 2 ·

1
2 (� − 1)

1
2 (� − 1) + 1

N

− 1 =
1
2 (� − 1) − 1

N

1
2 (� − 1) + 1

N

� θ2. (3.46)

By virtue of (3.46), we see that 1
k3

� 1. In addition, by taking r∗ larger if necessary, we have
1
k3

� N� + 2 for r � r∗. Now applying Young’s inequality with the exponent 1
k3

to (3.45), we
have

(r − 1)
(
MT∇v

)2‖u‖r−m+2q−3
Lr−m+2q−3 � m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + 1 + rCC‖u‖r
Lr/� (3.47)

for any r � r∗. Substituting (3.47) into (3.39), we have

1

r

d

dt
‖u‖r

Lr � − m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + 1 + rCC‖u‖r
Lr/� (3.48)

for any r � r∗. By the similar argument to that from (3.40) to (3.47), we have

1

r
‖u‖r

Lr � m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + 1 + rCC‖u‖r
Lr/� (3.49)

for r � r∗. Combining (3.48) with (3.49), we have

1

r

d

dt
‖u‖r

Lr + 1

r
‖u‖r

Lr � 2 + rCC‖u‖r
Lr/� (3.50)

for any r � r∗. Integrating (3.50) from 0 to t , we obtain

sup
0<t<T

∥∥u(t)
∥∥r

Lr � ‖u0ε‖r
Lr + 2r + rCC sup

0<t<T

‖u‖r
Lr/�

� max
{
‖u0ε‖L1,‖u0ε‖L∞,1, sup

0<t<T

‖u‖Lr/�

}r × rCC (3.51)

for any r � r∗. Hence, applying the Moser’s iteration technique, we establish

sup
0<t<T

∥∥u(t)
∥∥

L∞ � C max
(
‖u0ε‖L1,‖u0ε‖L∞,1, sup

0<t<T

∥∥u(t)
∥∥

Lr∗
)

=: MT
u,∞. (3.52)

Here, we remark that the upper bound of sup0<t<T ‖u(t)‖L∞ is depending on T since
sup0<t<T ‖u(t)‖Lr∗ depends on T by Lemma 14. Thus, we complete the proof of Lemma 15
in case of (i)-(a).

Next, we treat the case of 2 � q � 3 − 2
N

.

(b) Case of 2 � q � 3− 2
N

. From q � m+ 2
N

and q � 3− 2
N

, it holds that 2q � m+3. Therefore,

‖u‖r−m+2q−3
r−m+2q−3 � ‖u0ε‖L1 + ‖u‖r

Lr . (3.53)

L
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Substituting (3.53) into (3.39), we have

1

r

d

dt
‖u‖r

Lr � − 2m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + (r − 1)
(
MT∇v

)2‖u0ε‖L1 + (r − 1)
(
MT∇v

)2‖u‖r
Lr .

(3.54)

By Lemma 6 with a = 3, there exists a positive constant r∗∗ depending only on m,N such that

‖u‖Lr � c
1
β3

· 2
r+m−1 ‖u‖1−θ3

Lr/4

∥∥∇u
r+m−1

2
∥∥ 2θ3

r+m−1

L2 for any r � r∗∗,

where

β3 = 2(r − m + 1)

3(r + m − 1)r

[
r

2
+ N

N + 2
(r + 2m − 2)

]
,

θ3 = r + m − 1

2
·
(

4

r
− 1

r

)
· 1

1
N

− 1
2 + 2(r+m−1)

r

.

It is easy to verify that 2θ2·r
r+m−1 < 2 by m � 1, and 1

β2
� 6 for r � r∗∗.

Therefore, from the Young inequality, it holds that

(r − 1)
(
MT∇v

)2‖u‖r
Lr

� m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + 1 + rCC‖u‖r
Lr/4 for r � r∗∗. (3.55)

Substituting (3.55) into (3.54), we have

d

dt
‖u‖r

Lr � − m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + r − 1

2m

(
MT∇v

)2‖u0ε‖L1 + 1

+ rCC‖u‖r
Lr/4 for r � r∗∗. (3.56)

Since the above (3.55) means that

‖uε‖r
Lr � m(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 + 1 + rCC‖u‖r
Lr/4 (3.57)

for any r � r∗∗, combining (3.56) with (3.57), we have

1

r

d

dt
‖u‖r

Lr + 1

r
‖u‖r

Lr � (r − 1)
(
MT∇v

)2‖u0ε‖L1 + 2 + 2rCC‖u‖r
Lr/4 for r � r∗∗.

By the similar argument to that from (3.50) to (3.52), we prove Lemma 15 in case of (i)-(b).
Finally, denoting max{r∗, r∗∗} by r1 and combining the case of (i)-(a) with (i)-(b), we complete
the proof of Lemma 15. �



356 Y. Sugiyama, H. Kunii / J. Differential Equations 227 (2006) 333–364
Moreover, we define MT
u as follows:

sup
0<t<T

∥∥uε(t)
∥∥

Lr(RN)
� MT

u,r � sup
1�r�∞

MT
u,r =: MT

u for r ∈ [1,∞].

Then, collecting Lemmas 14 and 15, we obtain (3.2) in Proposition 10.

Case (ii): τ = 0 and m > q − 2
N

. We multiply Eq. (1) in (KS)ε by ur−1 and integrate it over R
N .

Then, we have

1

r

d

dt
‖u‖r

Lr � −m(r − 1)

∫
ur+m−3|∇u|2 dx + (r − 1)

∫
uq−1∇v · ur−2∇udx

= − 4m(r − 1)

(r + m − 1)2

∫ ∣∣∇u
r+m−1

2
∣∣2 dx − r − 1

r + q − 2

∫
ur+q−2�v dx.

We substitute (2) of (KS)ε: �v = v − u into the above inequality and use the Young inequality.
Then, we obtain

1

r

d

dt
‖u‖r

Lr � − 2m(r − 1)

(r + m − 1)2

∫ ∣∣∇u
r+m−1

2
∣∣2 dx + (r − 1)

r + q − 2

∫
ur+q−1 dx.

Integrating with respect to t , we have

1

r
‖u‖r

Lr � − 2m(r − 1)

(r + m − 1)2

t∫
0

∥∥∇u
r+m−1

2 (s)
∥∥2

L2 ds + 1

r
‖u0ε‖r

Lr

+ (r − 1)

r + q − 2

t∫
0

∥∥u(s)
∥∥r+q−1

r+q−1 ds for m � 1, r > 1. (3.58)

Thus, we obtain the similar inequality to (3.31). By repeating the process from (3.32) to (3.35),
we establish the following lemma.

Lemma 16. Let the same assumptions as that in Proposition 10 hold. In addition, let τ = 0 and
m > q − 2

N
. Then, there exist positive numbers Mu,r and M∇v depending on the initial data

(u0ε, v0ε) but not ε,T such that the strong solution (uε, vε) of (KS)ε satisfies

sup
0<t<T

∥∥uε(t)
∥∥

Lr(RN)
� Mu,r for all r ∈ [1,∞), (3.59)

sup
0<t<T

(∥∥vε(t)
∥∥

L∞(RN)
+ ∥∥∇vε(t)

∥∥
L∞(RN)

)
� M∇v. (3.60)

Lemma 15 holds true for the case of τ = 0 and m > q − 2
N

. Therefore, collecting Lemmas 15
and 16, we establish (3.3) in Proposition 10.
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Case (iii): τ = 0 and 1 � m � q − 2
N

. Taking q1 = N(q−m)
2 , q2 = r + q − 1, a = 2 + 2

N
in

Lemma 6, we have

‖u‖r+q−1
Lr+q−1 � c

2(N+2)
N

· r+q−1
r+m−1

0 ‖u‖q−m

LN(q−m)/2 · ∥∥∇u
r+m−1

2
∥∥2

L2 for r � N(q − m)

2
(3.61)

for some absolute constant c0, where we used

1

β
= N + 2

N
· r + m − 1

r − m + 2q − 1
� N + 2

N

by m (� q − 2
N

) < q .
Combining (3.58) with (3.61), we obtain

d

dt
‖u‖r

Lr �
[

r(r − 1)

r + q − 2
c

2(N+2)
N

· r+q−1
r+m−1

0 ‖u‖q−m

LN(q−m)/2 − 4mr(r − 1)

(r + m − 1)2

]∥∥∇u
r+m−1

2
∥∥2

L2 . (3.62)

Since ‖u(t)‖LN(q−m)/2 ∈ C([0, T ]), using this continuity and (3.62) with r = N(q−m)
2 , we find that

there exists a short interval [0, t1] such that d
dt

‖u(t)‖Lr � 0 for t ∈ [0, t1], and ‖u(t)‖LN(q−m)/2 �
‖u0ε‖LN(q−m)/2 for t ∈ [0, t1]. Since this implies that ‖u(t1)‖LN(q−m)/2 � ‖u0ε‖LN(q−m)/2 , we can
repeat this procedure. In consequence, we obtain

∥∥u(t)
∥∥

LN(q−m)/2 � ‖u0ε‖LN(q−m)/2 for t ∈ [0, T ]. (3.63)

Substituting (3.63) into (3.62), we have

d

dt
‖u‖r

Lr �
(

r(r − 1)

r + q − 2
c

2(N+2)
N

· r+q−1
r+m−1

0 ‖u0ε‖q−m

LN(q−m)/2 − 4mr(r − 1)

(r + m − 1)2

)∥∥∇u
r+m−1

2
∥∥2

L2

� − 2mr(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
∥∥2

L2 � 0 for r ∈
[
N(q − m)

2
,∞

)
. (3.64)

By the similar argument to that in Lemma 15, we obtain (3.3) for the case of (iii) in Proposi-
tion 10, which completes the proof of Proposition 10. �
4. Proof of Theorems 1 and 2

In this section, we give a proof of Theorems 1 and 2.
By virtue of Proposition 10, we can extract a subsequence {uεn} which converges in Lp (1 <

p � ∞) such that

uεn ⇀ u weakly in Lp
(
0, T ;Lp

(
R

N
))

. (4.1)

Moreover, we obtain a subsequence, still denoted by {uεn} such that for any 2 � p < ∞

uεn → u strongly in C
(
(0, T );Lp

loc

(
R

N
))

, (4.2)

∇um
ε ⇀ ∇um weakly star in L∞(

0, T ;L2(
R

N
))

. (4.3)

n
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The above relations (4.2), (4.3) are shown as follows. We multiply Eq. (1) in (KS)ε by ∂(uε+ε)m

∂t

and integrate with respect to the space variable over R
N . Then, we obtain

4m

(m + 1)2

∫ ∣∣((uε + ε)
m+1

2
)
t

∣∣2 dx

= −1

2

d

dt

∫ ∣∣∇(uε + ε)m
∣∣2 dx + 2m

(m + 1)2

∫ ∣∣((uε + ε)
m+1

2
)
t

∣∣2 dx

+ 4m(q − 1)2

(m + 1)2
‖∇vε‖2

L∞(QT )

(‖uε‖L∞(QT ) + ε
)2(q−2)

∫ ∣∣∇(uε + ε)
m+1

2
∣∣2 dx

+ m

∫
(uε + ε)m+2q−3|�vε|2 dx. (4.4)

Integrating (4.4) with respect to time variable, we have

2m

(m + 1)2

T∫
0

∫ ∣∣((uε + ε)
m+1

2
)
t

∣∣2 dx dt + 1

2
sup

0<t<T

∫ ∣∣∇(uε + ε)m
∣∣2 dx

= 1

2

∫ ∣∣∇(u0ε + ε)m
∣∣2 dx + m

(‖uε‖L∞(QT ) + ε
)m+2q−3

T∫
0

∫
|�vε|2 dx dt

+ 4m(q − 1)2

(m + 1)2
‖∇vε‖2

L∞(QT )

(‖uε‖L∞(QT ) + ε
)2(q−2)

T∫
0

∫ ∣∣∇(uε + ε)
m+1

2
∣∣2 dx dt. (4.5)

On the other hand, by the multiplication Eq. (1) in (KS)ε by uε and the integration with respect
to x and t , we have

T∫
0

∫ ∣∣∇(uε + ε)
m+1

2
∣∣2 dx dt

� (m + 1)2

8m
‖u0ε‖2

L2 + (m + 1)2

8m

( T∫
0

∫
1

q2
u2q

ε + ε2

(q − 1)2
u2q−2

ε + 2|�vε|2 dx dt

)
. (4.6)

From (2.6) in Lemma 5, Proposition 10, (4.5) and (4.6), we see that for q � 2 there exists a
positive constant C which is independent of ε such that

T∫
0

∫ ∣∣(um
ε

)
t

∣∣2 dx dt + sup
0<t<T

∫ ∣∣∇um
ε

∣∣2 dx

�
T∫ ∫ ∣∣((uε + ε)m

)
t

∣∣2 dx dt + sup
0<t<T

∫ ∣∣∇(uε + ε)m
∣∣2 dx
0
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� 4m2

(m + 1)2

(‖uε‖L∞(QT ) + ε
)m−1

T∫
0

∫ ∣∣(uε + ε)
m+1

2
)
t

∣∣2 dx dt

+ sup
0<t<T

∫ ∣∣∇(uε + ε)m
∣∣2 dx � C.

Thus, we find that um
ε ∈ L∞(0, T ;H 1(RN)) ∩ H 1(0, T ;L2(RN)). Hence, we can extract a sub-

sequence such that

um
εn

→ ξ strongly in C
(
(0, T );L2

loc

(
R

N
))

. (4.7)

This gives

um
εn

(x, t) → ξ(x, t) a.a. x ∈ R
N, t ∈ (0, T ).

A function g(u) = u
1
m is continuous with respect to u. Thus, we see that

uεn(x, t) → ξ
1
m (x, t) a.a. x ∈ R

N, t ∈ (0, T ), (4.8)

On the other hand, by Proposition 10, independently of ε such that

sup
0<t<T

∥∥uεn(t)
∥∥

L∞(RN)
� max

{
MT

u ,Mu

}=: M,

which yields that

∣∣uεn(x, t)
∣∣� M a.a. x ∈ R

N, t ∈ (0, T ),

MT
u,∞ ∈ Lp

(
0, T ;Lp

loc

(
R

N
))

for any 1 < p < ∞. (4.9)

From Lebesgue dominated convergence theorem, (4.1) and (4.8), we find that

uεn → ξ
1
m = u strongly in Lp

(
0, T ;Lp

loc

(
R

N
))

(4.10)

for any 1 < p < ∞. From (4.10), we observe that

uεn(x, t) → ξ
1
m (x, t) = u(x, t) a.a. x ∈ R

N, all t ∈ (0, T ). (4.11)

By (4.7) and (4.11),

um
εn

→ um strongly in C
(
(0, T );L2

loc

(
R

N
))

. (4.12)

In addition, since |b − a|m � |bm − am| for 0 � a � b and m � 1, from (4.2) we see that

uεn → u strongly in C
(
(0, T );L2m

loc

(
R

N
))

. (4.13)
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By Hölder inequality and (4.13), in all cases of 2 � p < ∞, it holds that

uεn → u strongly in C
(
(0, T );Lp

loc

(
R

N
))

, (4.14)

which prove (4.2).
From (4.7) and (4.12), we obtain (4.3).
Using Proposition 10, for both cases τ = 0 and τ = 1 we have

τ

T∫
0

∫ ∣∣(vε)t
∣∣2 dx dt + sup

0<t<T

∫
|∇vε|2 dx � C

for some constant C independent of ε. Hence, we can extract a subsequence {vεn} such that

vεn → v weakly in L2(0, T ;L2(
R

N
))

, (4.15)

∇vεn ⇀ χ = ∇v weakly in L2(0, T ;L2(
R

N
))

. (4.16)

Integrating (1) and (2) in (KS)ε with respect to x and t , we see that (uεn, vεn ) satisfies

T∫
0

∫
RN

(∇(uεn + εn)
m · ∇ϕ − (uεn + ε)q−2uε · ∇vεn · ∇ϕ − uεn · ϕt

)
dx dt

=
∫

RN

u0εn(x) · ϕ(x,0) dx,

T∫
0

∫
RN

(∇vεn · ∇ϕ + vεn · ϕ − uεn · ϕ − τvεn · ϕt ) dx dt =
∫

RN

τv0εn(x) · ϕ(x,0) dx

for any continuously differentiable function ϕ with compact support in R
N × [0, T ).

Using (4.2), (4.3), (4.15), (4.16) and (A.4), by the standard convergence argument, we obtain

T∫
0

∫
RN

(∇um · ∇ϕ − uq−1∇v · ∇ϕ − u · ϕt

)
dx dt =

∫
RN

u0(x) · ϕ(x,0) dx

for the case of m > 1, q � 2. Similarly, we find that

T∫
0

∫
RN

(∇v · ∇ϕ + v · ϕ − u · ϕ − τv · ϕt ) dx dt =
∫

RN

τv0(x) · ϕ(x,0) dx

for the case of m > 1, q � 2. Thus, we construct the desired weak solution (u,v) of (KS).
Consequently, we complete the proof of Theorems 1 and 2.
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5. Proof of Theorem 3

Combining (3.63), (3.64) with Proposition 9, we prove the following lemma.

Lemma 17. Let N � 1, m � 1, q � max{m + 2
N

,2} and let T > 0 and suppose that (A.1) and
(A.2) are satisfied. Then, there exist an absolute constant M and a positive number δ depending
only on M,N,m such that if u0 satifies:

‖u0‖L1(RN) = M, ‖u0‖LN(m−q)/2(RN) � δ, (5.1)

then (KS)ε has the strong solution (uε, vε) in the class obtained from Proposition 9 with the
following property:

d

dt
‖uε‖r

Lr + 2mr(r − 1)

(r + m − 1)2

∥∥∇u
r+m−1

2
ε

∥∥2
L2 � 0 for all t ∈ (0, T ) and r ∈

[
N(q − m)

2
,∞

)
.

(5.2)

Using the above Lemma 17, we are going to show Theorem 3. Lemma 6 with a = 3 and (A.2)
give that

‖uε‖Lr � c
1
β4

· 2
r+m−1 ‖u0‖1−θ4

L1 · ∥∥∇u
r+m−1

2
ε

∥∥ 2θ4
r+m−1

L2

for any r ∈ [2,∞), where

β4 := N

N + 2

(r + m − 2 + 2
N

)(r − m + 1)

(r − 1)(r + m − 1)
,

θ4 := r + m − 1

2
·
(

1 − 1

r

)
· 1

1
N

− 1
2 + r+m−1

2

.

Noting that

1

θ4
� 2,

1 − θ4

θ4
(r + m − 1) � N + 2

N
for r ∈ [q,∞),

1

β4
� 2(N + 2)

N
for r ∈ [

3(m − 1),∞)
,

we obtain

‖uε‖
r+m−1

θ4
Lr �

(
c‖u0‖L1

)N+2
N · ∥∥∇u

r+m−1
2

ε

∥∥2
L2 for any r ∈ [

max
{
q,3(m − 1)

}
,∞)

. (5.3)

By (5.3), we easily see that

Cr‖uε‖r·λ
Lr � 2mr(r − 1)

2

∥∥∇u
r+m−1

2
ε

∥∥2
L2 for m > 1 − 2

, (5.4)

(r + m − 1) N



362 Y. Sugiyama, H. Kunii / J. Differential Equations 227 (2006) 333–364
where

λ := r + m − 1

θ4 · r = 1 + m − 1 + 2
N

r − 1
> 1, Cr := 2mr(r − 1)

(r + m − 1)2
· (c‖u0‖L1

)− N+2
N .

By combining (5.4) with (5.2) in Lemma 17,

d

dt

∥∥uε(t)
∥∥r

Lr + Cr

∥∥uε(t)
∥∥r·λ

Lr � 0 for r ∈ [
(N + 2)q,∞)

. (5.5)

Let us denote ‖uε(t)‖r
Lr by X(t). Then, (5.5) gives

X(t)′

X(t)λ
+ Cr = 1

1 − λ
· (X(t)−λ+1)′ + Cr � 0. (5.6)

From (5.6), we obtain

X(t) � 1

((λ − 1)Cr · t + X(0)−λ+1)
1

λ−1

� 1

min{(λ − 1)Cr,‖u0‖r(−λ+1)
Lr } 1

λ−1

· 1

(1 + t)
1

λ−1

= max
{(

(λ − 1)Cr

)− 1
λ−1 ,‖u0‖r

Lr

} · (1 + t)−
1

λ−1 .

This means that

∥∥uε(t)
∥∥

Lr � max
{(

(λ − 1)Cr

)− 1
λ−1 · 1

r ,‖u0‖Lr

} · (1 + t)−
1

λ−1 · 1
r � C̃r (1 + t)

− N
(m−1)N+2 ·(1− 1

r
)
,

where

C̃r := max

{[
(r + m − 1)2

r
· 1

2m(m − 1 + 2
N

)

(
c‖u0‖L1

)N+2
N

] N
(m−1)N+2 ·(1− 1

r
)

,‖u0‖Lr

}
.

We thus establish the decay estimate for r ∈ [(N + 2)q,∞). On the other hand, by the Hölder
inequality and the mass conservation law,

‖uε‖Lp � ‖u0‖1− p−1
p

· r
r−1

L1 ‖uε‖
p−1
p

· r
r−1

Lr for p ∈ [1, r].

Therefore, we have the Lp-decay estimates for all p ∈ [1,∞) as follows:

∥∥uε(t)
∥∥

Lp � ‖u0‖1− p−1
p

· r
r−1

L1 · C̃
p−1
p

· r
r−1

r · (1 + t)
N

(m−1)N+2 ·(1− 1
p

) for p ∈ [1,∞). (5.7)

In addition, a solution vε of Eq. (2) in (KS)ε can be expressed by the Bessel potential. Therefore,
we obtain the same decay estimate as (5.7) for vε . Furthermore, by the lower semi-continuity
of the norm for p ∈ (1,∞) and Fatou lemma for p = 1, we obtain the decay estimate (1.6) in
Theorem 3. In consequence, we complete the proof of Theorem 3.
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Appendix A

In [26] we investigated the case of q = 2 in (KS). By the similar argument to that in there, we
can obtain the following Lyapunov function for the case of q � 2:

W(t) = m

(m − q + 1)(m − q + 2)

∥∥u(t)
∥∥m−q+2

Lm−q+2 −
∫

u(t)v(t) dx + 1

2

(∥∥∇v(t)
∥∥2

L2 + ∥∥v(t)
∥∥2

L2

)
.

Moreover, we obtain the following lemma:

Lemma 18. Let N � 1, τ = 0,1, q � 2, m > q − 2
N+2 and the non-negative functions (u0, τv0) ∈

L1 ∩ Lm(RN) × H 1(RN). We assume that (u, v) is a weak solution of (KS). In the case of
τ = 0, v0 denotes G ∗ u0 with the Bessel potential G. Then, there exists a positive number
R = R(u0, v0) > 0 such that the weak solution (u, v) of (KS) satisfies

sup
0<t<∞

∥∥u(t)
∥∥m−q+2

Lm−q+2(RN)
� R,

τ‖vt‖2
L2(0,∞;L2(RN))

� R,

sup
0<t<∞

(∥∥v(t)
∥∥2

L2(RN)
+ ∥∥∇v(t)

∥∥2
L2(RN)

)
� R.

More precisely,

R = 4

{
m

(m − q + 1)(m − q + 2)
‖u0‖m−q+2

Lm−q+2(RN)
−
∫

RN

u0v0 dx

+ 1

2

(‖∇v0‖2
L2(RN)

+ ‖v0‖2
L2(RN)

)+ Cm

(‖v0‖L1(RN) + ‖u0‖L1(RN)

)γm

}
,

where Cm and γm are positive numbers depending only on m,q and N .
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