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A B S T R A C T

In tomographic optoacoustic imaging, multiple parameters related to both light and ultrasound

propagation characteristics of the medium need to be adequately selected in order to accurately recover

maps of local optical absorbance. Speed of sound in the imaged object and surrounding medium is a key

parameter conventionally assumed to be uniform. Mismatch between the actual and predicted speed of

sound values may lead to image distortions but can be mitigated by manual or automatic optimization

based on metrics of image sharpness. Although some simple approaches based on metrics of image

sharpness may readily mitigate distortions in the presence of highly contrasting and sharp image

features, they may not provide an adequate performance for smooth signal variations as commonly

present in realistic whole-body optoacoustic images from small animals. Thus, three new hybrid

methods are suggested in this work, which are shown to outperform well-established autofocusing

algorithms in mouse experiments in vivo.

� 2014 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

Contents lists available at ScienceDirect

Photoacoustics

jo ur n al ho m epag e: ww w.els evier . c om / lo cat e/pac s
1. Introduction

Optoacoustics offers unique in vivo imaging capabilities for
preclinical research [1]. However, achieving optimal resolution and
contrast as well as associated quality measures in optoacoustic
tomographic images implies accurate calibration of the reconstruc-
tion parameters. The position and orientation of the ultrasound
sensors, spatial variations of the speed of sound (SoS), attenuation
and other acoustic properties of the propagation medium may all
significantly affect the collected optoacoustic responses [2] and
therefore must be correctly accounted for in the image reconstruc-
tion process. For example, cross-sectional optoacoustic systems
based on single-element [3,4] or arrays of cylindrically focused
transducers [5,6] are commonly employed due to important
advantages derived from reducing the optoacoustic problem into
two dimensions. For accurate tomographic reconstructions, the
location of all detection points in the imaging plane needs to be
precisely known or determined experimentally, the latter by, e.g.,
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imaging a calibration phantom having a uniform and known SoS.
Once the acquisition geometry is properly calibrated, the correct
values of the acoustic propagation parameters must still be taken
into consideration, ideally with the use of an algorithm accounting
for acoustic heterogeneities [7–11]. In many practical cases, the map
of SoS variations in the imaged medium is not available a priori nor
can be extracted experimentally so representative reconstructions
are obtained by considering a uniform heuristically fitted SoS
[12,13].

Dependence of SoS on the temperature of the surrounding
matching medium is yet another uncertainty that must be accounted
for, e.g. by continuously monitoring, the temperature throughout
duration of the experiment [14]. Indeed, even subtle temperature
variations lead to substantial changes of SoS in water of 2.6 m/s/8C
[15]. Consequently, if the water temperature cannot be properly
controlled during a prolonged experiment, dynamic calibration of
the SoS becomes essential. In addition, local discrepancies between
sound propagation velocity in the water and the imaged sample, even
under assumption of uniform acoustic properties, may raise the
necessity in additional SoS calibration on a per-slice basis. Moreover,
fast automatic calibration of the SoS is of high importance in real-
time imaging systems, where GPU-accelerated reconstruction
algorithms now allow for real-time optoacoustic visualization of
the sample in the course of the experiment [16].
rticle under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Determining autofocusing (AF) parameters for biological
images has been a wide area of research and diverse families of
methods have been reported for digital microscopy [17–19], shape
from focus [20] and cytogenetic analysis [21]. Some simple AF
approaches based on sharpness metrics [22] may perform equally
well for optoacoustics, especially when high frequency strongly
contrasting image features such as high resolution subcutaneous
are present in the images. However, they may not provide an
adequately robust performance for smooth or ultrawideband
signal variations as commonly present in realistic whole-body
optoacoustic images from small animals, especially when consid-
ering quantitative model-based reconstructions that preserve low-
frequency information [23].

In this work, we discuss on the performance of a number of
different AF algorithms for automatic SoS calibration in cross-
sectional optoacoustic tomography. Along with investigating a
number of measures extensively reported in the literature, we
propose additional efficient hybrid focusing metrics employing
pre-processing to enhance the focusing performance. The pro-
posed methods further incorporate key improvements, viz. edge
detection and diffusion, making them optimal for application in
optoacoustic SoS self-calibration.

2. Materials and methods

2.1. Autofocusing algorithms

The workflow for a typical SoS calibration procedure is depicted
in Fig. 1. Optoacoustic images corresponding to selection of
different values of the SoS in a certain reasonable range are
tomographically reconstructed from the recorded signals. There-
after, the reconstructed images are processed with the AF
algorithm and focus measures are employed to determine the
best matching SoS. The fitted SoS, as obtained from the calibration
Fig. 1. Basic principle of the application of the autofocusing in the optoacoustic reconstr

autofocusing algorithm employed to automatically calibrate speed of sound.
method, is then fed back as a parameter for the reconstruction of
the dataset/frame. The algorithms described in this section can be
classified into three main groups, namely intensity-based (i and ii),
gradient-based (iii and iv) and edge-based (v–vii) measures, where
the last group of metrics simultaneously correspond to the hybrid
approaches suggested in this work. In order to enable comparison
between the different methods, all focus measures are readjusted
so that the global minima represent the most focused image. The
focus measure is normalized to the maximum value in the SoS
range considered. Focus metrics were calculated on the interval
from 1460 to 1580 m/s, corresponding to a typical range of SoS in
water and soft tissues, with step size of 1 m/s, and processed with
smoothing Savitzky–Golay denoising filter (with polynomial order
of 0 and window size of 5 points) [24]. The algorithms tested are
presented below.

2.1.1. Maximum pixel intensity

The maximum pixel intensity represents the most intuitive and
computationally efficient focus measure. The method is inspired
by the tendency of the user to look for the brightest spots in the
focused image as well as the largest image contrast so that it is
assumed that a given structure has the highest intensity value
when it is focused. As such, this metric is expected to perform
better with high signal-to-noise-ratio (SNR) images rich with high-
contrast features, but is the most artifact-prone if noise and other
image artifacts yield these high-intensity features. The focus
measure is defined as

FMI ¼ �maxx;y½ f ðx; yÞ�; (1)

where f(x,y) is a function of two variables representing the gray
level intensity in the cross-sectional image. The negative sign is
added so that the global minimum represents the most focused
image, as mentioned above.
uction workflow. The autofocusing (AF) blockset illustrates the post-reconstruction
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2.1.2. Maximum intensity range

The maximum intensity range is a modified version of the
previous method [18]. In this case, the difference between the
maximum and minimum pixel intensity is calculated, i.e., the focus
measure is defined as

FMIR ¼ �fmaxx;y½ f ðx; yÞ� � minx;y½ f ðx; yÞ�g: (2)

2.1.3. Brenner’s gradient

The Brenner’s gradient provides a quantitative measure of
image sharpness. It is based on computing the difference between
the intensity values for pixels separated by two times the pixel
size. In two dimensions, it can be expressed as

FBG ¼ �fSx;y½ f ðx þ 2; yÞ � f ðx; yÞ�2

þ Sx;y½ f ðx; y þ 2Þ � f ðx; yÞ�2g: (3)

The Brenner’s gradient is a widely used metric and it has been
shown to outperform other methods for SoS calibration in three-
dimensional optoacoustic imaging [22].

2.1.4. Tenenbaum’s gradient

The Tenenbaum’s gradient uses an edge-detection-based
approach (sharper edges correspond to higher frequencies). The
gradient is determined by a convolution between the Sobel
operator (and its transpose) with the image pixels. This focus
measure is calculated as

FTG ¼ �fSx;y½G � f ðx; yÞ�2 þ ½GT � f ðx; yÞ�2g; (4)

where

G ¼
�1 0 þ1
�2 0 þ2
�1 0 þ1

2
4

3
5 (5)

represents the Sobel operator and * denotes two-dimensional
convolution. While the Tenenbaum’s gradient has been reported to
be superior in microscopy [25], its performance in optoacoustic
imaging has been shown to be comparable to that of the Brenner’s
gradient [22].

2.1.5. Normalized sum of edge pixels (Edge + Sum)

The normalized sum of edge pixels calculates the sum of pixels
corresponding to strong edges, subsequently normalized by the
total number of pixels in the image. The Sobel approximation to the
derivative is used as edge detection algorithm. This metric aims at
minimizing the influence of thin circles and ‘crossing-arcs’ artifacts
typically present in unfocused cross-sectional optoacoustic
images. The method then aims at maximizing clearly defined
edges, i.e., it represents, to some extent, an opposite approach to
the traditional camera focusing. The focus measure is then
expressed as

FES ¼
1

N
Sx;yeðx; yÞ; (6)

being N the number of pixels in the image and

eðx; yÞ ¼ 1; gðx; yÞ > threshold
0; otherwise

;

�
(7)

with

gðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½G � f ðx; yÞ�2 þ ½ðGTÞ � f ðx; yÞ�2

q
: (8)

The value of the threshold was determined automatically by
computing the root mean squared (RMS) estimate of noise [26].
2.1.6. Normalized variance of the image gradient magnitude using

Sobel operator (Sobel + Var)

The normalized variance of the image itself has been previously
reported as focus measure in computer microscopy [17,27] and
later in optoacoustic imaging [22]. Herein, we suggest an
additional step consisting in computing the variance of the
gradient magnitude obtained by convolution with the Sobel
operator. This metric belongs to hybrid approaches being
combination of statistics-based and derivative-based algorithms,
leading to an enhanced performance in optoacoustic images
having a relatively low contrast compared to natural images. The
focus measure is expressed as

FSV ¼ � 1

Nm
Sx;yðgðx; yÞ � mÞ2; (9)

where m is the mean value of g(x,y), as defined in (8).

2.1.7. Anisotropic diffusion enhanced energy of image gradient using

consistent gradient operator (Ad-CG)

Another hybrid methodology based on a combination of
anisotropic diffusion and consistent gradient (CG) operator is
suggested in this work. Anisotropic diffusion is an iterative
scale-space approach, which enhances the edges while smooth-
ing the rest of the information in the image [28]. The purpose of
this pre-processing step is twofold, namely, to remove noise and
intensity fluctuations on the one hand, on the other – to reduce
the ripples in focus measure as a function of the SoS. The
continuous form of the non-linear partial differential equation
(PDE) as proposed by Perona and Malik [28] for diffusing an
image is given by [29]

@I

@t
¼ div½CðjrIjÞ � rI�

Iðt ¼ 0Þ ¼ f 0ðx; yÞ

8<
: (10)

where r and div are the gradient and divergence operators,
respectively, C(x) is the diffusion coefficient, and f0(x,y) is the initial
image. Eq. (10) is solved iteratively as explained in [28], where the
diffusion coefficients is taken as

CðxÞ ¼ 1

1 þ ðx=kÞ2
; (11)

with k being an edge magnitude parameter.
A consistent gradient (CG) operator is then applied as a second

step to compute the energy of the image gradient which is
translated as focus measure scores [30]. This approach has been
reported to have more stable AF performance under varying
illumination conditions for microscopic imaging [31,32]. The use of
a CG operator ensures the exactness of gradient direction in a local
one-dimensional pattern irrespective of orientation, spectral
composition, and sub-pixel translation. The energy of the image
gradient is defined as:

E ¼
Z 1
�1

Z 1
�1
jr f ðx; yÞj2dx dy (12)

The actual focus measure including all intermediate steps can
be expressed in a form:

FADCG ¼
1

N

X
x;y

w � IH þ ð1 � wÞ � IV ; (13)

where N is the total number of image pixels and w is an additional
factor allowing for flexibility in assigning more weight to
horizontal IH or vertical IV derivative approximations defined as

IH ¼ CG � IAD; IV ¼ CGT � IAD; (14)
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being IAD the optoacoustic image after anisotropic diffusion
filtering and CG the 5 � 5 consistent gradient operator expressed
as [30,32]

CG ¼

�0:003776 �0:010199 0 0:010199 0:003776
�0:026786 �0:070844 0 0:070844 0:026786
�0:046548 �0:122572 0 0:122572 0:046548
�0:026786 �0:070844 0 0:070844 0:026786
�0:003776 �0:010199 0 0:010199 0:003776

2
66664

3
77775:

(15)

2.2. Experimental setup

The experimental performances of the AF algorithms were
tested in cross-sectional optoacoustic acquisition geometry [5]
using a commercial small animal multispectral optoacoustic
tomography (MSOT) scanner (Model: MSOT256-TF, iThera Medical
GmbH, Munich, Germany). In short, the scanner consists of a
custom-made 256-element array of cylindrically focused piezo-
composite transducers with 5 MHz central frequency for simul-
taneous acquisition of the signals generated with each laser pulse.
The transducer array covers an angle of approximately 2708 and
has a radius of curvature of 40 mm. Light excitation is provided
with the output laser beam from a wavelength-tunable optical
parametric oscillator (OPO)-based laser, which is shaped to attain
ring-type uniform illumination on the surface of the phantoms by
means of a custom-made fiber bundle. The detected optoacoustic
signals are simultaneously digitized at 40 MS/s. The scanner is
capable of rendering 10 cross-sectional images per second but here
the images were averaged 10 times in order to improve SNR
performance in acquiring entire mouse cross-sections.

2.3. Image reconstruction

The acquired signals were initially band-pass filtered with cut-
off frequencies between 0.1 and 7 MHz for removing low
frequency offsets and high frequency noise, and subsequently
input to a reconstruction algorithm rendering a cross-sectional
distribution of the optical absorption. Two alternative image
formation approaches were considered, namely, the back-projec-
tion reconstruction and model-based inversion. The former one is
based on a delay-and-sum approach [33,34], whereas several back-
projection formulas are available. For a finite number of measuring
locations, the optical energy deposition f ðx0j; y0jÞ at a given pixel of
the region of interest (ROI) was calculated via [16]

f ðx0j; y0jÞ ¼
X

i

sðxi; yi; ti jÞ; (16)

where (xi,yi) is the ith measuring location and
ti j ¼ jðx0j; y0jÞ � ðxi; yiÞj=co, being co the SoS. s(xi,yi,tij) represents
the function to be back-projected, which in our case was taken as
the filtered pressure. Even though the approximated closed-form
back-projection algorithms may lead to fast (real-time) and
qualitatively good-looking images, they have been shown to
artificially accentuate high frequency image features, provide
negative image values, and further result in other substantial
image artifacts, in particular in limited view optoacoustic
tomographic geometries [35], thus hindering their efficient
implementation for quantitative image reconstruction.

In addition, performance of the different focusing methods for
images reconstructed with the exact numerical model-based
reconstruction algorithm, termed interpolated-matrix-model in-
version IMMI [23], was further investigated. This class of
algorithms has been generally shown to retain the quantitative
nature of optoacoustic reconstructions by taking into account the
various experimental imperfections [35,36], better preserving the
low frequency information, and mitigating other image artifacts
associated with the approximated back-projection schemes [35]. It
is based on a least-squares minimization between the measured
pressure at a set of locations and instants (expressed in a vector
form as p) and the equivalent theoretical pressure predicted by a
linear model obtained from a discretization of the optoacoustic
forward solution. The optical absorption at the pixels of the ROI,
expressed as vector form F, is calculated as follows

F ¼ argminf jjAf � pjj2 þ l2jjLfjj2; (17)

where A is the linear operator (or model matrix) mapping the
optical absorption to the acoustic pressure. Details on how to
calculate the matrix A are provided in [10]. Standard Tikhonov
regularization was employed to minimize the high-frequency
noise in the inversion process, which is particularly beneficial in
presence of limited view problems. The matrix L represents a high-
pass filter operation as described in [10]. The model-based
inversion procedure can be further modified to account for speed
of sound variations in the medium [10] or to minimize the artifacts
due to internal reflections [37] in case these effects cause
undesired distortion in the images. In the current implementation,
the computational time of back-projection and model-based
reconstructions for generating a stack of 100 images at different
SoS (200 � 200 pixels) are approximately 8.818 s and 888.442 s,
respectively. Workstation with Intel i7-480 CPU operating at
3.70 GHz and with 32 GB of RAM is used for the experimentation.
The back- projection reconstruction is further accelerated using
the OpenGL platform on AMD Redeon GPU (Clock speed-
1100 Mhz, Memory size 3072 MB, Shaders 2048).

Both back-projection and model-based algorithms are initially
derived for a propagation medium with a uniform SoS. Although
both algorithms can be potentially modified for heterogeneous
acoustic media at the cost of algorithmic and computational
complexity [10,13], a reasonable-quality image can often be
rendered using (16) and (17) even if small variations of the SoS are
present in the sample [13]. In the experiments performed herein, a
grid of 200 � 200 pixels corresponding to a field of view of
25 mm � 25 mm (125 mm pixel size) was employed, which is
adapted to the actual resolution of the system [5].

2.4. The imaging protocol

Two experiments were conducted in order to test the AF
algorithms. In a first experiment, a murine kidney (excised post-
mortem) embedded in an agar phantom was imaged ex vivo. The
phantom was made with an agar solution (1.3% agar powder by
weight) containing 1.2% by volume of Intralipid to provide uniform
light fluence at the kidney surface. In the second experiment,
30 imaging datasets corresponding to 10 different mice were
acquired in vivo. The mouse datasets were drawn from three regions
of anatomical significance, namely the brain, liver and kidney/spleen
regions. The wavelength of the laser was set to 800 nm in all
experiments and the water temperature was maintained at 34 8C.

3. Results

Results for the ex vivo murine kidney experiment are displayed
in Fig. 2. In an effort to test whether the reconstruction
methodologies have an impact on the outcome of the calibration
procedure, back-projection and model-based inversion methods
were compared in this case. Even though all images were manually
thresholded to attain best visual appearance, the image quality is
generally improved with the model-based approach over the back-
projection reconstructions, the latter exhibiting generally unrea-
sonable distribution of the optical absorption with pronounced



Fig. 2. Speed of sound calibration for an ex vivo organ (murine kidney). The graphs show the normalized focus measures versus the speed of sound for 7 different focus

measures using (a) back-projection and (b) model-based reconstruction methods. For all focus measures the global minima determine the most focused image. Panels (c) and

(d) show the images at six different speeds of sound reconstructed with back-projection and model-based algorithms, respectively (values are stated in [m/s]). A zoom-in of a

representative region inside the object is showcased for a better visual evaluation of the image quality enhancement achieved with the proper value of the speed of sound.
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negative value artifacts across the imaged sample. The calculated
focus measures as a function of the SoS are showcased in Fig. 2a
and b for back-projection and model-based reconstruction,
respectively. All focus measures are normalized to the maximum
value in the SoS range. A Savitzky–Golay denoising filter was
further applied as a valuable additional step for removing spikes
from the focus measure plots, thus avoid ambiguity and locking up
into local minima.

The focus measure is expected to have a minimum for the value
of the SoS corresponding to the best focused image. Indeed, most of
the metrics reach the same calibration SoS regardless of the
reconstruction method. Examples of reconstructed images with
back-projection and model-based reconstruction of the ex vivo

murine kidney for several equally spaced SoS values are displayed
in Fig. 2c and d respectively, where the subjectively best-looking
images correspond approximately to the minimum of most focus
measures. The metrics generally show sharper focusing perfor-
mance with back-projection reconstruction, probably due to
higher frame-to-frame variability when the SoS was changed.
On the other hand, the focus scores were generally more consistent
for the model-based reconstructions. The focusing curves were less
noisy for the Ad-CG method, where 2 iterations were used in the
anisotropic diffusion step, as determined empirically.

Fig. 3 displays the in vivo mouse imaging results. In particular,
the focus measures for the head, liver and kidney/spleen regions as
a function of the SoS are showcased in Fig. 3a–c, respectively.
Representative images for these three regions of the mouse body
obtained by considering different values of the SoS are accordingly
shown in Fig. 3d–f. All images were reconstructed with the back-
projection approach. The numbers of iterations in the anisotropic
diffusion procedure were heuristically chosen as 4, 12 and 18 for
the liver, brain and kidney/spleen regions, respectively. The
iterations ensures that a sufficient level of smoothening is achieved
without blurring edges, thus different number of iterations were
determined for each region imaged based on observation and
inherent nature of the images. Further, a fixed edge weight ‘w’ (see
Eq. (13)) of 0.95 was used for all the experiments with Ad-CG
method. The choice of number of iteration is thus critical for the
good performance of the algorithm, effects of weighting is limited
for the current modality but might have greater applicability in the
presence of strong limited view problems.

A higher variability in the focus measures was noticed for the
brain images, primarily due to the lack of well-defined structures
and edges to focus on. For example, the Tenenbaum measure
yielded a minimum at the upper limit of the SoS range, where the
reconstructed image for this particular selection (Fig. 3d) is clearly
deteriorated. The performance of the metrics was better for the
kidney/spleen and the liver regions given higher intrinsic contrast
and defined vascular structures found in these areas. As a first
approach, the temperature of the coupling medium (water) can be



Fig. 3. Focus measure (FM) plots for 7 different metrics in three different anatomical regions of the mouse during in vivo imaging of (a) brain, (b) liver, and (c) kidney/spleen.

The global minima of the focus measure score represent the calibrated speed of sound. Reconstructed images at different speed of sound values for the respective regions are

shown in (d–f), where the first and second columns correspond, respectively, to the speed of sound in water (at 34 8C) and the speed of sound manually fitted.
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used for referencing the SoS and using it for reconstructing the
data. However, as clearly shown in Fig. 3d–f (first column), the
resulting images obtained for this value of the SoS are not optimal.
Indeed, the average SoS in soft tissues is approximately 1540 m/s
[38], and can have variations of up to 10% with respect to the SoS in
water [15]. A different (generally higher) SoS must then be used for
the reconstruction, and the AF algorithms provide a suitable
platform for this purpose. The manually selected values of the SoS
are highlighted in the second column of Fig. 3. The manual
calibration values were decided based on subjective testing using
feedback from three independent volunteers experienced in
reading animal anatomy but with no prior knowledge of the SoS
calibration values. SoS retrieved with the proposed AF algorithms
fits best the one selected manually using the subjective testing. It is
worth noticing that only the three last hybrid focus metrics,
especially the Ad-CG, have the sharp peak on the entire interval,
probably due to the diffusing (or smoothing) processing of the
image. This in turn minimizes the chances for secondary local
minima to appear, which may lead to misinterpretation of the
results. It is to be noted that, anisotropic diffusion is a well-known
image processing technique that successfully reduces image noise
without compromising significant parts of the image content,
typically edges, lines or other details that are essential for image
interpretation and analysis [28].

To quantify the overall efficacy of the results, tests on
10 datasets for each of the designated regions in mice were
conducted. The boxplots of the resulting values of the SoS are
shown in Fig. 4. The gradient-based methods, i.e. Brenner’s and
Tenenbaum’s gradients, generally performed satisfactorily, in
agreement with earlier publications [22,39], although secondary
drifting peaks often appear, which severely offset the global
minima value. The effects of such secondary fluctuations were
reduced with the filtering process and by considering only a SoS
range between 1480 and 1560 m/s. Secondary peaks also appeared
in some cases when considering the Edge + Sum algorithm,
although the resulting variability is lower. On the other hand,
the performance of the two proposed metrics Sobel + Var and Ad-
CG are consistent (no secondary peaks appeared) and provide
variability similar to that obtained by manual selection. The worst
performance in terms of variability and fitted SoS value have been



Fig. 4. Boxplots indicating the speed of sound variability for 10 independent datasets for (a) brain, (b) liver, and (c) kidney/spleen regions. User feedback was taken for the

manual calibration and the 7 automated metrics were compared against it.
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obtained by the intensity-based methods, presumably due to the
highest susceptibility to noise and artifacts.

4. Discussion and conclusions

The applicability of focusing techniques for automatic calibra-
tion of a uniform speed of sound value in optoacoustic
tomographic reconstructions has been analyzed in this work.
For the particular implementation in cross-sectional whole body
optoacoustic small animal imaging, efficacy of two of the
suggested methods, namely, the normalized variance of the image
gradient magnitude using Sobel operator and the algorithm
employing anisotropic-diffusion-enhanced energy of the image
gradient using consistent gradient operator, was found superior to
the other established focus measures.

The need for autofocusing in optoacoustic tomographic
imaging stems from the fact that the average SoS in the region
covered by the measuring locations is unknown. Even if the
geometrical distribution of the tomographic detection points is
accurately calibrated and the water temperature is known, the
corresponding SoS in water for such temperature generally does
not lead to the optimum results. This effect has been illustrated in
this work, where the self-calibrated SoS was generally higher than
the SoS in water. This result is consistent with the fact that the
average SoS in soft tissues is slightly higher than that in water,
with variations reaching up to 10% [15]. The SoS in water can,
however, be used as an initial guess that may serve as the central
SoS of the search interval and thus ease the optimization of the
focus measures. On the other hand, although representative
images can be rendered with algorithms assuming a uniform SoS,
more accurate reconstructions may require considering a
heterogeneous distribution, and AF may also play a similar role
in fitting the SoS of defined regions.

A good performance of the methods analyzed in this work has
been demonstrated for images reconstructed with two different
reconstruction algorithms. Indeed, whereas back-projection re-
construction highlights the high spatial frequency components of
the image, model-based inversion generally renders more
quantitative images by accurate estimation of the low-frequency
background. On the other hand, the computational burden for
back-projection reconstructions is usually significantly lower [40]
so this approach is more convenient for fast (dynamic) calibration
of the SoS during real-time operation. Essentially, the best
performing metrics would not only show good performance in
phantoms or imaging of subcutaneous vasculature but also in cases
of in vivo imaging of entire animal cross-sections. A good
performance was obtained in mouse experiments in vivo for three
representative regions corresponding to the location of the brain,
liver and kidney/spleen. However, secondary peaks in the focus
measures led in some cases to erroneous interpretations, which
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increase variability of the results. The best results in terms of
consistency (as compared with manual fitting) and low variability
were achieved with the hybrid approaches suggested in this
work.

Even though the current paper only showcases self-calibration
in the case of SoS, autofocusing approaches may readily find
broader applicability in calibrating other parameters in optoa-
coustic tomographic imaging systems. For instance, the position
and orientation of ultrasound sensors is generally unknown,
especially in self-developed systems, and must be calibrated in a
first place. Selecting the most focused plane in the elevation
direction around certain structures may also represent a potential
application in the case of cross-sectional (two-dimensional)
imaging systems. Finally, the behavior of the methods in three-
dimensional optoacoustic imaging needs to be further analyzed
[41,42].

In conclusion, similarly to optical microscopy techniques,
focusing techniques are expected to play a fundamental role in
the calibration of optoacoustic reconstruction parameters, partic-
ularly the SoS. The showcased performance of the suggested
methods in cross-sectional imaging systems anticipates their
general applicability for preclinical and clinical imaging with other
geometrical configurations. Furthermore, the self-calibration of
reconstruction parameters allows one to reliably reconstruct large
datasets of whole animal imaging with minimal operator
intervention – thus effectively addressing the problems of
processing larger volumes of data, especially as optoacoustics
progresses toward high throughput biological imaging applica-
tions.
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