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Abstract

Typically, subjects with Parkinson’s disease (PD) display instances of tremor at an early stage of the disease and later on develop gait
impairments and postural instability. In this research, we have investigated the effect of using both gait and tremor features for an early detection
and monitoring of PD. Various features were extracted from the data collected from the wearable sensors and further analyzed using statistical
analysis and machine learning techniques to find the most significant features that would best distinguish between the two groups: subjects with
PD and healthy control subjects. The analysis of our results shows that the features of step distance, stance and swing phases, heel and normalized
heel forces contributed more significantly to achieving a better classification between the two groups in comparison with other features. Moreover,
the tremor analysis based on the frequency-domain characteristics of the signal including amplitude, power distribution, frequency dispersion, and
median frequency was carried out to identify PD tremor from atypical Parkinsonism tremor.
c⃝ 2016 The Korean Institute of Communications Information Sciences. Publishing Services by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Gait and tremor features; Linear discriminant analysis; Parkinson’s disease; Wearable sensors
1. Introduction

Parkinson’s disease (PD) is ranked the second most common
neurodegenerative disease next to Alzheimer’s disease. Parkin-
son Disease Foundation [1] estimates that nearly 7–10 million
people worldwide suffer from PD. Deterioration of dopamine-
producing neurons in the brain is the primary cause of PD,
where dopamine is an essential neurotransmitter that controls
both smooth and coordinated muscle function [1]. The main
motor symptoms of PD include tremor at rest, bradykinesia,
rigidity, and impairment of postural balance [2].

The diagnosis of PD can be difficult especially in its early
stages and currently, there are no specific tests or biomark-
ers available to diagnose PD. Mostly, the current diagnosis is
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based on subjective measures derived from visual observations
by clinicians/ neurologists to generate a score from UPDRS.
Typically, a neurologist analyzes the patient’s complete medical
history and performs numerous clinical assessments to confirm
the presence of PD in that subject [1,3]. Sometimes, it might
take up to a year to diagnose PD after careful consideration
of the subject’s neurological history and clinical assessments.
Moreover, due to lack of objective measures, there is also a high
possibility of misdiagnosing PD. It has been found that the rate
of misdiagnosis of PD is around 25%, and approximately 40%
of PD cases are overlooked for other neurological disorders
[1,3]. According to experts, the diagnosis of PD requires the
presence of one or more of the four main PD motor symptoms.
The progress of PD symptoms varies from one subject to an-
other. For example, resting tremor occurs in only 70% of PD
patients during the onset of the disease, while others might de-
velop gait disturbances or even action tremor during their initial
stages of PD [1,3]. So, an early and accurate diagnosis of PD
is required for better treatment and for more efficiently control
the effects of the symptoms.
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Over time, many types of research have evolved on de-
veloping a PD monitoring system, using different types of
sensors, feature sets and analysis methods. Few among the
many wearable sensors used in acquiring the bio-signals in-
clude accelerometers, force sensors, gyroscopes and magne-
tometers [4]. Patel et al. [5] worked on developing a system
that measures the severity of tremor, bradykinesia (slowness of
movement) and dyskinesia (motor fluctuations) using a wear-
able sensor platform. The resting tremor occurs during the
early stages of PD and also is an essential criterion to diag-
nose the PD, where accelerometers are widely used to detect
and record its occurrences [6,7]. Salarian et al. [8] proposed
an algorithm to detect and quantify tremor and compared the
measured tremor amplitude to the corresponding UPDRS score.
Further, Edwards and Beuter [9] utilized tremor characteristics
such as the amplitude, frequency and spectral power to identify
PD tremor. Then, they combined the characteristics into a sin-
gle variable to identify a PD from abnormal tremor effectively
[9]. Additionally, it is vital to monitor the gait impairments in
patients, to detect PD at an early stage. In the experiments con-
ducted by Salarian et al. [10], they concluded that the stride
velocity, stride length and swing time of Parkinsonian patients
were lower in comparison to healthy control subjects. On the
contrary, the stance time in Parkinson’s patients was higher
than that of healthy subjects. Additionally, Okuno et al. ob-
tained similar results [11] using a force sensor worn by the
subjects. Further, Tahir and Manap [12] extracted basic, kinetic
and kinematic features based on force measurement. Then,
through statistical analysis, it was found that step length, walk-
ing speed and VGRF were among the significant features that
would differentiate a Parkinson’s patient from healthy control
subject [12]. Barth et al. [13] extracted various gait features
and were classified using multiple classifiers, and their indi-
vidual performances were studied. Among the classifiers used,
LDA (Linear Discriminant Analysis) provided the best classifi-
cation accuracy. In [14] Frenkel-Toledo et al. studied the rela-
tionship between the walking speed and gait variability in PD
and healthy control subjects. Also, the investigators had per-
formed statistical analysis (t-test) to compare the two groups.
From the results, it was concluded that the patients with PD
had an increased variability of stride time and swing time as
compared to healthy control subjects.

The goal of this research is to analyze the features exhib-
ited by subjects with PD during the initial phase of the disease,
which would enable us to detect the presence of PD at its onset.
In this study, we extracted kinetic and spatiotemporal features
using data from an online database (Physionet) and found a set
that best discriminates between subjects with PD (H&Y stages
2, 2.5 and 3) and healthy subjects. Also, tremor features were
extracted and we performed various analyses using advanced
signal processing and machine learning techniques on the ex-
tracted tremor and gait parameters to compare and distinguish
between subjects with PD and healthy subjects. Majority of the
studies either utilize gait or tremor features for PD monitoring.
Here, we have investigated the use of both gait and tremor fea-
tures and analyzed their impact on early detection and monitor-
ing of PD.
2. Data collection

For the gait analysis, data from the Physionet online
database [15] was utilized, consisting of readings from the ex-
periments conducted on 93 patients with idiopathic PD (mean
age: 66.3 years) with moderate disease severity (H & Y Stage
2–3) and 73 healthy controls, sampled at a rate of 100 Hz. The
database comprises of 3 different experiments conducted by
Frenkel-Toledo et al. (Group ‘Si’) [14], Hausdorff et al. (Group
‘Ju’) [16] and Yogev et al. (Group ‘Ga’) [17]. The forces im-
parted by the heel, below toe (metatarsophalangeal joint) and
toe regions of the foot were analyzed. To reduce the influence of
subject’s body weight on the forces, the force values were nor-
malized to the percentage of their body weight. For the tremor
analysis, data from the Physionet database was utilized, result-
ing from the experiments conducted on a group of 16 patients
with PD [18]. The patients were under minimum medications at
the time of study to induce tremor and the data were recorded
for a time period of 60 secs (depending on the duration of
tremor occurrence in subjects) and sampled at 100 Hz.

3. Feature extraction

3.1. Gait characteristics

A gait cycle begins at the point of heel strike called as initial
contact, marking the beginning of a stance phase. The stance
phase ends at the toe-off period, and the swing phase terminates
at the next heel strike event. The stance and swing periods
of a healthy control subject varies from that of a PD patient.
The stance and swing phase values are essential in identifying
the individuals with PD from the healthy subjects [19]. Other
spatiotemporal parameters include the step length, the linear
distance in the plane of progression between two successive
points of foot floor contact of the opposite feet. Also, step
time is the time interval between the successive instant of foot
floor contact of the opposite feet. The last feature is the kinetic
feature that mainly focuses on the force acting on the ground
during initial contact and toe-off positions [20].

3.2. Gait detection algorithm

Initially, the raw force data was filtered using a Chebyshev
type II high pass filter with a cut-off frequency 0.8 Hz to remove
noises arising from the changes in orientation of the subject’s
body and other factors during measurement. The filtered data
was used for extracting various gait features using the peak de-
tection and pulse duration measuring techniques. The threshold
values of the gait detection algorithm were tuned to individ-
ual subjects. From the peak detection algorithm, various kinetic
features including the heel, below toe, and toe forces, and their
normalized values were obtained. The pulse duration algorithm
was developed to extract different spatial and temporal features
including the step distance, stance and swing phases, and stride
time.

In Fig. 1, the force readings are plotted against time for the
left foot of the subject. From the plot, points P1–P4 are marked
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Fig. 1. Force readings plotted against time for a patient with PD. Points P1 to
P4 denote one gait cycle.

to denote one gait cycle. The time period between P1 and P4
defines the stride time. Additionally, time taken to reach from
position P1 to P3 is the stance period. In the same way, the time
taken from point P3 to P4 is defined as the swing period. Hence,
the swing/stance ratio can be calculated.

Further, the extracted gait features were used to train the
classifier and the accuracy rate of classification was obtained
as the output.

3.3. Tremor characteristics

There are two different types of tremor that occur in hu-
mans: the pathological and physiological tremor [21]. Patho-
logical tremors may occur due to central nervous system and
peripheral nervous system disorders. The relevant example of a
pathological tremor is the parkinsonian tremor, which is further
classified into rest, postural and kinetic tremors. To elaborate,
the rest tremor occurs when the body performs no voluntary
action, postural tremor occurs while holding a body part such
as the arm, leg against gravity without any movement and ki-
netic tremor can be seen when the subject performs any partic-
ular task such as finger-to-nose test, or writing. However, the
PD tremor mostly occurs at rest, oscillating at a frequency of
4–6 Hz [21].

In comparison to a PD tremor, a physiological tremor is typ-
ically present in all humans and is considered as an artifact.
It usually occurs at a frequency of 8–12 Hz and sometimes
at even higher frequency depending on the position of mea-
surement [21]. Also, tremors caused by atypical Parkinsonism
resemble PD tremors and occur due to various factors includ-
ing the usage of certain drugs, vascular problems, Progressive
Supranuclear Palsy (PSP), Multiple System Atrophy (MSA),
Dementia with Lewy bodies (DLB) and others [3]. The vari-
ous tremor features [22,23] in the frequency domain that would
help us in detecting a PD tremor include the amplitude, power
distribution, frequency dispersion and median frequency.

4. Data analysis and results

4.1. Statistical analysis

The statistical analysis was done using the Minitab R⃝17.2.1
[24]. It was observed that the features extracted from the
left and right foot were highly correlated for all the study
group subjects, hence force data from the left foot alone had
been used for analysis purposes. One-way analysis of variance
(ANOVA) test was used to determine if there are any significant
differences between the mean values of the two groups (PD and
healthy control) and the results are presented in Table 1. It was
performed with a 95% confidence interval, observations with a
p-value ≤0.05 are deemed to be of significance.

The gait parameters under investigation are the step distance,
stride time, stance and swing phases, heel, metatarsophalangeal
joint (below toe), and toe forces, and the normalized values of
the heel, below toe, and toe forces. From Table 1, it is evident
that PD patients from all the three groups have shorter average
step distance, with a slightly higher average stride time than a
healthy control subject. Also, the patients with PD have reduced
average swing phase compared to healthy control subjects, and
an increase in the average stance phase. Further, we can notice
that the vertical force imparted by the heel region of the foot
and the normalized heel force are higher in healthy subjects
compared to the PD patients, thus indicating better stability and
control. Since the vertical force indicates body control stability,
this proves that the healthy control subjects participated in the
study had better body control compared to PD patients.

4.2. Ground reaction force (GRF) plot

In Fig. 2(a), the ground reaction force value of a healthy
subject has been plotted against the % of the gait cycle. From
the plot, two peaks are generated in a gait cycle and the first
peak occurs when the heel strikes the floor followed by the
second one at the toe-off period, produced by the push-off force
from the ground. During the early stages of PD, the force values
at the initial contact and toe-off phases are reduced. Also, in the
later stages, the force plot is characterized by a single narrow
peak [25] as seen in Fig. 2(b). It occurs due to the difference
in the anatomy of walking between a patient with PD and a
healthy subject.

In a normal gait, the heel strikes the ground first followed by
the toe which is called as heel-to-toe walking. In contrast, the
PD gait is characterized by a flat foot strike: where the entire
foot is planted on the ground, simultaneously. Also, during the
later stages, the toe touches the ground before the heel called as
the toe-to-heel walking [26].

4.3. Pattern classification using LDA

Pattern classification was performed in Matlab [27]. The
Linear Discriminant Analysis (LDA) classifier was used to
study the performance of the extracted gait parameters. The
algorithm and its specifications have been chosen based on its
better performance in comparison to other algorithms including
the Support Vector Machine (SVM) and Artificial Neural
Network (ANN). A total of 40 observations was used per group
for classification purpose, distributed as 20 observations each
between PD and healthy control subjects.

The five-fold cross-validation method was used, that
partitions the data into five sets or folds. Then for each fold,
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Fig. 2. (a) The vertical ground reaction force acting on a group ‘Ga’ healthy control subject during the gait cycle. (b) The vertical ground reaction force acting on a
PD patient from the group ‘Ga’.
0

0.2

0.4

0.6

0.8

Fig. 3. ROC curve plotted using all the gait features for PD and control group.

it trains a model and assesses its performance. Further, it
calculates the average test error over all the folds [28]. The rate
of accuracy for the average values of the parameters including
the step distance, stance and swing phase, heel and normalized
heel forces have outperformed the other features. Hence, these
features display a substantial difference between the PD and
healthy control groups.

Moreover, the accuracy rate when all the features were
combined is around 87.5% for the subjects in group ‘Si’, 90.0%
and 83.3% for the subjects in groups ‘Ju’ and ‘Ga’ respectively.
We decided to group the most distinct features: step distance,
stance phase, swing phase, heel and normalized heel force
together and an accuracy rate of 90.0% was achieved for the
‘Si’ group, followed by 92.5% and 92.25% for the ‘Ju’ and
‘Ga’ groups, respectively. On the other hand, the remaining
less distinguishable features including the stride time, below toe
force, toe force and normalized forces of the below toe and toe
regions, combined had a lower accuracy rate.

In Fig. 3, we can see the ROC plot between the PD and
control subjects utilizing all the gait features. A ROC curve
plots between the values of true positive rate (sensitivity) to the
false positive rate (1-specificity). In the plot below, we chose an
optimal cut-off point that best balances between sensitivity and
specificity. In the ROC curve, the point at which the sensitivity
is at 0.72 and the specificity is 0.81 is taken as the optimal value
by the classifier. Also, the area under the curve was achieved as
96%, which quantifies the overall ability of the algorithm to
distinguish between a subject with PD and healthy subject.
4.4. Tremor analysis

The time domain signal is transformed to the frequency
domain using the Fast Fourier Transform (FFT) [29]. Prior to
performing the transform, all signals were high-pass filtered
with a cutoff frequency of 0.5 Hz (2nd order Butterworth filter)
to remove low frequency noise due to respiratory and cardiac
oscillations. Also, the signal’s spectral density denoting the
amount of signal present per unit of bandwidth is plotted to
obtain the power of the signal. The tremor characteristics that
was observed to provide differentiation between a PD tremor
and tremors due to atypical Parkinsonism [30] are as follows,

(1) Amplitude
The peak RMS (root mean square) value is defined as the

square root of the mean of all the input-squared value and is
found out to be 0.0749. It is also called as the average mean
power of the signal, which is useful to compare with other
atypical tremors that typically has a low amplitude value.

(2) Power distribution
The peak amplitude was measured between the 4–6 Hz

interval where a single large peak can be seen. In a typical PD
tremor, a large amount of power is concentrated in the region
between 4–6 Hz contributing to a significant peak in the region,
as seen in Fig. 4. The amount of power distributed in the 4–6 Hz
range is 0.0561, i.e., around 91.92% of the total power in the
spectrum.

(3) Frequency dispersion
The Power Spectral Density (PSD) estimate of the input

signal displays the distribution of power at various frequencies.
The PSD plot before applying windowing technique consists of
spectral leakages. Some of the windows mostly used include
the Rectangular (flat-top), Hamming, and Hann and are chosen
based on the application. In our case, we require a window
to enhance the frequency resolution and to reduce the spectral
leakage, where a Hann window would be ideal [29]. Moreover,
the dispersed frequency value was measured to be around
15.418 π milli-rads/sample, consisting of 68% of the spectrum
power with a narrow bandwidth, which is typical in a PD
tremor.

(4) Median frequency
In Fig. 5, the PSD with a reduced spectral leakage and

increased resolution can be seen after applying the Hann
window of 500 samples length. The median frequency is the
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Fig. 4. Plot displaying the FFT output of the input time-domain signal and the
amplitude of the signal is plotted in a single-sided spectrum.

Fig. 5. The Power Spectral Density (PSD) estimate of the signal using Hann
window length of 500 samples is displayed. It also specifies the median
frequency of the signal.

point where the power is equally divided between the upper
and lower parts of the spectrum, was determined to be of value
4.96 Hz. Moreover, from the plot, it is evident that the median
frequency coincides with the single large peak in the spectrum,
and a similar spectrum is mostly seen in PD subjects.

5. Discussion

Various aspects of the motor symptoms that are displayed by
subjects with PD were individually investigated in this work:

(a) Gait features comprising of (i) spatiotemporal parameters
including the step distance, stride time, stance and swing phases
and (ii) kinetic parameters inclusive of heel force, below toe
force, toe force and the normalized values of the heel, below
toe and toe forces.

(b) Frequency-domain characteristics of the tremor signal in-
cluding the amplitude, power distribution, frequency disper-
sion, and median frequency.

The hypothesis of this research is that both the tremor and
gait features are vital in designing a monitoring system to detect
PD at its onset and track its progression. In this research, an
algorithm was developed to extract different gait and tremor
features and was analyzed to obtain the most significant
features that would best differentiate a subject with PD from
a healthy subject. As a result, specific gait features including
step distance, stance and swing phases, heel and normalized
heel forces were found to be more significant than others for
discrimination. In the tremor analysis, the results across all the
16 PD subject’s data were comparable, and all the frequency
based characteristics discussed were essential in identifying a
PD tremor from tremors due to atypical Parkinsonism.

In the available online databases, the gait and tremor data
are from different patients collected at different labs. However,
in order to develop an integrated monitoring and management
system for PD, it is critical that we have a more unified clinical
data collection using multiple sensors from the same subjects.
The integration of accelerometers for tremor monitoring and
force/pressure sensors for gait monitoring and an improved
algorithm need to be developed into a single tool to facilitate the
clinician’s decision in diagnosing and managing PD. Moreover,
by individually studying the gait pattern of PD patients, it could
assist the therapists or clinicians in the process of designing
physical therapy and other rehabilitation programs. Also, falls
are commonly seen in PD patients due to postural instability
and knowledge of the postural balance of the patients while
walking could be useful to manage them better.

6. Conclusion

Individuals with PD display tremor occurrences and gait
impairments during the various stages of the disease. Due to
lack of objective measures in diagnosing PD and high rate of
misdiagnosis, an early and accurate diagnosis of PD is needed
for better treatment and to control the effects of the symptoms
more efficiently. Here, we have studied the role of motor
symptoms to detect PD in its early stages and the potential for
being a biomarker for an early diagnosis of PD. It is expected
to act as a supplemental testing method to the standard methods
used in hospitals.

In this research, we have investigated the effect of using both
gait and tremor features for an early detection and monitoring
of PD. Various features were extracted from the data collected
from the wearable sensors and further analyzed using statistical
analysis and machine learning techniques to find the most
significant features that would best distinguish between the two
groups: subjects with PD and healthy control subjects. From the
results, it was observed that a set of gait features including step
distance, stance and swing phases, heel and normalized heel
forces provided better performance (feature discrimination)
than others. An average accuracy rate of 86.9% was obtained
in classifying between a PD patient and healthy control subject.
Similarly, tremor analysis was conducted where we extracted
the frequency-domain characteristics of the signal to identify
a PD tremor from the tremors due to atypical Parkinsonism.
A subject with PD had a large peak at the frequency between
4–6 Hz, and around 91.92% of the total power in the spectrum
was concentrated within this band. A narrow bandwidth was
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observed in the power spectrum with a median value falling in
the 4 to 6 Hz region. This provides the differentiation between
a PD tremor and other tremors due to atypical Parkinsonism
occurring outside this frequency band.
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