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We consider the problem of classifying the orbits within a tower of fibrations with
P

2-fibers that generalize the Monster Tower due to Montgomery and Zhitomirskii. The
action on the tower is given by prolongations of diffeomorphism germs of 3-space. As a
corollary we give the first steps towards the problem of classifying Goursat 2-flags of small
length. In short, we classify the orbits within the first four levels of the Monster Tower and
show that there is a total of 34 orbits in the fourth level of the tower.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A Goursat flag is a nonholonomic distribution D with slow growth. By slow growth we mean that the rank of the
associated flag of distributions

D ⊂ D + [D, D] ⊂ D + [D, D] + [[D, D], [D, D]] . . .

grows by one at each bracketing step. The condition of nonholonomy guarantees that after sufficiently many steps we will
obtain the entire tangent bundle of the ambient manifold. By an abuse of notation, D in this context also denotes the sheaf
of vector fields spanning D .

Though less popular than her other nonholonomic siblings like the contact distribution, or rolling distribution in me-
chanics [4], Goursat distributions are more common than one would think. The canonical Cartan distributions in the jet
spaces J k(R,R) and the non-slip constraint for a jackknifed truck [9] are examples.

Generalizations of Goursat flags have been proposed in the literature. One such notion is that of a Goursat multi-flag.
A Goursat n-flag of length k is a distribution of rank (n + 1) sitting in an (n + 1) + kn dimensional ambient manifold, where
the rank of the associated flag increases by n at each bracketing step. For clarity, we have included the exact definition
in Appendix A to the paper. A well-known example of a Goursat multi-flag is the Cartan distribution C of the jet spaces
Jk(R,Rn). Iterated bracketing this time produces a flag of distributions

C ⊂ C + [C, C] ⊂ C + [C, C] + [[C, C], [C, C]] . . . ,

where the rank jumps by n at each step.
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To our knowledge the general theory behind Goursat multi-flags made their first appearance in the works of A. Kumpera
and J.L. Rubin [11]. P. Mormul has also been very active in breaking new ground [15], and developed new combinatorial
tools to investigate the normal forms of these distributions. Our work is founded on a recent article [22] by Shibuya and
Yamaguchi that demonstrates a universality result which essentially states that any Goursat multi-flag arises as a type of
lifting of the tangent bundle of Rn .

In this paper we concentrate on the problem of classifying Goursat multi-flags of small length. Specifically, we will
consider Goursat 2-flags of length up to 4. Goursat 2-flags exhibit many new geometric features our old Goursat 1-flags did
not possess [19].

Our main result states that there are 34 inequivalent Goursat 2-flags of length 4 and we provide the exact number of Goursat 2-flags
for each length k � 3 as well.

Our approach is constructive. Due to space limitations we will write down only a few instructive examples.
In [22] Shibuya and Yamaguchi establish that every Goursat 2-flag germ appears somewhere within the following tower

of fiber bundles:

· · · → P4(2) → P3(2) → P2(2) → P1(2) → P0(2) = R
3, (1)

and the fiber of the projection map from Pk(2) to Pk−1(2) is a real projective plane, and adding the dimensions one obtains
the dimension formula dim(Pk(2)) = 3 + 2k.

Each manifold Pk(2) is equipped with a rank 3 nonholonomic distribution �k , and there is a simple geometric relation
between the distributions pertaining to neighboring levels. The construction of �k is recursive, and depends upon the
geometric data at the base level P0.

The distributions �k in Pk(2) are themselves Goursat 2-flags of length k. Moreover, two Goursat 2-flags are equivalent
if and only if the corresponding points of the Monster Tower are mapped one to the other by a symmetry of the tower at
level k. The paper [22] also establishes that all such symmetries are prolongations of diffeomorphisms of R

3. The above
observations tell us that

the classification problem for Goursat 2-flags is equivalent to the classification of points within the Monster Tower up to symmetry.

In order to solve this latter problem we use a combination of two methods, namely the singular curve method as in [18]
and a new method that we call the isotropy method. A variant of the isotropy method was already used in [18], and it is
somewhat inspired by É. Cartan’s moving frame method [8].

We would like to mention that P. Mormul and Pelletier [17] have proposed an alternative solution to the classification
problem. In their classification work, they employed Mormul’s results and tools that came from his recent work with Goursat
n-flags. In [16], Mormul discusses two coding systems for special 2-flags and showed that the two coding systems are the
same. One system is the extended Kumpera–Ruiz system, which is a coding system used to describe 2-flags. The other is called
singularity class coding, which is an intrinsic coding system that describes the sandwich diagram [18] associated to 2-flags.
A brief outline on how these coding systems relate to the R V T coding is discussed in [6]. Then, building upon Mormul’s
work in [14], Mormul and Pelletier used the idea of strong nilpotency of special multi-flags, along with the properties of
his two coding systems, to classify these distributions up to length 4. Our 34 orbits agree with theirs.

In Section 2 we acquaint ourselves with the main definitions necessary for the statements of our main results, and a few
explanatory remarks to help the reader progress through the theory with us. Section 3 consists of the statements of our
main results. In Section 4 we discuss the basic tools and ideas that will be needed to prove our various results. Section 5 is
devoted to technicalities and the actual proofs. Finally, in Section 6, we provide a quick summary of our findings and other
questions to pursue concerning the Monster Tower.

For the record, we have also included Appendix A where our lengthy computations are contained.

2. Preliminaries and main definitions

A geometric distribution hereafter denotes a linear subbundle of the tangent bundle with fibers of constant dimension.

2.1. Prolongation

Let the pair (Z ,�) denote a manifold Z of dimension d equipped with a distribution � of rank r. We denote by P(�)

the projectivization of �. As a manifold,

P(�) ≡ Z 1

has dimension d + (r − 1).

Example 2.1. Take Z = R
3, � = T R3 viewed as a rank 3 distribution. Then Z 1 is simply the trivial bundle R

3 × P
2, where

the factor on the right denotes the projetive plane.
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Table 1
Some geometric objects and their Cartan prolongations.

curve c : (I,0) → (Z ,q) curve c1 : (I,0) → (Z 1,q),
c1(t) = (point, moving line) = (c(t), span{ dc

dt (t)})
diffeomorphism Φ : Z � diffeomorphism Φ1 : Z 1 �,

Φ1(p, �) = (Φ(p),dΦp(�))

rank r linear subbundle rank r linear subbundle �1(p,�) = dπ−1
(p,�)

(�) ⊂ T Z 1,
� ⊂ T Z π : Z 1 → Z is the canonical projection.

Fig. 1. Prolongations.

Various geometric objects in Z can be canonically prolonged (lifted) to the new manifold Z 1. In what follows prolonga-
tions of curves and transformations are quintessential.

Given an analytic curve c : (I,0) → (Z ,q), where I is some open interval in R containing the origin and c(0) = q, we can
naturally define a new curve

c1 : (I,0) → (
Z 1, (q, �)

)
with image in Z 1 and where � = span{ dc

dt (0)}. This new curve, c1(t), is called the prolongation of c(t). If t = t0 is not a regular
point, then we define c1(t0) to be the limit limt→t0 c1(t) where the limit varies over the regular points t → t0. An important
fact to note, proved in [18], is that the analyticity of Z and c implies that the limit is well defined and that the prolonged
curve c1(t) is analytic as well. Since this process can be iterated, we will write ck(t) to denote the k-fold prolongation of
the curve c(t).

The manifold Z 1 also comes equipped with a distribution �1 called the Cartan prolongation of � [3] which is defined as
follows. Let π : Z 1 → Z be the projection map (p, �) �→ p. Then

�1(p, �) = dπ−1
(p,�)(�),

i.e. it is the subspace of T(p,�) Z 1 consisting of all tangents to curves which are prolongations of curves in Z that pass through p with a
velocity vector contained in �. It is easy to check using linear algebra that �1 is also a distribution of rank r.

By a symmetry of the pair (Z ,�) we mean a local diffeomorphism Φ of Z that preserves the subbundle �.
The symmetries of (Z ,�) can also be prolonged to symmetries Φ1 of (Z 1,�1) as follows. Define

Φ1(p, �) := (
Φ(p),dΦp(�)

)
.

Since2 dΦp is invertible and dΦp is linear the second component is well defined as a projective map. This new transforma-
tion in (Z 1,�1) is the prolongation of Φ . Objects of interest and their Cartan prolongations are summarized in Table 1. We
note that the word prolongation will always be synonymous with Cartan prolongation (see Fig. 1).

2 We also use the notation Φ∗ for the pushforward or tangent map dΦ .
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Example 2.2 (Prolongation of a cusp). Let c(t) = (t2, t3,0) be the cusp or semi-cubical parabola viewed as a curve in R
3. Then

c1(t) = (x(t), y(t), z(t), [dx : dy : dz]) = (t2, t3,0, [2t : 3t2 : 0]). After we introduce fiber affine coordinates u = dy
dx and v = dz

dx
around the point (0,0,0, [1 : 0 : 0]) we obtain the immersed curve

c1(t) =
(

t2, t3,0,
3

2
t,0

)
.

2.2. Constructing the Monster Tower

We start with R
n+1 as our base manifold Z and take �0 = TRn+1. Prolonging �0 we get P1(n) = P(�0) equipped with

the distribution �1 of rank n. By iterating this process we end up with the manifold Pk(n) which is endowed with the
rank n distribution �k = (�k−1)

1 and fibered over Pk−1(n). In this paper we will be studying the case n = 2.

Definition 2.1. The Monster Tower is a sequence of manifolds with distributions, (Pk,�k), together with fibrations

· · · → Pk(n) → Pk−1(n) → ·· · → P1(n) → P0(n) = R
n+1

and we write πk,i :Pk(n) →P i(n) for the respective bundle projections.

This explains how the tower shown in Eq. (1) is obtained by iterated Cartan prolongation of the pair (R3,�0).

Definition 2.2. Diff (3) is taken to be the pseudogroup of diffeomorphism germs of R
3.

Remark 2.3 (The pseudogroup Diff (3)). Saying that Diff (3) is a pseudogroup roughly means that for any open set U ⊆ R
3, the

identity restricted to this set is an element of Diff (3), and for any local diffeomorphism in Diff (3) defined on U its inverse,
defined on Φ(U ) is in Diff (3) as well. Also, for any Φ1,Φ2 ∈ Diff (3) where Φ1 : U1 → V 1 and Φ2 : U2 → V 2, for Ui and
V i open subsets of R3 with V 1 ∩ U2 
= ∅, then the composition Φ2 ◦ Φ−1

1 : Φ−1
1 (V 1 ∩ U2) → Φ2(V 1 ∩ U2) is an element of

Diff (3). A more detailed discussion about pseudogroups can be found in [10].

The following result found in a recent paper by Shibuya and Yamaguchi will be important for our classification of points
within the Monster Tower.

Theorem 2.4. For n > 1 and k > 0 any local diffeomorphism of Pk(n) preserving the distribution �k is the restriction of the k-th
prolongation of a local diffeomorphism Φ ∈ Diff (n).

Proof. See [22, p. 795]. �
Shibuya and Yamaguchi also point out that this is a result due to A. Bäcklund [2].

Remark 2.5. The importance of the above result cannot be stressed enough. This theorem is the theoretical foundation for
the isotropy method, discussed in Section 5 of the paper. It will be crucial for classifying orbits within the Monster Tower.

Remark 2.6. Since we will be working exclusively with the n = 2 Monster Tower in this paper, we will just write Pk

for Pk(2).

Definition 2.3. Two points p,q in Pk are said to be equivalent, written p ∼ q, if there is a Φ ∈ Diff (3) such that Φk(p) = q.

Definition 2.4. Let p ∈Pk then we denote O(p) to be the orbit of the point p under the action by elements of Diff (3) to the
k-th level of the Monster Tower, where a point q is an element in O(p) if q is equivalent to the point p.

2.3. Orbits

Theorem 2.4 tells us that any symmetry of Pk comes from prolonging a diffeomorphism of a real affine three-space k
times. Let us denote by O(p) the orbit of the point p under the action of Diff (3).

In trying to calculate the various orbits within the Monster Tower we found it convenient to fix the base points from
which they originated from in R

3. In particular, if pk is a point in Pk and p0 = πk,0(pk) is the base point in R
3, then by

a change of coordinates we can take the point p0 to be the origin in R
3. This means that we can replace the pseudogroup

Diff (3), diffeomorphism germs of R3, by the group Diff 0(3) of diffeomorphism germs that map the origin back to the origin
in R

3.
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Table 2
Number of orbits within the first three levels of the Monster Tower.

Level of tower R V T code Number of orbits Normal forms

1 R 1 (t,0,0)

2 R R 1 (t,0,0)

R V 1 (t2, t3,0)

3 R R R 1 (t,0,0)

R R V 1 (t2, t5,0)

R V R 1 (t2, t3,0)

R V V 1 (t3, t5, t7), (t3, t5,0)

R V T 2 (t3, t4, t5), (t3, t4,0)

R V L 1 (t4, t6, t7)

Definition 2.5. We say that a curve or curve germ γ : (R, 0) → (R3,0) realizes the point pk ∈ Pk if γ k(0) = pk , where
p0 = πk,0(pk) ≡ 0.

It is important to note at this point that prolongation and projection commute. This fact is discussed in detail in [19]
and in [6].

Definition 2.6. A direction � ⊂ �k(pk), k � 1, is called a critical direction if there exists an immersed curve at level k that is
tangent to the direction �, and whose projection to level zero, meaning the base manifold, is a constant curve. If no such
curve exists, then we call � a regular direction. Note that while � is technically a line we will by an abuse of terminology
refer to it as a direction.

Definition 2.7. Let p ∈Pk . The set of curves

Germ(p) :=
{

c : (R,0) → (
R

3,0
) ∣∣∣ ck(0) = p and

dck

dt

∣∣∣∣
t=0


= 0 is a regular direction

}

is called the germ associated to the point p.

Definition 2.8. Two curves γ , σ in R
3 are RL equivalent, written γ ∼ σ if there exist a diffeomorphism germ Φ ∈ Diff (3)

and a reparametrization τ ∈ Diff 0(1) such that σ = Φ ◦ γ ◦ τ .
We can then define Germ(p) ∼ Germ(q) to mean that every curve in Germ(p) is RL equivalent to some curve in Germ(q)

and conversely, every curve in Germ(q) is RL equivalent to some curve in Germ(p).

3. Main results

Theorem 3.1 (Orbit counting per level). In the n = 2 (or spatial) Monster Tower the number of orbits within each of the first four levels
of the tower are as follows:

• Level 1 has 1 orbit.
• Level 2 has 2 orbits.
• Level 3 has 7 orbits.
• Level 4 has 34 orbits.

The main idea behind determining the number of orbits in the first four levels of the tower is to use a blend of the
singular curve methods as introduced in [19] and a technique we call the isotropy method (adapted from [18]). The curve
method alone suffices to yield Theorem 3.1 up to level 3. In order to get to level 4 we must use the isotropy method
in combination with a classification of special directions which generalizes the R V T coding of [19]. This classification, or
coding is described in Section 4.3. Our main result, in detail, is the following theorem, of which Theorem 3.1 is an immediate
corollary.

Theorem 3.2 (Listing of orbits within each R V T code). Table 2 is a breakdown of the number of orbits that appear within each R V T
class within the first three levels.

For level 4 there is a total of 23 possible R V T classes. Of the 23 possibilities 14 of them consist of a single orbit. The classes R R V T ,
R V R V , R V V R, R V V V , R V V T , R V T R, R V T V , R V T L consist of 2 orbits, and the class R V T T consists of 4 orbits.

Remark 3.3. There are a few words that should be said to explain the normal forms column in Table 2. Let pk ∈ Pk , for
k = 1,2,3, have R V T code ω, meaning ω is a word from the second column of the table. Let γ ∈ Germ(pk), then γ is RL
equivalent to one of the curves listed in the normal forms column for the R V T class ω. Now, for the class R V V we notice
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that there are two inequivalent curves sitting in the normal forms column, but that there is only one orbit within that
class. This is because the two normal forms are equal to each other, at t = 0, after three prolongations. However, after four
prolongations they represent different points at the fourth level. This corresponds to the fact that at the fourth level class
R V V R breaks up into two orbits.

The following theorems are in [6] and helped to reduce the number calculations in our orbit classification process.

Definition 3.1. A point pk ∈Pk is called a Cartan point if its R V T code is Rk , where Rk = R · · · R︸ ︷︷ ︸
k times

.

Theorem 3.4. The R V T class Rk forms a single orbit at any level within the Monster Tower Pk(n) for k � 1 and n � 1. Every point at
level 1 is a Cartan point. For k > 1 the set Rk is an open dense subset of Pk(n).

Definition 3.2. A parametrized curve belongs to the A2k class, k � 1, if it is RL equivalent to the curve(
t2, t2k+1,0

)
.

Theorem 3.5. Let pk ∈ Pk with k = j + m + 1, with m � 0,k � 1 non-negative integers, and pk ∈ R j C Rm. Then Germ(pk) contains
a curve germ equivalent to the A2k singularity, which implies that the R V T class R j C Rm consists of a single orbit.

Remark 3.6. The letter C in the above stands for a critical point. This notation will be explained in more detail in Section 4.1.

Remark 3.7 (Monster Tower is a fiber compactification of jet spaces). The space of k-jets of functions f : R→ R
2, usually denoted

by J k(R,R2) is an open dense subset of Pk . It is in this sense that a point p ∈ Pk is roughly speaking the k-jet of a curve
in R

3. Sections of the bundle

Jk(
R,R2) →R×R

2

are k-jet extensions of functions. Explicitly, given a vector-valued function t �→ f (t) = (x(t), y(t)) its k-jet extension is de-
fined as(

t, f (t)
) �→ (

t, x(t), y(t), x′(t), y′(t), . . . , x(k)(t), y(k)(t)
)
.

Superscripts here denote the order of the derivative. It is an instructive exercise to show that for certain choices of fiber
affine coordinates in Pk , not involving critical directions, that our local charts will look like a copy of J k(R,R2).

Another reason to look at curves is that it gives us a better picture of the overall behavior of an R V T class. If one knows
all the possible curve normal forms for a particular R V T class, say ω, then not only does one know how many orbits are
within the class ω, but one also knows how many orbits are within the regular prolongation of ω. By regular prolongation
of an R V T class ω we mean the addition of only R ’s to the end of the word ω, i.e. the regular prolongation of ω is ωR · · · R .
This method of using curves to classify R V T classes was used in [19].

4. Tools and ideas involved in the proofs

Before we begin with the proofs we need to define the R V T code for classifying orbits.

4.1. RC coding of points

Definition 4.1. A point pk ∈ Pk , where pk = (pk−1, �) is called a regular or critical point if the line � is a regular direction or
a critical direction.

Definition 4.2. For pk ∈ Pk , k � 1, and pi = πk,i(pk), we write ωi(pk) = R if pi is a regular point and ωi(pk) = C if pi is
a critical point. Then the word ω(pk) = ω1(pk) · · ·ωk(pk) is called the RC code for the point pk . The number of letters
within the RC code for pk equals the level of the tower that the point lives in. Note that ω1(pk) is always equal to R by
Theorem 3.4.

So far we have not discussed how critical directions sit inside of �k . The following section will show that there is more
than one kind of critical direction that can appear within the distribution �k .
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Fig. 2. Arrangement of critical hyperplanes.

4.2. Baby Monsters

One can apply prolongation to any analytic n-dimensional manifold F in place of R
n . Start out with P0(F ) = F and

take �F
0 = T F . Then the prolongation of the pair (F ,�F

0 ) is P1(F ) = PT F equipped with the rank m distribution �F
1 ≡

(�F
0 )1. By iterating this process k times we end up with new the pair (Pk(F ),�F

k ), which is analytically diffeomorphic to
(Pk(n − 1),�k) [6].

Now, apply this process to the fiber Fi(pi) = π−1
i,i−1(pi−1) ⊂ P i through the point pi at level i. The fiber is an (n − 1)-

dimensional integral submanifold for �i . Prolonging, we see that P1(Fi(pi)) ⊂ P i+1, and P1(Fi(pi)) has the associated
distribution δ1

i ≡ �
Fi(pi)
1 ; that is,

δ1
i (q) = �i+1(q) ∩ Tq

(
P1(Fi(pi)

))
which is a hyperplane within �i+1(q), for q ∈ P1(Fi(pi)). When this prolongation process is iterated, we end up with the
submanifolds

P j(Fi(pi)
) ⊂ P i+ j

with the hyperplane subdistribution δ
j
i (q) ⊂ �i+ j(q) for q ∈P j(Fi(pi)).

Definition 4.3. A Baby Monster born at level i is a sub-tower (P j(Fi(pi)), δ
j
i ), for j � 0 within the ambient Monster Tower.

If q ∈P j(Fi(pi)) then we will say that a Baby Monster born at level i passes through q and that δ
j
i (q) is a critical hyperplane

passing through q, which was born at level i.

Definition 4.4. The vertical plane Vk(q) is the critical hyperplane δ0
k (q). We note that it is always one of the critical hyper-

planes passing through q.

The following statement elucidates the geometric properties of critical directions.

Theorem 4.1. A direction � ⊂ �k is critical if and only if � is contained in a critical hyperplane.

4.3. Arrangements of critical hyperplanes for n = 2

Over any point pk , at the k-th level of the Monster Tower, there is a total of three different hyperplane configurations
for �k . These three configurations are shown in Figs. 2(a), 2(b), and 2(c).

Fig. 2(a) is the picture for �k(pk) when the k-th letter in the R V T code for pk is the letter R . This means that the
vertical hyperplane, labeled with a V , is the only critical hyperplane sitting inside of �k(pk). Fig. 2(b) is the picture for
�k(pk) when the k-th letter in the R V T code is either the letter V or the letter T . This gives a total of two critical
hyperplanes sitting inside of �k(pk) and one distinguished critical direction: one is the vertical hyperplane and the other is
the tangency hyperplane, labeled by the letter T . The intersection of vertical and tangency hyperplanes gives a distinguished
critical direction, which is labeled by the letter L. Now, Fig. 2(c) describes the picture for �k(pk) when the k-th letter in
the R V T code of pk is the letter L. Fig. 2(c) depicts this situation where there is now a total of three critical hyperplanes:
one is the vertical hyperplane, and two tangency hyperplanes, labeled as T1 and T2. Now, because of the presence of these
three critical hyperplanes we need to refine our notion of an L direction and add two more distinct L directions. These
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three directions are labeled as L1, L2, and L3. More details concerning the properties of these critical hyperplanes and their
various configurations can be found in [6].

With the above picture in mind, we can now refine our RC coding and define the R V T code for points within the
Monster Tower. Take pk ∈ Pk and if ωi(pk) = C then we look at the point pi = πk,i(pk), where pi = (pi−1, �i−1). Then
depending on which critical hyperplane, or distinguished direction, contains �i−1, we replace the letter C by the letter V , T ,
L, Ti for i = 1,2, or L j for j = 1,2,3. One can see from the above geometric considerations that these critical letters must
follow three simple grammar rules.

(1) The first one states that the initial letter in any R V T code string must be the letter R . This is a consequence of
Theorem 3.4.

(2) The second is that the letters T or L, along with Ti for i = 1,2 and L j for j = 1,2,3, cannot immediately follow the
letter R .

(3) The last one is that the letters T2 and L j for j = 1,2,3 can only appear immediately after the letter L = (L1).

For the case of length 4 the letters T2 and L j for j = 2,3 can only appear immediately after the letter L = (L1). However,
for a point of length larger than 4 we believe that this rule still holds. This fact will be investigated in a future work by one
of the authors.

Example 4.2 (Examples of R V T codes). The following are examples of R V T codes: R · · · R , R V V T , R V LT 2 R , and R V LL2. The
code RT L is not allowed because the letter T is preceded by the letter R and the code RLT 3 is not allowed because the
letter L comes immediately after the letter R .

As a result, we see that each of the first four levels of the Monster Tower is made up of the following R V T classes:

• Level 1:

R.

• Level 2:

R R, R V .

• Level 3:

R R R, R R V , R V R, R V V , R V T , R V L.

• Level 4:

R R R R, R R R V

R R R V , R R V V , R R V T , R R V L

R V R R, R V R V , R V V R, R V V V , R V V T , R V V L

R V T R, R V T V , R V T T , R V T L

R V LR, R V LV , R V LT 1, R V LT 2, R V LL1, R V LL2, R V LL3.

Remark 4.3. As it was pointed out in [6] the symmetries, at any level in the Monster Tower preserve the critical hyperplanes.
In other words, if Φk is a symmetry at level k in the Monster Tower and δ

j
i is a critical hyperplane within �k then

Φk∗(δ
j
i ) = δ

j
i . As a result, the R V T classes create a partition of the various points within any level of the Monster Tower, i.e.,

the R V T classes are invariant under the Diff (3) action. More details about the properties of the various critical hyperplanes
and distinguished critical directions can be found in [6].

Now, from the above configurations of critical hyperplanes section one might ask the following question: How does one
“see” the two tangency hyperplanes that appear over an “L” point and where do they come from? This question was an
important one to ask when trying to classify the number of orbits within the fourth level of the Monster Tower and to
better understand the geometry of the tower. We will provide an example to answer this question, but before we do so
we must discuss some details about a particular coordinate system called Kumpera–Rubin coordinates to help us do various
computations within the Monster Tower.

4.4. Kumpera–Rubin coordinates

When doing local computations in the tower (1), one needs to work with suitable coordinates. A good choice of coor-
dinates was suggested by Kumpera and Ruiz [11] in the Goursat case, and later generalized by Kumpera and Rubin [12]



A.L. Castro, W.C. Howard / Differential Geometry and its Applications 30 (2012) 405–427 413
for multi-flags. A detailed description of the inductive construction of Kumpera–Rubin coordinates was given in [6] and is
discussed in the example following this section, as well as in the proof of our level 3 classification. For the sake of clarity,
we will highlight the coordinates’ attributes through an example.

Example 4.4 (Constructing fiber affine coordinates in P2).
Level one: Consider the pair (R3, TR3) and let (x, y, z) be local coordinates on R

3. The triple of 1-forms {dx,dy,dz}
forms a coframe of TR3. Any line �0 in the tangent space at p0 ∈ R

3 has projective coordinates [dx|�0 : dy|�0 : dz|�0 ]. Since
the affine group of R

3, which is contained in Diff (3), acts transitively on P(TR3), we can fix p0 = (0,0,0) (= 0) and
�0 = span{ ∂

∂x }. Thus dx|�0 
= 0 and we introduce fiber affine coordinates [1 : dy/dx : dz/dx] where,

u = dy

dx
, v = dz

dx
.

The Pfaffian system describing the prolonged distribution �1 on P1 = R
3 × P

2 is

{dy − udx = 0,dz − vdx = 0} = �1 ⊂ TP1.

At the point p1 = (p0, �0) = (x, y, z, u, v) = (0,0,0,0,0) the distribution is the linear subspace

�1 (0,0,0,0,0) = {dy = 0,dz = 0}.
The triple of 1-forms {dx,du,dv} forms a local coframe for �1 near p1 = (p0, �0). The fiber, F1(p1) = π−1

1,0 (p0), is given by

x = y = z = 0. The 2-plane of critical directions (“bad-directions”) is thus spanned by ∂
∂u , ∂

∂v .

The reader may have noticed that we could have chosen any regular direction at level 1 instead, e.g. ∂
∂x + a ∂

∂u + b ∂
∂v

and centered our chart at it. Again, this is because all regular directions at level one are pairwise equivalent by a symmetry
transformation.

Remark 4.5. Let us remind the reader that P1 is diffeomorphic to R
3 × P

2 but Pk is not a trivial bundle over R
3 if k � 2

(cf. [6, Section 2]).

Level two (R V points): Any line �1 ⊂ �1(p′
1), for p′

1 near p1, will have projective coordinates

[dx|�1 : du|�1 : dv|�1 ].
If we choose a critical direction, say �1 = span{ ∂

∂u }, then du( ∂
∂u ) = 1 and we can center our chart at the direction �1 and

the chart is given by the projective coordinates [ dx
du : 1 : dv

du ]. We will show below that any two critical directions are equivalent
and therefore such a choice does not result in any loss of generality. We introduce new fiber affine coordinates

u2 = dx

du
, v2 = dy

du
,

and the distribution �2 will be described in this chart as

�2 = {dy − udx = 0,dz − vdx = 0,

dx − u2du = 0,dv − v2du = 0} ⊂ TP2.

Level three (the tangency hyperplanes over an L point): We take p3 = (p2, �2) ∈ R V L with p2 as in the level two
discussion. We now look at local affine coordinates near the point p2. We will show that inside of this chart that the
tangency hyperplane T1 in �3(p3) is the critical hyperplane δ1

2(p3) = span{ ∂
∂v2

, ∂
∂v3

} and the tangency hyperplane T2 is the

critical hyperplane δ2
1(p3) = span{ ∂

∂v2
, ∂

∂u3
}.

We begin with the local coordinates near p3. Let us first recall that the distribution �2 is coframed by {du,du2,dv2}
in this case. Within �2 the vertical hyperplane is given by du = 0 and the tangency hyperplane by du2 = 0. The point
p3 = (p2, �) with � being an L direction means that both du|� = 0 and du2|� = 0. This means that the only choice for local
coordinates near p3 is given by [ du

dv2
: du2

dv2
: 1]. As a result, the fiber coordinates at level 3 are

u3 = du

dv2
, v3 = du2

dv2

and the distribution �3 will be described in this chart as

�3 = {dy − udx = 0,dz − vdx = 0,

dx − u2du = 0,dv − v2du = 0,

du − u3dv2 = 0,du2 − v3dv2 = 0} ⊂ TP3.

With this in mind, we are ready to determine how the two tangency hyperplanes are situated within �3.
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• Showing T1 is equal to δ1
2(p3): First we note that p3 = (x, y, z, u, v, u2, v2, u3, v3) = (0,0,0,0,0,0,0,0,0) with u =

dy
dx , v = dz

dx , u2 = dx
du , v2 = dv

du , u3 = du
dv2

, v3 = du2
dv2

. With this in mind, we start by looking at the vertical hyperplane
V 2(p2) ⊂ �2(p2) and prolong the fiber F2(p2) associated to V 2(p2) and see that

P1(F2(p2)
) = PV 2 = (

p1, u2, v2, [du : du2 : dv2]
) = (

p1, u2, v2, [0 : a : b])
=

(
p1, u2, v2,

[
0 : a

b
: 1

])
= (p1, u2, v2,0, v3)

where a,b ∈R with b 
= 0. One sees that �3, in a neighborhood of p3, is given by

�3 = span

{
u3 X (2) + v3

∂

∂u2
+ ∂

∂v2
,

∂

∂u3
,

∂

∂v3

}

with X (2) = u2 X (1)
1 + ∂

∂u + v2
∂
∂v and X (1) = u ∂

∂ y + v ∂
∂z + ∂

∂x and that T p3 (P1(F2(p2))) = span{ ∂
∂u2

, ∂
∂v2

, ∂
∂v3

}. From the

definition of δ
j
i we have that

δ1
2(p3) = �3(p3) ∩ T p3

(
P1(F2(p2)

))
which gives that

δ1
2(p3) = span

{
∂

∂v2
,

∂

∂v3

}
.

Now, since V 3(p3) ⊂ �3(p3) is given by V 3(p3) = span{ ∂
∂u3

, ∂
∂v3

} we see, based upon Fig. 2(c), that T1 = δ1
2(p3).

• Showing T2 is equal to δ2
1(p3): We begin by looking at V 1(p1) ⊂ �1(p1) and at the fiber F1(p1) associated to V 1(p1).

When we prolong the fiber space we see that

P1(F1(p1)
) = PV 1 = (

0,0,0, u, v, [dx : du : dv]) = (
0,0,0, u, v, [0 : a : b])

=
(

0,0,0, u, v,

[
0 : 1 : b

a

])
= (0,0,0, u, v,0, v2)

where a,b ∈R with a 
= 0. Now �2, in a neighborhood of p2, is given by

�2 = span

{
u2 X (1) + ∂

∂u
+ v2

∂

∂v
,

∂

∂u2
,

∂

∂v2

}

and at the same time T p2 (P1(F1(p1))) = span{ ∂
∂u , ∂

∂v , ∂
∂v2

}. This gives

δ1
1(p2) = �2(p2) ∩ T p2

(
P1(F1(p1)

))
and we have in a neighborhood of p2 that

δ1
1 = span

{
u2 X (1) + ∂

∂u
+ v2

∂

∂v
,

∂

∂v2

}
.

Now, in order to figure out what δ2
1(p3) is we need to prolong the fiber F1(p1) twice and then look at the tangent

space at the point p3. We see that

P2(F1(p1)
) = Pδ1

1 = (
0,0,0, u, v,0, v2, [du : du2 : dv2]

)
= (

0,0,0, u, v,0, v2, [a : 0 : b])
=

(
0,0,0, u, v,0, v2,

[
a

b
: 0 : 1

])

= (0,0,0, u, v,0, v2, u3,0)

then since

δ2
1(p3) = �3(p3) ∩ T p3

(
P2(F1(p1)

))
with �3(p3) = span{ ∂

∂v2
, ∂

∂u3
, ∂

∂v3
} and T p3 (P2(F1(p1))) = span{ ∂

∂u , ∂
∂v , ∂

∂v2
, ∂

∂u3
} then

δ2
1(p3) = span

{
∂

∂v2
,

∂

∂u3

}

and from looking at Fig. 2(c) one can see that T2 = δ2(p3).
1
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Fig. 3. Critical hyperplane configuration over p3 ∈ R V L.

Remark 4.6. The above example, along with Fig. 3, gives some reasoning for why a critical hyperplane, which is not the
vertical one, is called a tangency hyperplane. Also, in Fig. 3 we have drawn the submanifolds P1(F2(p2)) and P1(F1(p1))

to reflect the fact that they have some component which is tangent to the manifolds P3 and P2 respectively and that
their other component is tangent to the vertical space. At the same time, they are drawn to show the fact that P2(F1(p1))

is tangent to the ∂
∂u3

direction while P1(F2(p2)) is tangent to the ∂
∂v3

direction. Another reason for why we use this
terminology is because it was first introduced in the context of the n = 1 Monster Tower to distinguish those critical
directions that were not vertical, and that were actually contained in the tangent bundle of Pk(1) [19].

4.5. Semigroup of a curve

An important piece of information that we need to present is some terminology relating to curves. Some of the following
properties about curve germs are presented in greater detail in [6].

Definition 4.5. The order of an analytic curve germ f (t) = ∑
i�0 aiti is the smallest integer i such that ai 
= 0. We write

ord( f ) for this (non-negative) integer. The multiplicity of a curve germ γ : (R,0) → (Rn,0), denoted mult(γ ), is the mini-
mum of the orders of its coordinate functions γi(t) relative to any coordinate system vanishing at p.

Definition 4.6. A curve germ is said to be well parameterized if γ cannot be written in the form γ = σ ◦τ where τ : (R, 0) →
(R, 0) with τ ′(0) = 0 [23].

Definition 4.7. If γ : (R, 0) → (Rn,0) is a well-parameterized curve germ, then its semigroup is the collection of positive
integers ord(P (γ (t))) as P varies over analytic functions of n variables vanishing at 0.

Because ord(P Q (γ (t))) = ord(P (γ (t))) + ord(Q (γ (t))) the curve semigroup is indeed an algebraic semigroup, i.e. a
subset of N closed under addition. The semigroup of a well-parameterized curve is a basic diffeomorphism invariant of the
curve.

Remark 4.7. Arnol’d pointed out in [1] that one can use the semigroup of a curve germ as a tool to see if it is RL equivalent
to a simpler curve germ. Details and examples about semigroup calculations can be found within [1] as well as in [23]. We
do though provide the following short example to help the reader.
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Example 4.8. Let γ1(t) = (t3, t5, t7) and γ2(t) = (t3, t5 +t6 +t8, t7 +t9) be curve germs defined for t in an open interval about
zero. Both of the curves γ1 and γ2 generate the same semigroup. In this case the semigroup is the set S = {3, [4],5,6,7, . . .}
where the binary operation is addition. The numbers 3, 5, 6, and so on are elements of this semigroup while the bracket
around the number 4 means that it is not an element of S . When we write “· · ·” after the number 7 it means that every
positive integer after 7 is an element in our semigroup. Arnol’d points out that the terms in the semigroup tell us which
powers of t we can eliminate from the curve. This means that every term, ti for i � 7, can be eliminated, except for the t7

term in the last component function, from the above power series expansion for the component functions x(t), y(t), and
z(t) by a change of variables given by (x, y, z) �→ (x + f (x, y, z), y + g(x, y, z), z + h(x, y, z)). Since the numbers 6, 8, and
9 are included in the semigroup it means that we can use a combination of RL equivalences to kill the t6 and t8 terms in
the y component and the t9 term in the z component of γ2. This means that the curve germs γ1 and γ2 are in fact RL
equivalent.

4.6. The points-to-curves and back philosophy

The idea is to translate the problem of classifying orbits in the tower (1) into an equivalent classification problem for
finite jets of space curves. Here we are going to mention some highlights of this approach, we will refer the diligent reader
to [6] to check the technical details.

For any p ∈Pk(n) we associate the set Germ(p) and look at the operation of k-fold prolongation applied to curve germs
in Germ(p). This yields immersed curves at level k in the Monster Tower, and tangent to some line � having nonconstant
projection onto the base manifold R

3. Such sets of good directions were christened regular in [6], and within each sub-
space �k they form an open dense set. A bad direction �∗ , or critical direction in the terminology of [6], are those directions
which will project down to a point under the differential of the bundle projection map. The set of critical directions within
each �k is a finite union of planes. Symmetries of Pk do preserve the different types of directions.

In [6] it was proved that Germ(p) is always non-empty. Consider now the set valued map p �→ Germ(p). One can prove
that p ∼ q iff Germ(p) ∼ Germ(q). An immediate and yet useful consequence of this fact is the following:

Lemma 4.9 (Fundamental lemma of points-to-curves approach). Let Ω be a subset of Pk(n) and suppose for each p ∈ Ω that Germ(p)

contains only a finite number of equivalence classes of curve germs. Then the set Ω is comprised of only a finite number of orbits.

4.7. The isotropy method

The last piece of information that we need to present before we begin the proofs section is the isotropy method. This
technique is used to classify points at the fourth level of the Monster Tower. This is because the curve approach failed to
provide us with nice and clean normal forms for the various R V T classes at the fourth level of the tower. We provide a
specific example of how the curve approach breaks down at level 4 in the proofs section. Suppose we want to look at a
particular R V T class, at the k-th level, given by ω (a word of length k) and we want to see how many orbits there are.
Suppose as well that we understand its projection πk,k−1(ω) one level down, which decomposes into N orbits. Choose rep-
resentative points pi , i = 1, . . . , N , for the N orbits in πk,k−1(ω), and consider the group Gk−1(pi) of level k − 1 symmetries
that fix pi . This group is called the isotropy group of pi . Since elements Φk−1 of the isotropy group fix pi , their prolongations
Φk = (Φk−1,Φk−1∗ ) act on the fiber over pi . Under the action of the isotropy group the fiber decomposes into some number
ni � 1 (possibly infinite) of orbits. Summing up, we find that ω decomposes into

∑N
i=1 ni � N orbits. This will tell us how

many orbits there are for the class ω.
This is the theory. Now we need to explain how one actually prolongs diffeomorphisms in practice. Since the manifold

Pk is a type of fiber compactification of J k(R,R2), it is reasonable to expect that the prolongation of diffeomorphisms
from the base R

3 should be similar to what one does when prolonging point symmetries from the theory of jet spaces. See
specifically [7] and [20].

Given a point pk ∈ Pk and a map Φ ∈ Diff (3) we would like to write explicit formulas for Φk(pk). Coordinates of pk
can be made explicit. Now take any curve γ (t) ∈ Germ(pk), and consider the prolongation of Φ ◦ γ (t). The coordinates of
Φk(pk) are exactly the coordinates of (Φ ◦ γ )(k)(0) = Φk(γ k(0)). Moreover the resulting point is independent of the choice
of γ ∈ Germ(p) and therefore we can act as if a curve has been chosen when performing actual computations.

5. Proofs

Now we are ready to prove Theorem 3.2. We start at level 1 of the tower and work our way up to level 4. At each level
of the tower we classify the number of orbits within each R V T class that appears at that particular level. In this section we
show how the various methods and tools from the previous section are used in the classification procedure. Unfortunately
we do not have space to present all the details for the determination of all orbits within each R V T class at both levels 3
and 4 of the Monster Tower. We will instead present a few instructive examples which will illustrate how the determination
of the number of orbits in the remaining classes works.
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5.1. The classification of points at level 1 and level 2

Theorem 3.4 tells us that all points at the first level of the tower are equivalent, giving that there is a single orbit. For
level 2 there are only two possible R V T codes: R R and R V . Again, any point in the class R R is a Cartan point and by
Theorem 3.4 consists of only one orbit. The class R V consists of a single orbit by Theorem 3.5.

5.2. The classification of points at level 3

There is a total of six distinct R V T classes at level three in the Monster Tower. We begin with the class R R R .
The class R R R: Any point within the class R R R is a Cartan point and Theorem 3.4 gives that there is only one orbit

within this class.
The classes R V R and R R V : From Theorem 3.5 we know that any point within the class R V R has a single orbit, which is

represented by the point γ 3(0) where γ is the curve γ (t) = (t2, t3,0). Similarly, the class R R V has a single orbit, which is
represented by the point γ̃ 3(0) where γ̃ (t) = (t2, t5,0).

Before we continue, we need to pause and provide some framework to help us with the classification of the remaining
R V T codes.

Setup for classes of the form R V C : We set up coordinates x, y, z, u, v, u2, v2 for a point in the class R V as in Section 4.4.
Then for p2 ∈ R V we have �2(p2) = span{ ∂

∂u , ∂
∂u2

, ∂
∂v2

} where p2 = (x, y, z, u, v, u2, v2) = (0,0,0,0,0,0,0), and for any

point p3 ∈ R V C ⊂ P3 that p3 = (p2, �2) = (p2, [du|�2 : du2|�2 : dv2|�2 ]). Since the point p2 is in the class R V we see that
if du = 0 along �2 then p3 ∈ R V V . If du2 = 0 with du 
= 0 along �2 then p3 will be an element of the class R V T , and if
du = 0 and du2 = 0 along �2 that p3 ∈ R V L. With this in mind, we are ready to continue with the classification.

The class R V V : Let p3 ∈ R V V and let γ ∈ Germ(p3). We prolong γ two times and write γ 2(t) = (x(t), y(t), z(t), u(t), v(t),
u2(t), v2(t)). We look at the component functions u(t), u2(t), and v2(t). Since these component functions are analytic we
can set u(t) = Σiaiti , u2(t) = Σ jb jt j , and v2(t) = Σkcktk . We note that the reason for looking only at these terms is because
δ2(p2) is spanned by the collection of vectors { ∂

∂u , ∂
∂u2

, ∂
∂v2

}. Now, since γ 2(t) needs to be tangent to the vertical hyperplane

in �3 then d
dt γ

2|t=0 must be a proper vertical direction in �3; that is d
dt γ

2|t=0 is not an L direction. Since �3 is coframed

by du, du2, and dv2, we must have that du = 0 and du2 
= 0 along d
dt γ

2|t=0. This imposes the condition for the functions
u(t) and u2(t) that a1 = 0 and b1 
= 0, but the coefficient c1 in v2(t) may or may not be zero. Also it must be true that
a2 
= 0 or else the curve γ will not be in the set Germ(p3). We first look at the case when c1 
= 0.

• Case 1, c1 
= 0: From looking at the one-forms that determine �2, we see that in order for the curve γ 3 to be integral
to this distribution, the component functions for γ 3 must satisfy the following relations:

ẏ(t) = u(t)ẋ(t), ż(t) = v(t)ẋ(t),

ẋ(t) = u2(t)u̇(t), v̇(t) = v2(t)u̇(t).

We start with the expressions for ẋ(t) and v̇(t) and see, based upon what we know about u(t), u2(t), and v2(t), that
x(t) = 2a2b1

3 t3 + · · · and v(t) = 2a2c1
3 t3 + · · · . We can then use this information to help us find y(t) and z(t). This gives

us y(t) = 2a2
2b1
5 t5 + · · · and z(t) = 4a2

2b1c1
3 t7 + · · · . Now, we know what the first nonvanishing coefficients are for the

curve γ (t) = (x(t), y(t), z(t)) and we want to determine the simplest curve that γ must be equivalent to. In order to do
this we will first look at the semigroup for the curve γ . In this case the semigroup is given by S = {3, [4],5,6,7, . . .}.
This means that every term, ti for i � 7, can be eliminated from the above power series expansion for the component
functions x(t), y(t), and z(t) by a change of variables. With this in mind, after we rescale the leading coefficients for
each of the components of γ , we end up with

γ (t) = (
x(t), y(t), z(t)

) ∼ (
x̃(t), ỹ(t), z̃(t)

) = (
t3 + αt4, t5, t7).

We now want to see if we can eliminate the α term, if it is nonzero. To do this we will use a combination of
reparametrization techniques along with semigroup arguments. Use the reparametrization t = T (1 − α

3 T ) and we get
that x̃(T ) = T 3(1 − α

3 T )3 + T 4(1 − α
3 T )4 + · · · = T 3 + O (T 5). This gives us that (x̃(T ), ỹ(T ), z̃(T )) = (T 3 + O (T 5), T 5 +

O (T 6), T 7 + O (T 8)). At the same time we can use the semigroup to eliminate all the terms of degree 5 or higher. As a
result, these arguments show that (x̃(T ), ỹ(T ), z̃(T )) ∼ (T 3, T 5, T 7). This means that our original γ is equivalent to the
curve (t3, t5, t7).

• Case 2, c1 = 0: By repeating an argument similar to the above one, we will end up with γ (t) = (x(t), y(t), z(t)) =
( 2a2b1

3 t3 + · · · , 2a2
2b1
5 t5 + · · · , a2

2b1c2
8 t8 + · · ·). Note that c2 may or may not be equal to zero. This gives that the semigroup

for the curve γ is S = {3, [4],5,6, [7],8, . . .} and that our curve γ is such that

γ (t) = (
x(t), y(t), z(t)

) ∼ (
x̃(t), ỹ(t), z̃(t)

) = (
t3 + α1t4 + α2t7, t5 + βt7,0

)
.

Again, we want to know if we can eliminate the αi and β terms. First we focus on the αi terms in x̃(t). We use the
reparametrization given by t = T (1 − α1 T ) to give us x̃(T ) = T 3 +α′ T 7 + O (T 8). Then to eliminate the α′ term we use
3 2 2
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the reparametrization given by T = S(1− α′
2

3 S4) to give x̃(S) = S3 + O (S8). We now turn our attention to the ỹ function.
Because of our two reparametrizations we get that ỹ is of the form ỹ(S) = S5 +β ′ S7. To get rid of the β ′ term we simply

use the rescaling given by S �→ 1√|β ′| S and then use the scaling diffeomorphism given by (x, y, z) �→ (|β ′| 3
2 x, |β ′| 5

2 y, z)

to give us that γ is equivalent to either (t3, t5 + t7,0) or (t3, t5 − t7,0). Note that the above calculations were done
under the assumption that β 
= 0. If β = 0 then we see, using similar calculations as above, that we get the normal
form (t3, t5,0). This means that there is a total of 4 possible normal forms that represent the points within the class
R V V . It is tempting, at first glance, to believe that these curves are all inequivalent. However, it can be shown that
the 3 curves (t3, t5 + t7,0), (t3, t5 − t7,0), and (t3, t5,0) are actually equivalent. It is not very difficult to show this
equivalence, but it does amount to rather messy calculation. As a result, the techniques used to show this equivalence are
outlined in Appendix A.2.

This means that the possible normal forms are: γ1(t) = (t3, t5, t7) and γ2(t) = (t3, t5,0). We will show that these two
curves are inequivalent. One possibility is to look at the semigroups that each of these curves generates. The curve γ1
has the semigroup S1 = {3, [4],5,6,7, . . .}, while the curve γ2 has the semigroup S2 = {3, [4],5,6, [7],8, . . .}. Since the
semigroup of a curve is an invariant of the curve and the two curves generate different semigroups the two curves must be
inequivalent. In [6] there was another technique used to check and see whether or not these two curves are equivalent. We
will now present this alternative of showing that the two curves γ1 and γ2 are inequivalent.

One can see that the curve (t3, t5,0) is a planar curve and in order for the curve γ1 to be equivalent to the curve γ2
we must be able to find a way to turn γ1 into a planar curve. More precisely, we need to find a change of variables and/or
a reparametrization which will make the third component function of γ1 zero. If it were true that γ1 is RL equivalent a
planar curve, then γ1 must lie in an embedded surface in R

3 (or embedded surface germ), say M . This means there exists a
local defining function at each point on the manifold M . Let the local defining function near the origin be the real analytic
function f : R3 → R. Since γ1 is on M , then f (γ1(t)) = 0 for all t near zero. However, when one looks at the individual
terms in the Taylor series expansion of f composed with γ1 there will be nonzero terms which will show up and give that
f (γ1(t)) 
= 0 for all t near zero, which creates a contradiction. This tells us that γ1 cannot be equivalent to any planar curve
near t = 0. As a result, there is a total of two inequivalent normal forms for the class R V V : (t3, t5, t7) and (t3, t5,0). When
we prolong γ1 and γ2 to the third level in the tower we end up with γ 3

1 (0) = γ 3
2 (0), which means that there is only one

orbit within the class R V V .
The remaining classes R V T and R V L are proved in an almost identical manner using the above ideas and techniques.

As a result, we will omit the proofs and leave them to the reader.
With this in mind, we are now ready to move on to the fourth level of the tower. We initially tried to tackle the

problem of classifying the orbits at the fourth level by using the curve approach from the third level. Unfortunately, the
curve approach became a bit too unwieldy to determine what the normal forms were for the various R V T classes. The
problem was simply this: when we looked at the semigroup for a particular curve in a number of the R V T classes at the
fourth level, there were too many gaps corresponding semigroup. The first occurring class, according to codimension, in
which this occurred was the class R V V V . This turns the equivalence problem of curve germs computationally hard.

Example 5.1 (The semigroups for the class R V V V ). Let p4 ∈ R V V V , and for γ ∈ Germ(p4) let γ 3(t) = (x(t), y(t), z(t), u(t), v(t),
u2(t), v2(t), u3(t), v3(t)) with u = dy

dx , v = dz
dx , u2 = dx

du , v2 = dv
du , u3 = du

du2
, v3 = dv2

du2
. Since γ 4(0) = p4 we must have

that γ 3(t) is tangent to the vertical hyperplane within �3, which is coframed by {du2,du3,dv3}. One can see that
du2 = 0 along d

dt γ
3|t=0. Then, looking at the relevant component functions at the fourth level, we set u2(t) = Σiaiti ,

u3(t) = Σ jb jt j , v3(t) = Σkcktk where we must have a1 = 0, a2 
= 0, b1 
= 0, and c1 may or may not be equal
to zero. When we go from the fourth level back down to level zero we end up with γ (t) = (t5 + O (t11), t8 +
O (t11), O (t11)). If c1 
= 0, then we get γ1(t) = (t5 + O (t12), t8 + O (t12), t11 + O (t12)) and the semigroup for this curve is S =
{5, [6], [7],8, [9],10,11, [12],13, [14],15,16, [17],18, . . .}. If c1 
= 0, then we get γ2(t) = (t5 + O (t12), t8 + O (t12), O (t12))

and the semigroup for this curve is S = {5, [6], [7],8, [9],10, [11], [12],13, [14],15,16, [17],18, [19],20,21, [22],23, . . .}.
This shows there is a larger number of gaps in our semigroups and meant that we could not eliminate the various terms as
easily in the various component functions of γ1 and γ2. As a result, it became impractical to work strictly using the curve
approach. This meant that we had to look at a different approach to the classification problem. These types of issues are
why we needed to develop a new approach and lead us to work with the isotropy method.

5.3. The classification of points at level 4

In classifying the points within the fourth level of the Monster Tower we worked almost exclusively with the isotropy
method. While this method proved to be very effective in determining the number of orbits, we unfortunately do not
present all the calculations using this technique. This is because the calculations can be lengthy and because of how many
different possible R V T codes there are at level 4. So we will present the proof for the classification of the class R V V V as
an example of how the isotropy method works.
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The class R V V V : Before we get started, we will summarize the main idea of the following calculation. Our goal is to
determine the number of orbits within the class R V V V . Let p4 ∈ R V V V ⊂ P4 and start with the projection of p4 to
level zero, π4,0(p4) = p0. Since all the points at level zero are equivalent, then one is free to choose any representative
for p0. For simplicity, it is easiest to choose it to be the point p0 = 0 and fix coordinates there. Next, we look at all
the points at the first level, which project to p0. Since all these points at level 1 are equivalent it means that there is a
single orbit in the first level and we are again able to choose any point in P1 as our representive so long as it projects
to the point p0. We will pick p1 = (0,0,0, [1 : 0 : 0]) = (0,0,0,0,0) with u = dy

dx and v = dz
dx , and we will look at all the

diffeomorphisms Φ that fix the point p0 and satisfying Φ∗([1 : 0 : 0]) = [1 : 0 : 0]. Note, by an abuse of notation, that when
we write “Φ∗([1 : 0 : 0]) = [1 : 0 : 0]” we mean the pushforward of Φ , at the point p0, which fixes the line span{ ∂

∂x } in
�0(p0). This condition will place some restrictions on the component functions of the diffeomorphism germs Φ in Diff 0(3)

when we evaluate at the point p0 and tell us what Φ1 = (Φ,Φ∗) will look like at the point p1. We call this group of
diffeomorphisms G1. We can then move on to the second level and look at the class R V . Any p2 ∈ R V is of the form
p2 = (p1, �1) with �1 contained in the vertical hyperplane inside of �1(p1). Now, apply the pushforwards of the Φ1’s
in G1 to the vertical hyperplane and see if these symmetries will act transitively on the critical hyperplane. If they do act
transitively then there is a single orbit within the class R V . If not, then there exists more than one orbit within the class
R V . We then count the number of different equivalence classes there are within this hyperplane and that number tells
us how many orbits there are within that class. Again, we want to point out that there could be an infinite number of
equivalence classes. Note that because of Theorem 3.5, we should expect to only see one orbit within this class. Once this
is done, we can just iterate the above process to classify the number of orbits within the class R V V at the third level and
then within the class R V V V at the fourth level.

• Level 0: Let G0 (= Diff 0(3)) be the group of all diffeomorphism germs that fix the origin.
• Level 1: We know that all the points in P1 are equivalent, thus there is only a single orbit. So we pick a representative

element from the single orbit of P1. We will take our representative to be p1 = (0,0,0,0,0) = (0,0,0, [1 : 0 : 0]) =
(x, y, z, [dx : dy : dz]) and take G1 to be the set of all Φ ∈ G0 such that Φ1 will take the lines tangent to the x-axis back
to the x-axis, meaning Φ∗([1 : 0 : 0]) = [1 : 0 : 0].
Then for Φ ∈ G1 and Φ(x, y, z) = (φ1(x, y, z), φ2(x, y, z), φ3(x, y, z)) we must have

Φ∗ =
⎛
⎝φ1

x φ1
y φ1

z

φ2
x φ2

y φ2
z

φ3
x φ3

y φ3
z

⎞
⎠ =

⎛
⎝φ1

x φ1
y φ1

z

0 φ2
y φ2

z

0 φ3
y φ3

z

⎞
⎠

when we evaluate at (x, y, z) = (0,0,0).
Here is the Taylor triangle representing the different coefficients in the Taylor series of a diffeomorphism in Gi . The three
digits represent the number of partial derivatives with respect to either x, y, or z. For example, (1,2,0) = ∂3

∂x∂2 y
. The

vertical column denotes the coefficient order. We start with the Taylor triangle for φ2:

n = 0: ��������(0,0,0)

n = 1: ��������(1,0,0) (0,1,0) (0,0,1)

n = 2: (2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)

We have crossed out (1,0,0) since ∂φ2

∂x (0) = 0. Next is the Taylor triangle for φ3:

n = 0: ��������(0,0,0)

n = 1: ��������(1,0,0) (0,1,0) (0,0,1)

n = 2: (2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)

This describes some properties of the elements Φ ∈ G1.
We now try to figure out what Φ1, for Φ ∈ G1, will look like in K R-coordinates. First, we look at a line � ⊂ �0 and
write � = span{a ∂

∂x + b ∂
∂ y + c ∂

∂z } with a,b, c ∈R and a 
= 0.
Applying the pushforward of Φ to the line � we get

Φ∗(�) = span

{(
aφ1

x + bφ1
y + cφ1

z

) ∂

∂x
+ (

aφ2
x + bφ2

y + cφ2
z

) ∂

∂ y
+ (

aφ3
x + bφ3

y + cφ3
z

) ∂

∂z

}

= span

{(
φ1

x + uφ1
y + vφ1

z

) ∂

∂x
+ (

φ2
x + uφ2

y + vφ2
z

) ∂

∂ y
+ (

φ3
x + uφ3

y + vφ3
z

) ∂

∂z

}

= span

{
a1

∂

∂x
+ a2

∂

∂ y
+ a3

∂

∂z

}

where in the second line we divided by a and wrote u = b and v = c . Now, since �1 is given by
a a
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dy − udx = 0,

dz − vdx = 0.

Since [dx : dy : dz] = [1 : dy
dx : dz

dx ] we have for Φ ∈ G1 we write Φ1 in local coordinates as Φ1(x, y, z, u, v) =
(φ1, φ2, φ3, ũ, ṽ) where

ũ = a2

a1
= φ2

x + uφ2
y + vφ2

z

φ1
x + uφ1

y + vφ1
z
,

ṽ = a3

a1
= φ3

x + uφ3
y + vφ3

z

φ1
x + uφ1

y + vφ1
z
.

• Level 2: At level 2 we are looking at the class R V which consists of a single orbit by Theorem 3.5. This means that we
can pick any point in the class R V as our representative. We will pick our point to be p2 = (p1, �1) with �1 ⊂ �1(p1)

equal to the vertical line �1 = [dx : du : dv] = [0 : 1 : 0]. Now, we will let G2 be the set of symmetries from G1 that
fix the vertical line �1 = [0 : 1 : 0] in �1(p1), those satisfying Φ1∗ ([0 : 1 : 0]) = [0 : 1 : 0] for all Φ ∈ G2. This implies
Φ1∗ ([dx|�1 : du|�1 : dv|�1 ]) = Φ1∗ ([0 : 1 : 0]) = [0 : 1 : 0] = [dφ1|�1 : dũ||�1 : dṽ||�1 ]. When we fix this direction it might yield
some new information about the component functions of the elements of G2. In particular, we need to set dφ1|�1 = 0
and dṽ|�1 = 0.
• Looking at the restriction dφ1|�1 = 0.
One has dφ1 = φ1

x dx + φ1
ydy + φ1

z dz and when we set dφ1|�1 = 0 we can see that we will not gain any new information
about the component functions for Φ ∈ G2. This is because the covectors dx, dy, and dz will be zero along the line �1.
• Looking at the restriction dṽ|�1 = 0.
Can see that dṽ = d(

a3
a1

) = da3
a1

− (da1)a3
a2

1
and notice when we evaluate at (x, y, z, u, v) = (0,0,0,0,0), we have a3 = 0,

and since we are setting dṽ|�1 = 0 then da3|�1 must be equal to zero. We calculate that

da3 = φ3
xxdx + φ3

xydy + φ3
xzdz + φ3

ydu + u
(
dφ3

y

) + φ3
z dv + v

(
dφ3

z

)
and when we evaluate we get

da3|�1 = φ3
y(0)du|�1 = 0.

But du|�1 
= 0, so φ3
y(0) = 0.

This gives us the updated Taylor triangle for φ3:

n = 0: ��������(0,0,0)

n = 1: ��������(1,0,0) ��������(0,1,0) (0,0,1)

n = 2: (2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)

We have determined some of the properties of elements in G2 and now we will see what these elements look like
locally. We look at a point p′

1 near the point p1 and at Φ1∗ (�) for � ⊂ �1(p′
1), near the vertical hyperplane in �1(p′

1),
which is of the form � = span{aX (1) + b ∂

∂u + c ∂
∂v } with a,b, c ∈ R and b 
= 0 with X (1) = u ∂

∂ y + v ∂
∂z + ∂

∂x . Let w =
aX (1) + b ∂

∂u + c ∂
∂v and we apply Φ1∗ to w to get

Φ1∗ (w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

φ1
x φ1

y φ1
z 0 0

φ2
x φ2

y φ2
z 0 0

φ3
x φ3

y φ3
z 0 0

∂ ũ
∂x

∂ ũ
∂ y

∂ ũ
∂z

∂ ũ
∂u

∂ ũ
∂v

∂ ṽ
∂x

∂ ṽ
∂ y

∂ ṽ
∂z

∂ ṽ
∂u

∂ ṽ
∂v

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

a

au

av

b

c

⎞
⎟⎟⎟⎟⎟⎟⎠

= (
aφ1

x + auφ1
y + avφ1

z

) ∂

∂x
+

(
a
∂ ũ

∂x
+ au

∂ ũ

∂ y
+ av

∂ ũ

∂z
+ b

∂ ũ

∂u
+ c

∂ ũ

∂v

)
∂

∂u

+
(

a
∂ ṽ

∂x
+ au

∂ ṽ

∂ y
+ av

∂ ṽ

∂z
+ b

∂ ṽ

∂u
+ c

∂ ṽ

∂v

)
∂

∂v
.

This means that when we look at Φ1∗ applied to the line � we get

Φ1∗ (�) = span

{(
aφ1

x + auφ1
y + avφ1

z

) ∂ +
(

a
∂ ũ + au

∂ ũ + av
∂ ũ + b

∂ ũ + c
∂ ũ

)
∂

∂x ∂x ∂ y ∂z ∂u ∂v ∂u
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+
(

a
∂ ṽ

∂x
+ au

∂ ṽ

∂ y
+ av

∂ ṽ

∂z
+ b

∂ ṽ

∂u
+ c

∂ ṽ

∂v

)
∂

∂v

}

= span

{(
u2φ

1
x + uu2φ

1
y + vu2φ

1
z

) ∂

∂x
+

(
u2

∂ ũ

∂x
+ uu2

∂ ũ

∂ y
+ vu2

∂ ũ

∂z
+ ∂ ũ

∂u
+ v2

∂ ũ

∂v

)
∂

∂u

+
(

u2
∂ ṽ

∂x
+ uu2

∂ ṽ

∂ y
+ vu2

∂ ṽ

∂z
+ ∂ ṽ

∂u
+ v2

∂ ṽ

v

)
∂

∂v

}

= span

{
b1

∂

∂x
+ b2

∂

∂u
+ b3

∂

∂v

}
.

Notice that we have only paid attention to the x, u, and v coordinates since �1 is framed by dx, du, and dv . Since
u2 = dx

du and v2 = dv
du we get

ũ2 = b1

b2
= u2φ

1
x + uu2φ

1
y + vu2φ

1
z

u2
∂ ũ
∂x + uu2

∂ ũ
∂ y + vu2

∂ ũ
∂z + ∂ ũ

∂u + v2
∂ ũ
∂v

,

ṽ2 = b3

b2
= u2

∂ ṽ
∂x + uu2

∂ ṽ
∂ y + vu2

∂ ṽ
∂z + ∂ ṽ

∂u + v2
∂ ṽ
∂v

u2
∂ ũ
∂x + uu2

∂ ũ
∂ y + vu2

∂ ũ
∂z + ∂ ũ

∂u + v2
∂ ũ
∂v

.

The above equations now tell us what the new component functions ũ2 and ṽ2 are for Φ2 in a neighborhood of p2.
• Level 3: At level 3 we are looking at the class R V V . We know from our work on the third level that there will be only

one orbit within this class. This means that we can pick any point in the class R V V as our representative. We will pick
the point p3 = (p2, �2) with �2 ⊂ �2 equal to the vertical line �2 = [du : du2 : dv2] = [0 : 1 : 0]. Now, we will let G3 be
the set of symmetries from G2 that fix the vertical line �2 = [0 : 1 : 0] in �2, meaning we want Φ2∗ ([0 : 1 : 0]) = [0 : 1 :
0] = [dũ|�3 : dũ2|�3 : dṽ2|�3 ] for all Φ ∈ G3. Since we are taking du|�3 0 and dv2|�3 = 0, with du2|�3 
= 0 we need to look
at dũ|�3 = 0 and dṽ2|�3 = 0 to see if these relations will give us more information about the component functions of Φ .
• Looking at the restriction dũ|�3 = 0.
Looking at dũ = d( a2

a1
) = da2

a1
− a2da1

a2
1

and since a2(p2) = 0, we must have da2|�3 = 0. When we evaluate this expression

one finds da2|�3 = φ2
xxdx|�3 +φ2

xydy|�3 +φ2
xzdz|�3 +φ2

ydu|�3 +φ2
z dv|�3 = 0. Since all the differentials are going to be equal

to zero when we evaluate them along the line �3 then we do not gain any new information about the φ i ’s.
• Looking at the restriction dṽ2|�3 = 0.
dṽ2 = d(

b3
b2

) = db3
b2

− b3db2
b2

2
. Evaluating we find b3(p2) = 0 since ∂ ṽ

∂u (p2) = φ3
y(0) = 0, which implies that we only need to

look at db3
b2

. We compute

db3 = d

(
u2

∂ ṽ

∂x
+ u2u

∂ ṽ

∂z
+ ∂ ṽ

∂u
+ v2

∂ ṽ

∂v

)

= ∂ ṽ

∂x
du2 + u2

(
d
∂ ṽ

∂x

)
+ u

∂ ṽ

∂ y
du2 + u2

∂ ṽ

∂ y
du + u2u

(
d
∂ ṽ

∂ y

)
+ v

∂ ṽ

∂z
du2

+ u2
∂ ṽ

∂z
dv + u2 v

(
d
∂ ṽ

∂z

)
+ ∂ ṽ

∂u∂x
dx + ∂ ṽ

∂u∂ y
dy + ∂ ũ

∂u∂z
dz + ∂ ṽ

∂v
dv2 + v2

(
d
∂ ṽ

∂v

)
.

Evaluating we get db3|�3 = ∂ ṽ
∂x (p3)du2|�3 = 0, and since du2|�3 
= 0 this forces ∂ ṽ

∂x (p3) = 0. We have ∂ ṽ
∂x (p3) = φ3

xx(0)

φ1
x (0)

−
φ1

xx(0)φ3
x (0)

φ1
x (0)

and φ3
x (0) = 0, which give ∂ ṽ

∂x (p3) = φ3
xx(0)

φ1
x (0)

= 0 which forces φ3
xx(0) = 0. This gives us information about Φ3

along with the updated Taylor triangle for φ3:

n = 0: ��������(0,0,0)

n = 1: ��������(1,0,0) ��������(0,1,0) (0,0,1)

n = 2: ��������(2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)

Now, our goal is to look at how the Φ3∗ ’s act on the distribution �3(p3) in order to determine the number of orbits
within the class R V V V . In order to do so we will need to figure out what the local component functions, call them
ũ3 and ṽ3, are for Φ3, with Φ ∈ G3. To do this we will again look at Φ2∗ applied to a line � that is near the vertical
hyperplane in �2.
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Set � = span{aX (2) + b ∂
∂u2

+ c ∂
∂v2

} for a,b, c ∈ R and b 
= 0 where X (2) = u2(u ∂
∂ y + v ∂

∂z + ∂
∂x ) + ∂

∂u + v2
∂
∂v . Let w =

aX (2) + b ∂
∂u2

+ c ∂
∂v2

and we compute

Φ2∗ (w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1
x φ1

y φ1
z 0 0 0 0

φ2
x φ2

y φ2
z 0 0 0 0

φ3
x φ3

y φ3
z 0 0 0 0

∂ ũ
∂x

∂ ũ
∂ y

∂ ũ
∂z

∂ ũ
∂u

∂ ũ
∂v 0 0

∂ ṽ
∂x

∂ ṽ
∂ y

∂ ṽ
∂z

∂ ṽ
∂u

∂ ṽ
∂v 0 0

∂ ũ2
∂x

∂ ũ2
∂ y

∂ ũ2
∂z

∂ ũ2
∂u

∂ ũ2
∂v

∂ ũ2
∂u2

∂ ũ2
∂v2

∂ ṽ2
∂x

∂ ṽ2
∂ y

∂ ṽ2
∂z

∂ ṽ2
∂u

∂ ṽ2
∂v

∂ ṽ2
∂u2

∂ ṽ2
∂v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

au2

auu2

avu2

a

av2

b

c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then for Φ2∗ applied to the line � we end up with it being equal to

span

{(
au2

∂ ũ

∂x
+ auu2

∂ ũ

∂ y
+ avu2

∂ ũ

∂z
+ a

∂ ũ

∂u
+ av2

∂ ũ

∂v

)
∂

∂u

+
(

au2
∂ ũ2

∂x
+ auu2

∂ ũ2

∂ y
+ avu2

∂ ũ2

∂z
+ a

∂ ũ2

∂u
+ av2

∂ ũ2

∂v
+ b

∂ ũ2

∂u2
+ c

∂ ũ2

∂v2

)
∂

∂u2

+
(

au2
∂ ṽ2

∂x
+ auu2

∂ ṽ2

∂ y
+ avu2

∂ ṽ2

∂z
+ a

∂ ṽ2

∂u
+ av2

∂ ṽ2

∂v
+ b

∂ ṽ2

∂u2
+ c

∂ ṽ2

∂v2

)
∂

∂v2

}

= span

{(
u3u2

∂ ũ

∂x
+ u3uu2

∂ ũ

∂ y
+ u3 vu2

∂ ũ

∂z
+ u3

∂ ũ

∂u
+ u3 v2

∂ ũ

∂v

)
∂

∂u

+
(

u3u2
∂ ũ2

∂x
+ u3uu2

∂ ũ2

∂ y
+ u3 vu2

∂ ũ2

∂z
+ u3

∂ ũ2

∂u
+ u3 v2

∂ ũ2

∂v
+ ∂ ũ2

∂u2
+ v3

∂ ũ2

∂v2

)
∂

∂u2

+
(

u3u2
∂ ṽ2

∂x
+ u3uu2

∂ ṽ2

∂ y
+ u3 vu2

∂ ṽ2

∂z
+ u3

∂ ṽ2

∂u
+ u3 v2

∂ ṽ2

∂v
+ ∂ ṽ2

∂u2
+ v3

∂ ṽ2

∂v2

)
∂

∂v2

}

= span

{
c1

∂

∂u
+ c2

∂

∂u2
+ c3

∂

∂v2

}
,

because our local coordinates are given by [du : du2 : dv2] = [ du
du2

: 1 : dv2
du2

] = [u3 : 1 : v3] we end up with

ũ3 = c1

c2
= u3u2

∂ ũ
∂x + u3uu2

∂ ũ
∂ y + u3 vu2

∂ ũ
∂z + u3

∂ ũ
∂u + u3 v2

∂ ũ
∂v

u3u2
∂ ũ2
∂x + u3uu2

∂ ũ2
∂ y + u3 vu2

∂ ũ2
∂z + u3

∂ ũ2
∂u + u3 v2

∂ ũ2
∂v + ∂ ũ2

∂u2
+ v3

∂ ũ2
∂v2

,

ṽ3 = c3

c2
= u3u2

∂ ṽ2
∂x + u3uu2

∂ ṽ2
∂ y + u3 vu2

∂ ṽ2
∂z + u3

∂ ṽ2
∂u + u3 v2

∂ ṽ2
∂v + ∂ ṽ2

∂u2
+ v3

∂ ṽ2
∂v2

u3u2
∂ ũ2
∂x + u3uu2

∂ ũ2
∂ y + u3 vu2

∂ ũ2
∂z + u3

∂ ũ2
∂u + u3 v2

∂ ũ2
∂v + ∂ ũ2

∂u2
+ v3

∂ ũ2
∂v2

.

• Level 4: Now that we know what the component functions are for Φ3, with Φ ∈ G3, we are ready to apply its
pushforward to the distribution �3 at p3 and figure out how many orbits there are for the class R V V V . We let
� = span{b ∂

∂u3
+ c ∂

∂v3
}, with b, c ∈ R and b 
= 0, be a vector in the vertical hyperplane of �3(p3) and we see that

Φ3∗ (�) = span

{(
b
∂ ũ3

∂u3
(p3) + c

∂ ũ3

∂v3
(p3)

)
∂

∂u3
+

(
b
∂ ṽ3

∂u3
(p3) + c

∂ ṽ3

∂v3
(p3)

)
∂

∂v3

}
.

This means that we need to compute ∂ ũ3
∂u3

(p3), ∂ ũ3
∂v3

(p3), ∂ ṽ3
∂u3

(p3), and ∂ ṽ3
∂v3

(p3) where p3 = (x, y, z, u, v, u2, v2, u3, v3) =
(0,0,0,0,0,0,0,0,0). This will amount to a somewhat long process, so we will just state what the above terms are

equal to and leave the computations for Appendix A. After evaluating we will see that Φ3∗ (�) = span{(b (φ2
y(0))2

(φ1
x (0))3 ) ∂

∂u3
+

(c φ3
z (0)

(φ1
x (0))2 ) ∂

∂v3
}. This means that for � = span{ ∂

∂u3
} (c = 0) we get Φ3∗ (�) = span{ (φ2

y(0))2

(φ1
x (0))3

∂
∂u3

} to give one orbit. This

orbit is characterized by all vectors of the form b′ ∂
∂u3

with b′ 
= 0. Then, for � = span{ ∂
∂u3

+ ∂
∂v3

} we see that

Φ3∗ (�) = span{( (φ2
y(0))2

1 3 ) ∂
∂u +(

φ3
z (0)

1 2 ) ∂
∂v }, and notice that φ1

x (0) 
= 0, φ2
y(0) 
= 0, and φ3

z (0) 
= 0. However, we can choose

(φx (0)) 3 (φx (0)) 3
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Fig. 4. Orbits within the class R V V V .

φ1
x (0), φ2

y(0), and φ3
z (0) to be equal to anything else other than zero. Then since our distribution �3(p3) is coframed

by du2,du3,dv3 and with �′ ≡ Φ3∗ (�) we get

[
du2|�′ ,du3|�′ ,dv3|�′

] =
[

0,
(φ2

y(0))2

(φ1
x (0))3

,
φ3

z (0)

(φ1
x (0))2

]
=

[
0,1,

φ1
x (0)φ3

z (0)

(φ2
y(0))2

]

to give another, separate orbit. In the present case, for � to be a vertical direction, it must be of the form � = span{b ∂
∂u3

+
c ∂

∂v3
} with b 
= 0. This means that there is a total of 2 orbits for the class R V V V , as depicted in Fig. 4.

The classification of the other R V T classes at level 4 are done in a very similar manner. The details of these other
calculations will be given in a subsequent work by one of the authors.

6. Conclusion

We have exhibited a canonical procedure for lifting the action of Diff (3) to the fibered manifold Pk(2), and by a mix
of singularity theory of space curves and the representation theory of diffeomorphism groups we were able to completely
classify orbits of this extended action for small values of k. A cursory glance at our computational methods will convince the
reader that these results can nominally be extended to higher values of k, but with an exponential increase in computational
effort. Progress has been made to try and extend the classification results of the present paper and we hope to release these
findings sometime in the near future. In [6] we already called the attention to a lack of discrete invariants to assist with
the full classification problem. Most combinatorial invariants for analytic space curves are inequivalent [5], and it remains to
find out if our R V T coding is equivalent to any/some of them. Can one use these invariants to simplify the classification task?
Let us remind the reader that when n = 1 the fortuitous coincidence that all discrete invariants of planar curves provide
essentially the same combinatorial information helped reduce the classification effort considerably.

When we originally posted our paper in July of 2011 we had made a conjecture concerning a recent paper by Li and
Respondek. In [13], Li and Respondek constructed a mechanical system consisting of k-rigid bars moving in R

n+1 subject to
a nonholonomic constraint which is equivalent to the Cartan distribution of J k(R,Rn) at regular configuration points. We
originally conjectured that the singular configurations of the k-bar would be related or have some connection to singular
Goursat multi-flags similar to those presented here, though in Li and Respondek’s case the configuration manifold is a
tower of Sn fibrations instead of our P

n tower. As of November 2011, F. Pelletier [21] was able to exhibit this concrete
relationship that we were searching for. Pelletier defined the notion of Cartan spherical prolongation which gives rise to a
tower of sphere bundles, similar to how Cartan projective prolongations gives us the Monster Tower. As a corollary of his
construction each level of his spherical Monster Tower provides us with a canonical 2-fold covering of each corresponding
level of the projective Monster Tower.

Another research venue, which to our knowledge has been little explored, is looking at how these results could be
applied to the geometric theory of differential equations. Let us remind the reader that the spaces Pk(2), or more generally
Pk(n) are fiber compactifications of the jet spaces J k(R,R2) and J k(R,Rn) respectively. Intuitively one may think that
derivatives are allowed to blow-up in this new theory. Kumpera and Rubin [12] have used the geometric theory to study
underdetermined systems of ordinary differential equations (e.g. control systems), but it remains to be explored how our
classification results, and compactification procedures can provide new qualitative information concerning overdetermined
systems of differential equations.
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Appendix A

A.1. Definition of a Goursat n-flag

In this section we present the definition of a Goursat n-flag of length k, or what is also referred to as a Special n-flag of
length k. We follow the definition presented in [22].

Let n � 2, k be a non-negative integer and D be a distribution of rank n + 1. Assume further that the ambient manifold
Z has dimension (n + 1) + kn.

Our distribution D will be defined locally by the vanishing of the one forms ωi for i = 1, . . . , s, which are pointwise
linearly independent as covectors.

The Cauchy characteristic system of D is the linear subbundle defined by the linear constraints

Ch(D)(p) = {
X ∈ D(p)

∣∣ X�dωi = 0 mod ωi, ∀i ∈ {1, . . . , s}}.
We say that a nonholonomic distribution D admits a special n-flag of length k if it has integrable subbundle F of ∂k−1 D

of corank 1 and that satisfies the following sandwich diagram:

D ⊂ ∂ D · · · ⊂ ∂k−2 D ⊂ ∂k−1 D ⊂ ∂k D = T Z
∪ ∪ ∪ ∪

Ch(D) ⊂ Ch(∂ D) ⊂ Ch(∂2 D) · · · ⊂ Ch(∂k−1 D) ⊂ F

where ∂ D is called the derived system of D , and geometrically ∂ D = D + [D, D]. Proceeding recursively, ∂ i D = ∂(∂ i−1 D) and
we can verify that rank(∂ i D) = rank(∂ i−1 D) + n for i = 1, . . . ,k. In our language, F = ker(dπk,0) for πk,0 :Pk → R

3 [22].

A.2. A technique to eliminate terms in the short parameterization of a curve germ

The following technique that we will discuss is outlined in [24] on p. 23. Let C be a planar curve germ. A short
parametrization of C is a parametrization of the form

C =
{

x̃ = tn,

ỹ = tm + Σ
q
i=1a′

νi
tνi

where the ν1 < ν2 < · · · < νq are integers that belong to the set {m + 1, . . . , c} which do not belong to the semigroup of the
curve C . In [24] there is a result, Proposition 2.1, which says that if C is any planar analytic curve germ, then there exists a
branch C̃ with the above short parametrization and C̃ is RL equivalent to C .

We look at a particular case of the short parametrization where we define ρ to be an integer, less than or equal to q + 1,
and aνi = 0 for i < ρ , and aνp = b. This gives a short parametrization of the following form

C =
{

x = tn,

y = tm + btνρ + Σ
q
i=ρ+1aνi t

νi , b 
= 0 if ρ 
= q + 1.

Suppose that νρ + n ∈ nZ+ + mZ+ . Now, notice that νρ + n ∈ mZ+ because νρ is not in the semigroup of C . Let j ∈ Z+ be
such that νρ + n = ( j + 1)m; notice that j � 1 since νρ > m. Then set a = bn

m and x′ = tn + at jm + (terms of degree > jm).
Let τn = tn +at jm + (terms of degree > jm). From this expression one can show that t = τ − a

n τ jm−n+1 + (terms of degree >

jm − n + 1), and when we substitute this into the original expression above for C that

C =
{

x′ = τn,

y = τm + (terms of degree > νρ).

We can now apply Proposition 2.1 to the above expression for C and see that C admits the parametrization

C =
{

x′ = τn,

y′ = τm + Σ
q
i=ρ+1a′

νi
τ νi .

We can now apply the above technique to the two curves (t3, t5 + t7,0) and (t3, t5 − t7,0) in order to eliminate the t7 in
both of these curve germs. This means that these two curves will end up being equivalent to the curve (t3, t5,0).
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A.3. Computations for the class R V V V

In this section we work out the computations for the functions ∂ ũ3
∂u3

, ∂ ũ3
∂v3

, ∂ ṽ3
∂u3

, ∂ ṽ3
∂v3

evaluated at p3 = (x, y, z, u, v, u2,

v2, u3, v3) = (0,0,0,0,0,0,0,0,0), which we omitted in Section 5.

(1) Computation of ∂ ũ3
∂u3

.

Starting with ũ3 = c1
c2

, one computes

∂ ũ3

∂u3
= u2

∂ ũ
∂x + uu2

∂ ũ
∂ y + ∂ ũ

∂u + v2
∂ ũ
∂v

c2
−

∂c2
∂u3

c1

c2
2

and

∂ ũ3

∂u3
(p3) =

∂ ũ
∂u (p3)

∂ ũ2
∂u2

(p3)
,

since c1(p3) = 0. We recall that ∂ ũ
∂u (p3) = φ2

y(0)

φ1
x (0)

, ∂ ũ2
∂u2

(p3) = φ1
x (0)

∂ ũ
∂u (p3)

to give

∂ ũ3

∂u3
(p3) = (φ2

y(0))2

(φ1
x (0))3

.

(2) Computation of ∂ ũ3
∂v3

.

Since ũ3 = c1
c2

, then

∂ ũ3

∂v3
(p3) =

∂c1
∂v3

(p3)

c2(p3)
−

∂c2
∂v3

(p3)c1(p3)

c2
2(p3)

= 0,

because c1 is not a function of v3 and c1(p3) = 0.
(3) Computation of ∂ ṽ3

∂u3
.

Have that ṽ3 = c3
c2

, then

∂ ṽ3

∂u3
= u2

∂ ṽ2
∂x + · · · + ∂ ṽ2

∂u + v2
∂ ṽ2
∂v

c2
− (u2

∂ ũ2
∂x + · · · + ∂ ũ2

∂u + · · · + v2
∂ ũ2
∂v )c1

c2
2

,

∂ ṽ3

∂u3
(p3) =

∂ ṽ2
∂u (p3)

∂ ũ2
∂u2

(p3)
−

∂ ũ2
∂u (p3)

∂ ṽ2
∂u2

(p3)

(
∂ ũ2
∂u2

(p3))2
.

We will need to figure out what ∂ ũ2
∂u2

, ∂ ṽ2
∂u2

, and ∂ ṽ2
∂u are when we evaluate at p3.

(a) ∂ ṽ2
∂u2

.
Recall from work at level 3 that

∂ ṽ2

∂u2
(p3) =

∂ ṽ
∂x (p3)

∂ ũ
∂u (p3)

= 0

since ∂ ṽ
∂x (p3) = φ3

xx(0)

φ1
x (0)

and have φ1
xx(0) = 0 to give us ∂ ṽ2

∂u2
(p3) = 0.

This gives the reduced expression

∂ ṽ3

∂u3
(p3) =

∂ ṽ2
∂u (p3)

∂ ũ2
∂u2

(p3)
.

(b) ∂ ṽ2
∂u .

Recall that ṽ2 = b3
b2

, then we find

∂ ṽ2

∂u
= u2

∂2 ṽ
∂x∂u + u2

∂ ṽ
∂ y + · · · + ∂ ṽ

∂2u
+ v2

∂2 ṽ
∂v∂u

b2
− (u2

∂2ũ
∂x∂u + · · · + ∂2ũ

∂2u
+ v2

∂2ũ
∂v∂u )b3

b2
2

,

∂2 ṽ2

∂u
(p3) =

∂2 ṽ
∂2u

(p3)

∂ ũ (p )
−

∂2ũ
∂2u

(p3)
∂ ṽ
∂u (p3)

( ∂ ũ (p ))2

∂u 3 ∂u 3
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since b2(p3) = ∂ ũ
∂u (p3) and b3(p3) = ∂ ṽ

∂u (p3). In order to find ∂ ṽ2
∂u (p3) we will need to determine ∂ ṽ

∂u (p3), ∂2 ṽ
∂2u

(p3),

and ∂2 ũ
∂2u

(p3).

(c) ∂ ṽ
∂u .

Recall that ṽ = a3
a1

and that ∂ ṽ
∂u = φ3

y
a1

− φ1
ya3

a2
1

, then

∂ ṽ

∂u
(p3) = φ3

y(0)

φ1
x (0)

− φ1
y(0)φ3

x (0)

(φ1
x (0))2

= 0

since φ3
y(0) = 0 and φ3

x (0) = 0.

(d) ∂2 ṽ
∂2u

.

From the above we have ∂ ṽ
∂u = φ3

y
a1

− φ1
ya3

a2
1

, then

∂2 ṽ

∂2u
(p3) = 0

a1(p3)
− φ3

y(0)φ1
y(0)

a2
1(p3)

− φ1
y(0)φ3

y(0)

a2
1(p3)

+ (φ1
y(0))2φ3

x (0)

a3
1(p3)

= 0

since φ3
y(0) = 0 and φ3

x (0) = 0.

We do not need to determine what ∂2 ũ
∂2u

(p4) is, since ∂ ṽ
∂u and ∂2 ṽ

∂2u
will be zero at p3 and give ∂ ṽ3

∂u3
(p3) = 0.

(4) Computation of ∂ ṽ3
∂v3

.

Recall that ṽ3 = c3
c2

, then

∂ ṽ3

∂v3
=

∂ ṽ2
∂v2

c2
−

∂ ũ2
∂v2

c3

c2
2

,

∂ ṽ3

∂v3
(p3) =

∂ ṽ2
∂v2

(p3)

∂ ũ2
∂u2

(p3)
−

∂ ũ2
∂v2

(p3)
∂ ṽ2
∂u2

(p3)

( ∂ ũ2
∂u2

(p3))2
.

This means we need to look at ∂ ṽ2
∂v2

, ∂ ũ2
∂v2

, ∂ ṽ2
∂u2

, and ∂ ũ2
∂u2

evaluated at p3.

(a) ∂ ṽ2
∂v2

.
We recall from an earlier calculation that

∂ ṽ2

∂v2
(p3) =

∂ ṽ
∂v (p3)

∂ ũ
∂u (p3)

= φ3
z (0)

φ2
y(0)

.

(b) ∂ ũ2
∂v2

.

It is not hard to see that ∂ ũ2
∂v2

(p3) = 0.

(c) ∂ ũ2
∂u2

.

Recall ũ2 = b1
b2

and that

∂ ũ2

∂u2
= φ1

x + uφ1
y + vφ1

z

b2
− ( ∂ ũ

∂x + u ∂ ũ
∂ y + v ∂ ũ

∂z )b1

b2
2

,

then

∂ ũ2

∂u2
(p3) = φ1

x (0)

∂ ũ
∂u (p3)

= (φ1
x (0))2

φ2
y(0)

.

With the above in mind we have ∂ ṽ3
∂v3

(p3) = φ3
z (0)

(φ1
x (0))2 .

Then the above calculations give

Φ3∗ (�) = span

{(
b
∂ ũ3

∂u3
(p3) + c

∂ ũ3

∂v3
(p3)

)
∂

∂u3
+

(
b
∂ ṽ3

∂u3
(p3) + c

∂ ṽ3

∂v3
(p3)

)
∂

∂v3

}

= span

{(
b
(φ2

y(0))2

(φ1
x (0))3

)
∂

∂u3
+ c

φ3
z (0)

(φ1
x (0))2

∂

∂v3

}

for � = span{b ∂ + c ∂ } with b, c ∈ R and b 
= 0.

∂u3 ∂v3
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