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Suppose that X and A are two finite sets of the same cardinality n > 2. Assume 

that there is a bijective mapping 4: X-r A which is unknown to us, and we 

must determine it. We are allowed to ask a sequence of questions each posed as 
follows. For a given BC A what is 4-‘(B)? In this paper we study a case when 
the subsets B are chosen uniformly at random. The main result is: if each subset 

has to split all the atoms of a field generated by the previous subsets, then the 
total number of questions (needed to determine the mapping completely) is 
log, n + (1 + oP( 1))(2 log, n)‘j*. Here oP( 1) stands for a random term approaching 

0 in probability as n + co. ic? 1990 Acadcmlc Press. Inc 

1. INTRODUCTION 

Suppose that X and A are two finite sets of the same cardinality n 3 2. 
Assume that there is a bijective mapping 4: X-t A which is unknown to us, 
and our task is to determine it. We are allowed to ask a sequence of ques- 
tions each formulated as follows. For a given B c A, what is 4 -r(B)? (An 
example: X is a group of students, and A is the list of their names. To get 
acquainted with the audience, a teacher reads the names sequentially, i.e., 
IBI = 1, and asks the students to identify themselves.) A finite sequence of 
questions, i.e., subsets B, generates a field in A, while the answers produce 
a corresponding field in X. The function 4 is determined once the atoms of 
field in A, hence in X, have all become singletons. Obviously, the teacher’s 
strategy requires n - 1 questions. The smallest number of questions is 
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rlog, n]; it is achieved if at every step, each atom of the current field in A, 
which has s3 2 elements, delegates [s/2] (or Ls/2_1) of its members for 
inclusion in a subset B for the next question. 

What happens if the subsets B are chosen at random? The models of 
randomness we are interested in represent in a certain sense two opposite 
ends of a broad spectrum of possibilities. Model 1: At each step all 2” 
subsets B are admissible, and B is chosen according to the uniform 
distribution, independently of all past choices. Model 2: B is admissible 
provided that it splits every nontrivial atom of the current field; further, 
conditioned on this field, B is chosen, among the presently admissible 
subsets, according to the uniform distribution. (It is worth noting that for 
both the teacher’s strategy and the “halving” strategy all the subsets satisfy 
this “splitting” condition.) 

Let HL” and Hn (” be respectively the random number of necessary 
questions for Model 1 and for Model 2. Obviously, H!,“, H :I’ both exceed 
rlogz n], and the problem is to determine the probable behavior of 
H”‘-log, n and H”’ -log, n for large n. 

in his lectures at ‘Michigan State University (summer of 1960), Rtnyi 
discussed a series of problems related to random subsets, see [7]. Among 
them there was the problem of identifying, via unconstrained random 
questions, a single individual in a group of size n. In our terminology, one 
has to determine d(~) for a fixed x E X by asking questions at random as 
defined in Model 1. Denote the random number of necessary questions by 
hj,l’; let hL2’ designate the corresponding number in the case when each 
subset B has to split the current atom in A which contains C&X). A little 
reflection shows that hL*’ can be viewed as the number of questions in the 
h:“-long sequence of questions for the Model 1 which happen to be 
splitting. Renyi proved that if J’= O( 1) and log, n + 4’ is an integer then 

P(h~“dlog,n+y)-exp(-2~-‘)~0, n-co, 

so that 

hf,“=log,n+0,(1), n-+co, 

where O,( 1) stands for a random variable bounded in probability as 
n + 00 Since I?!,“, h”’ are defined on the same probability space, we can 
introduce Ah,, = hy;- hy’, which is the decrease in the number of 
questions caused by not allowing trivial questions. How large is Ah,,? We 
prove a rather surprising result. 

THEOREM 1. The distribution of Ah, does not depend on n. More precisely, 

P(Ah,,=j)=2-“‘I’, j>O, 
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so that Ah,, is geometricaIly distributed with parameter $. Consequently, 
E( hr)) = E(hL’ I) - 1. Thus, on average, we reduce the number of questions 
by 1 if we ask only the meaningfiul questions. 

The corresponding reduction in the number of questions is far more 
significant in the case when we have to identify all the individuals. Namely, 
we prove 

THEOREM 2. (i) If y = 0( 1) and 2 log2 n + y is an integer, then 

P(H~)Q210g,n+y)-exp[-2-(J+1’]-+0, n-co, (1.2) 

so that 

H”‘=2log,n+O (1) n P ’ n-tco. 

(ii) For every E > 0, 

P(((H~2’-log2n)/(210g2n)1~Z-l~ G&E)+ 1, n+co, 
i.e., 

fly’= log, n + (1 + op( 1))(2 log, .)1’2, n-+oo, (1.3) 

where oP( 1) stands for a random variable which approaches 0 in probability 
asn+co. 

Remark. Thus, selecting questions more judiciously, we can cut, with 
high probability (w.h.p.), their total number by half. Still, HL2’ exceeds the 
optimal number rlog,n] w.h.p. by a weighty random quantity of order 
(logn)“‘. We had expected Hr’ -log, n to be unbounded in probability, 
but firmly believed that the difference would be considerably smaller, some- 
thing of magnitude log log n. 

Besides being a natural extension of the original Renyi problem, 
Models 1 and 2 are closely related to digital search trees in computer 
science. To establish this connection, suppose that there are given n 
mutually independent infinite Bernoulli sequences o1 = (olj}ia i, . . . . o, = 
I%j>j> 13 with o,,,E (0, 1 } and P(oVj = 1) = f. We may interpret w,, . . . . o, 
as the nonterminating binary expansions of n independent numbers each 
distributed uniformly over (0, 11. Given an n-tuple & = (oi, . . . . w,), we 
associate with it a finite binary tree Fjli) = Fy’(o”) as follows. Introduce 
9, the complete, infinite, plane, rooted, binary tree. Each sequence w, 
determines an infinite path 9, in 5; it starts at the root of F and is such 
that its jth arc (counting from the root) is directed left (right) if the jth 
digit w,,, is O(1). Clearly, the number of paths passing through a vertex k 
arcs away from the root is binomially distributed with parameters n, 2-k. 
Thus, almost surely (as.) all the paths will eventually disengage. Cut 
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each path 9” at the first vertex it does not share with any other path, 
and label this vertex w,. The n truncated paths define a finite (sub)tree 
Y!:f = am) which has n end vertices labelled ol, . . . . w,. This tree is 
interpreted as a dictionary-type arrangement of n numbers (records) in a 
computer’s memory. Upon request, any one of o, can be located in the 
tree by starting the search at the root and using the consecutive digits of 
w, as the pointers showing where to move next. This algorithm is known 
as a “trie search,” trie being taken from the word “retrieval” (Knuth 
[2, Sect. 6.31). The height L%?~ (l) of Sr’, i.e., the length of the longest path 
from the root to an end vertex, is therefore the largest number of digits to 
check in order to locate one of the end vertices wl, . . . . w,. 

Getting back to the questions-and-answers models, observe that for each 
model, we can also associate with every element a of A a path in Y such 
that its jth arc is left (right) directed if the subset B for the jth question 
includes (does not include) the element a. Besides, in terms of the paths, 
we stop asking questions when all the paths have finally disengaged. 
Truncating each path at the first vertex which does not belong to any other 
path, we get a random binary (sub)tree, T, (I’ for the Model 1, and T’” for 
Model 2. Obviously, the total number of questions for each of the models 
is equal to the height of its related tree. 

For Model 1, at each stage all the questions are admissible and equally 
likely, independent of past questions. This implies that Tk” and Yy’ are 
equidistributed, or Ty’ 2 F-y), in short. Consequently, Hy’ 2 Zh’). 

For Model 2, unlike T!,” and ,I’), all the vertices of Tjf’, except 
the end vertices, must be of a branching type, i.e., have two direct descen- 
dants. We can get a random tree FL*) g Tjlz) from FL’) by compressing 
the latter, that is, by removing each arc of Sy) which starts at a non- 
branching-type vertex and patching the remaining pieces of S!,‘) together. 
The resulting- tree has the name “Patricia,” the acronym for “practical 
algorithm to retrieve information coded in alphanumeric,” (Knuth [3]). 
(More precisely, each nonend vertex of this tree is provided with an 
integer; it indicates the number of next irrelevant digits to be skipped over 
in the search for a desired o,.) Therefore, HL*’ ?! 2 PJ, where Zi*) is the 
height of J n . r-(2’ Needless to say, by compressing in the same way the tree 
T!,“, we also get a random subtree of Tr’ which is distributed like TL*‘. 
Hence, as in the case of a single individual, Hy’ and Hr’ can be thought 
of as defined on the same probability space, where HL” 2 H L*‘. 

Note. In light of this discussion, we can reformulate Theorem 1 as 
follows. By compressing the tree Yr’ into the Patricia tree Sk” we save 
each w, a random number of digits which is geometrically distributed with 
parameter i. This implies a well-known result (Knuth [3]): the average 
reduction is one digit. 
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This relation between Models 1, 2 and trees Yh”, YL” makes a proof of 
(1.2) unnecessary, because the corresponding estimate of &‘jtl), the height 
of the tree Yy), is already known-see Mendelson [4], Devroye [2] 
(nonuniform density case), and Pittel [6] (Bernoulli sequences with a 
general p = P(wi = 1)). As for H, , (2) the situation is just the opposite, since 
a general result about XL’) obtained by Pittel [S] implies only that 
Zy’ = (1 + o,,( 1)) log, n, while (1.3)-with XL2) replacing Hr)-provides 
a considerably sharper estimate. 

Actually, Mendelson [4] and Pittel [6] studied the height #yJ of a 
more general random tree J cifi), d> 1; this tree is obtained via truncating 
every path gV at the first vertex which belongs to at most d paths and 
labelhng this end vertex by the corresponding subset of {o,, . . . . o,}. The 
labelling end vertices and the subsets associated with them are interpreted 
as the pages of a dictionary and d as the capacity of a page. Clearly, YlfJ 
and a similarly defined pnd (2) have the same distribution as HyJ and H,$‘, 
respectively, where H,, (l) (Hi?) is the total number of questions in the 
Model 1 (2) needed to obtain a field with all atoms of size at most d. Using 
an asymptotic estimate for 3/ppJ, [4, 61, we obtain: if y = 0( 1) and 
d-‘(d+ 1) log, n + y is an integer then (compare with (1.2)) 

as n+ co. As for Hi;‘, only a slight modification of the proof of 
Theorem 2(ii) is necessary to show that 

HA;)= log, n + (1 + 0&1))(2d-’ log, n)“‘, n-+m. (1.4) 

We should add that, in a parallel development, Aldous and Shields [ 1 ] 
studied another well-known digital tree. (For this tree, we cut each path 9” 
at the first vertex it does not share with any other path .9$, ,n < v - 1, and 
label this vertex w,.) Among other results, they proved that the height of 
this tree obeys the same asymptotic behavior as YE’?‘, the height of the 
Patricia tree. This is quite surprising since the two random trees do not 
have much in common. 

2. PROOF OF THEOREM 1 

Let x E X be given. 

(a) Since 4( .) is a bijection from X to A, we can define hy’ and hj;?’ 
as follows. Let { C,:j > 1 } be a sequence of independent random subsets of 
X such that each Ci is uniformly distributed on the set of all 2” subsets 
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of X. Introduce also a sequence { qj:j > 0}, where q0 = X and, for j > 1, 
‘G, = ej(x) is the atom of the field generated by C,, Cz, . . . and C,, which 
contains x, or formally 

~=(,,?,,*ck)n(,,?,,:c;) 

Manifestly, for ja 1, the subset C, does not satisfy the splitting condition 
iff G$=%,-,. Denote \gj\ by rl. Then 

h~“=h~“(x) ==rmin{j>l:tj=l), (2.1) 

and, introducing a sequence of events 0, = (hy’ > j and Vi = gi+ 1 }, we also 
have 

h;*‘= h:‘(x) ==( h;” -Ah,, Ah,= c I,,,; (2.2) 
i20 

here the summation is taken over the event indicators of D,, j > 0. 

(b) For y E X\{x} and j 2 1, we say that y is not separated from x 
by C, if either y, x E C, or y, x E Cf’, It is easy to see that every such event 
has probability 4, and all these events are mutually independent. Since 
rj = t + 1 iff there are exactly t elements y E X\ (x} which are not separated 
from x by any one of the subsets C,, . . . . C,, we have subsequently 

n-1 
P(z,=t+ l)= t 

( > 
(2-/)‘(1-2-/)“-1-’ (O<t<n-l,j>,O). (2.3) 

Furthermore, (r,:j 3 0) is a Markov chain such that 

Wj+ I 
if l<b<a<n, 

if otherwise. (2.4) 

The relations (2.3) and (2.4) imply, in particular, that 

P(h;‘<m)=P(t ,=1)=(1-2-“)“-‘, ma 1, 

which directly leads to Rtnyi’s result, see (1.1). 

(c) We show next that, for every k > 1 and 0 <m, < mz ‘. . < mk, 

k-l 

> 

n-1 
- 1- 1 2-v%+1)L2-mk . 

*=l 
(2.5) 
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Let k = 1 and m, > 0. According to the definition of D,, and (2.3), (2.4) 

W,,) = f’(r,, + I= t,, 2 2) n--1 n-1 =xc > (2-“I)‘(1 -2-ml)n-l-t2-’ r=1 t 
=(1-2- h+l))n-l -(I -2-m,)n-1~ 

Suppose that (2.5) is true for some k > 1 and all n 22, 06 m, < 
m2 < . . . < mk. Let mk < mk+ , Conditioning on z,, again and using the 
Markov property of (ri:jb 0}, by the induction hypothesis we have 

or 

(d) To prove that d/z, is geometric with parameter i, it suffices to 
demonstrate that all its binomial moments are equal to 1. But, by (2.2), 

Further, for fixed 0 <m, < . < mk- 1, according to (2.5), we have 
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Therefore. 

and the proof is finished since E[(“$)] = 1 

3. PROOF OF THEOREM 2 

Recall (see the introduction) that the independent Bernoulli binary 
sequences w, (I< v dn) generate the random binary trees 9:‘) and Y-p’ as 
follows. We get J n r-(1) by tracing out the related paths 9” (1~ v <n) in the 
complete binary tree Y-, and by cutting off each of the paths as its first 
vertex which does not belong to any other path. (Such a vertex for 9” is 
labelled CD,.) To get Sf’, we remove all the arcs of F-jll’ which begin at 
a nonbranching-type vertex, and patch together the remaining pieces 
of P) 

As” an illustration, Fig. 1 shows the trees Y(s1’, Y\*) for o1 = 
(0, 1, 1, 1, 0, . ..). 02 = (0, 0, 1, 1, . ..). 03 = (0, 1, 1, 1, 1, . ..). w‘$ = (0, 0, 1, 0, . ..). 
and o5 = (0, 1, l,O, . ..). 

It was indicated in the Introduction that Hy’ (the total number of 
questions for Model i) has the same distribution as the height XI;’ of the 
tree Yz’ (i = 1, 2). (In the examples above, X’i” = 5 and YE’\*’ = 3.) In view 
of this and the existing results on Py) [2, 4, 61, we only have to prove 
that 

XL*’ = log, n + (1 + 0,(1))(2 log, n)““, n-rcf.2. (3.1) 

582a/55!2-IO 
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FIGURE 1 

To this end, we need some auxiliary random variables { Y,,: k > 0} and 
{Z,,: k > 1 }. Call an end vertex w, of the tree F-I” stable if the path 
leading to it from the root remains intact after compression, that is, if all 
the vertices along the path, except the end vertex, are branching. Y,, is 
defined as the total number of the stable end vertices of ,F) which are k 
arcs away from the root. As for Znk, it is equal to the total number of all 
the end vertices of F-I’) such that the corresponding path from the root has 
exactly k branching vertices. (In the example, Y,, =0 for k 20; Z,, = 0, 
Z,, = 3, Z,, = 2, and Z,, = 0 for k 2 4.) Evidently, Z,, is also the number 
of the endvertices of sa) at distance k from the root. 

The arguments below are organized as follows. In Section 3a, we derive 
the formulas for the exponential generating functions of {E( Ynk):n 2 1 } 
and {E( Y,,( Y,, - 1)):n 2 1> (k20). We prove then (Lemma 3.1) that, for 
k, = log, n + (1 - .s,)(2 log, .)“2 and E, E [a, b] c (0, l), E( Ynk,) + co. This 
makes plausible, but does not really prove, a conjecture that Y,,, + co in 
probability. That the conjecture is true is confirmed when we prove 
(Lemma 3.2) that var( Ynk,) = o(E*( Y,,,)). This implies that w.h.p. the 
height X’, (2) is at least k, when n -+ co. We still have to demonstrate that 
w.h.p. &p’ cannot be much larger. For this, in Section 3b we find a series 
which dominates the exponential generating function of {E(Z,,) :n 2 1 } 
and using it show (Lemma 3.3) that if k, = log, n + (1 + s)(2 log, n)‘j2, 
~2a>O, then Ekak2 E(Z,,) + 0. Consequently, w.h.p. &‘L2’ is at most k, 
when n + CO. 

3a. Behavior of the Moments E( Ynk), E2(Y,,) and a Lower Estimate 
for 3?p) 

Introduce a random variable y, = 1 (v :a,, = 0} 1, i.e., the number of the 
paths 9” (1 < v < n) whose first arc is left oriented. Since w, , . . . . o, are inde- 
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pendent Bernoulli, we have: (a) yn is binomial with parameters n, i, and 
(b) for II > 2, k > 1, the conditional distribution of Ynk, given that yn =j 
( 1 < j < n - 1 ), is the same as the distribution of Yj,+ 1 + Y, _ j,k _ 1, where 
Yj,k- 1 and Y,- j,k- I are independent; also, on (yn = 0 or n}, Y,,, = 0. 
Denoting the generating function E(tYnk) byf,,,(t), we have 

n-1 

f,/J5)=2-“+1+ 1 2-” 
j= 1 

(n L 2, k a 1). (3.2) 

Define 

E”‘=E(Y”,)=f;,(l), nk EC*) = E[ Y,,( Y,, - 1 )] = fik( 1). nk 

Differentiating both sides of (3.2) at 5 = 1, we obtain 

n-l 

EL;‘=2 1 2-” n Ej,lk)-,, 
0 

n>2, k>, 1. 
j= 1 .i 

(3.3) 

Consider an exponential generating function of (EyL :n > 1 }, that is, 
@‘(x)=C,., E $’ x”ln! . Since E ‘,i’ = dOk (k > 0), the recurrence relation 
(3.3) is equivalent to 

or 

n-1 
EL”(x) = 2 c (x”/n!) 1 2-” 7 Ej.!,j)_l 

n,2 j=l 0 

=2,F1 CEj,k--l(-x/2)j/j!l c (X/2)“-‘/(n-j)!, 
tl>j 

EL”(x) = 2g(x/2) EF! 1(x/2), k> 1, (3.4) 

where 

g(x) ==f e” - 1. 

As Et’(x) = x, it follows from (3.4) that 

EL”(x) = xF,(x), Fktx) zf fi g(x/2’). 
j= 1 

(3.5) 

Twice differentiating both sides of (3.2) at 5 = 1, we also get 

n-l 

EL;‘=2 1 2-n ; 
0 

CE:;Zk)-l+E:.,lk)_lE~l~j,k--~, n22, ka 1, (3.6) 
i= 1 
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or, setting EL”(x) =x:, a r E!;‘) x”/n! and using E\Z,) z 0, 

Ei2’(x) = 2g(x/2) -$L ,(x/2) + 2[E:‘1 *(x/2)]*, k> 1. (3.7) 

Since Ef’(x)=O (and E:‘(x) =x), the recurrence relation (3.7) and (3.5) 
imply that 

Ei2’(x) = i 2” sfil g(x,2’)[E:“,(x,2”)]* 
s=1 j=l 

= j, (x2/2”) G,(x), 

where 
*- 1 

G,(x) = n g(xP’) i g*(x/z”). 
j=l J’=S+ 1 

(3.8) 

(3.9) 

With the help of (3.5), we can now prove 

LEMMA 3.1. Suppose that k=log, n + r, r =r(n) -+ co, and r = o(n”‘). 
Then 

E(l)= (1 + o(1)) e-“nF,(n) =n2-(‘+““‘)“/2 
nk n-co. (3.10) 

Consequently, E!,:’ + GO if k = k, = log, n + (1 - a,)(2 log, n)“*, where 
E, E [a, b] c (0, l), and a, b arefixed. 

Proof By (3.5) and the Cauchy integral formula 

E$‘=H! (hi)-’ j)"F,(X) dx 

= n! (27ci)-l il, ewC~k,(x)l(-~-’ dx), (3.11) 

where Y is a circular contour around the origin in the complex plane x, 
and 

Ykn(x) = i log g(x/2’) - (n - 1) log x. (3.12) 
/=I 

(Here and below log stands for the natural logarithm function). Choose 
the radius of the contour A? equal to x, which is the positive root of 
FV;,( x) = 0, or implicitly 

x i 2-j+ i (x/2’)(e”12’-I)-‘=n-1. 
j=I j= 1 
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Since 

u(eU - 1)-‘E(0, l), u>o, (3.13) 

we have 

x, = n + O(k), n+co. (3.14) 

Set x = xnei@, 8~(-X,X], and partition (-rc,n] into [-0,,0,] and 
C-e,, t90]c, where 00=nP5”2. Then 

(2Ce1 ?‘, exp[ !Pkn(x)](x-’ dx) = (2x))’ -$, ~80 exp[ IVkn(xneie)] de 

+ (2n)-’ 1 exp[ ?Pkn(xneiS)] de 
lOI >&I 

= (2x)-‘ s, + (2x)-’ j*. 

(a) To estimate fl, observe that, according to (3.13), (3.14), 

ulp&J=x-yn- l)- i ex”‘(1/2~)* (e”‘*‘- l)-2(X=l, 
j=l 

=(n/x;)(l +O(k/n))=n-‘(1+0(l)), (3.15) 

and, likewise but more tediously, 

YE’(x) = O(n/x;) = O(n -2), -7q4deQ7q4. 

Since nC3: -+ co and rrf9: -+ 0, we have then 

(2nl-‘S, = (2~)~’ evII~dx,fl 

X 
s 101 G&l 

exp[ - Y;,(x,) x:e*/2 + o(ne;)] de 

= (1 + 0( 1))(2~1-“~ exp[ Ykn(x,)]. (3.16) 

(b) To estimate 12, we need the following inequaly [S, Appendix]: if 
U=uei4, 1120, ~E(-x,~L], then 

/e”- 11 <(e’-- l)exp[(v/2)(cosd,- l)]. (3.17) 



304 PITTEL AND RUBIN 

In view of this, for all 8 E ( -n, z] and some absolute constant c > 0, 

lexpC~knbneie)lI = n I ex P( x,eie/2j) - 11 exp[ - (n - 1) log xn] 
j=l 

<expCYkn(Xn)] exp[(cos O- 1) x,/4] 

< exp[ Y&x,)] exp( -cr.@). 

Since nt12 > n”‘j for (81 > 8,, we conclude that 

~2=O(expCy~~(x~)lexp(--n1’6))=o(~~). 

By (3.16) and (3.18), 

(3.18) 

(271i)-l S, = (1 + o(l))(2rtn)-1’2 exp[ Ykn(x,)]. (3.19) 

Furthermore, we know that Yk,(n) = F,(n) - (n - 1) log n, Yb,,(x,) = 0, 
and Y:,(x) = O(n-‘) uniformly for x between x, and n. Also, x, -n = O(k) 
and k = o(n”2). As a result, in (3.19), for some x,* lying between n and x,, 

ykfi(xJ = ydn) - %Ax,*)(n - xnJ2/2 

= Y,Jn) + O(k2/n) 

= F,(n) - (n - 1) log n + o( 1) (3.20) 

Combining (3.1 l), (3.19), (3.20) and the Stirling formula for n!, we arrive 
at 

EJllk)=(l +o(l))e-“nF,(n). (3.21) 

It remains to derive an approximate formula for F,(n) or, equivalently, 
for L,, = log F,Jn) defined by 

L,, = i log(en/” - 1). (3.22) 
j=l 

To this end, set j,, = Llog, n _I. Denote the partial sums for 1 <j< j, and 
j,, < j < k, respectively, by L,*k and Ln**. In the first sum n/2’ < 1, so 

ill 1” 
L,*k =n 1 2-j+ C log(1 -ePn12’) (j=in-O 

j=l j=l 

=n(l-2-jn-l)+0 
(I 

1 log( 1 - exp( - 2’- I)) 
120 I> 

=n+O(l)+O C 2-’ =n+O(l). 
( > I20 
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In the second sum n/2’ = 0( 1 ), so 

log( en12’ - 1) = log[(n/2-i)(e”12’- l)/(n/2’)] 

= log n -j log 2 + O(n/2’). 

Thus, because k = log, n + r, r 4 00, j, = log, n + O( I), 

L~~*=(k-j,)logrz-2-‘(k-j,)(k+j,+1)log2+O(n/2”) 

=(k-j,)[logn-2-110g2(210g2n+r+0(1))]+0(1) 

= - (log 2)(r2/2)( 1 + o( 1)). 

Therefore, 

The relations (3.21) and (3.23) prove the lemma completely. 

(3.23) 

Next we prove 

LEMMA 3.2. If k = k, , as defined in Lemma 3.1, then 

EC2’ = (I + o( l))[E”‘]2 nk nk 3 n-+m. (3.24) 

Before proving (3.24), let us show how it implies-in conjunction with 
(3.10)-that for k=k, 

lim P(ZL*’ > k) = 1. (3.25) 

Really, E( Y,k) = E I:’ + a3 and 

var(y,k)=E(Y,k(Y,k-l))+E(Y,k)-E’(y~k) 

= EL;‘+ E;:‘- [E;:‘]*=o([E;:‘]‘) 

= W2( Y,,)). 

Hence, by Chebyshev’s inequality, 

p( y,, > E( y,,,)/2) >, 1 - 4 Var( Ynk)/E*( y,,) + 1, n-+oo, 

and (3.25) follows. 

Proof of Lemma 3.2. According to (3.8) and (3.9), (cf. (3.5) and (3.11), 

E;;‘= i n! (2~i)-’ 2-‘! evC4Ax)l(x- dx), (3.26) 
s= 1 Z? 
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where 

s- 1 
#Jx)= c logg(x/2’)+2 i logg(x/2”)-(n-2)logx (3.27) 

j=l j'=s+ 1 

and Ys (1 <s d n) are circular contours around the origin. For each s, let 
the radius of Ts be equal to x,,, the positive root of &(x) = 0, i.e., 

s- 1 

2-j’ 
j'=s+ I > 

+ 1 (x/2’)(@- 1))’ 
j= I 

+2 i (x/2j’)(e”“‘‘-l))‘=n-2. 
j'=s+ I 

Since 

s-1 

c 2-~+2 i 2-“=1-2-k+l, l<s<k, 
j=l j’=s+ 1 

we have then, see (3.13) 

X ,,=n+O(k) (3.28) 

uniformly for 1 < s Q k. Consequently, 

KnkJ=n-‘U +41)), 4&n) = 4s,(n) + 41). (3.29) 

Using (3.28) (3.29) and arguing as in the proof of Lemma 3.1, we obtain 
(cf. (3.19)) 

(2xi))1/PX=(1 +0(1))(27m))“2exp[4,,(n)], l<s<k. 

So, see (3.26), (3.27), 

EI;zk’=(l+o(l)) $ b(s,n), 
s=l 

where 

b(s, n) = ep”(n*/2”) G,(n), (3.30) 

and, see (3.9), 

s- 1 

G,(n)= n g(42’) ii s2W2”) (g(u)=e”- 1). (3.31) 
j= 1 j’=s+ 1 
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We need to show that 

lim[E$‘]-2 (,j, b(s, rz)) = 1. (3.32) 

For this, note first that by the definition of Fk( .), Lemma 3.1, (3.30), and 
(3.31 h 

b( 1, n) = e-“(n2/2) F,YJn)(e”” - 1 )-’ 

= (1 +o(l))[e-“nF,(n)]*/2= (1 +o(l))[E$‘]*/2. 

Furthermore, 

p(s, n) 3 b(s, n)/b(s- 1, n)=2p1(e”‘2’+ l)(e”“‘- 1)-l, 

so that 
lim p(s, n) = 2-l, s> 1. 

We also obtain from (3.34) that, for S, = Llogz(n/log 4) _I, 

{ 

5 
d 5, if 2<s<s,, 

PCS, a) = O(l), if s=s,+l, 
B 1.5, if sbs,+ 2. 

Then, (see (3.33), (3.35)), by the dominated convergence theorem, 

S” S” 

(3.33) 

(3.34) 

(3.35) 

lim[ELi)]-’ C b(s, n)=lim{b(l, n)/[E$)12} b-‘(1, n) 1 b(s, n) 
3=1 s=l 

=2-l 1 2-‘=I. (3.36) 
I30 

On the other hand, 

i b(s,n)=OCb(s,,n)+b(k,n)l 
s=s,+l 

= 0[($“6(1, n) + b(k, n)], (3.37) 

where, according to (3.30), (3.3 1 ), Lemma 3.1, and the fact that 
n/2k = o( 1 ), 

k-l 

b(k, n) = e-“(n2/2k) n (en’*‘- 1) 
j=l 

=(l+o(l))e-“n h (e”‘*‘-l)=(l+o(l))E~~. 
i=l 
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It follows from (3.36), (3.37), and the last estimate that 

lim [E$‘] -* i b(s, n) = 0, 
s=s,+l 

which together with (3.36) leads to (3.32). 
The lemma is proven. 

Finally, 

3b. Behavior of the Moments E(Z,,) and an Upper Estimate for X!,” 

Unlike Y,,, , there does not seem to exist a tractable formula for the 
exponential generating function of { E(Z,,) :n 3 1). Fortunately, we only 
have to establish that E(Z,,) -+ 0 fast enough if k alog, n + (1 + E) 
(2h3,n) . ‘I2 For this it suffices to find a reasonable analytic function 
whose Taylor coefficients are the upper estimates of E(Z,,)/n!. 

Consider the set of all pairs (p, v), where /* = (pl, . . . . ,uk) and 
v = (v,, . ..) vk) are k-tuples of integers such that 

p1 2 0, p* 2 1, . . . . pk 2 1, 
(3.38) 

v, 2 1, . ..) Vk B 1 and v, + ... +v,=n- 1. 

For a given (p, v), introduce P,(p, v), the probability that the path in the 
random tree yy’, which leads to the endvertex oi, satisfies the following 
conditions. (i) It has exactly k branching vertices. (ii) The first of them is 
p1 arcs apart from the root, and the path segment between the (S - 1) th 
and the sth branching vertices consists of pS arcs, 2 <S < k. (iii) The 
number of the other paths which disengage from our path at the sth 
branching vertex equals v,, 1 < s d k. (Th e w,-path in the figure is such that 
k = 3, pL1 = 1, pL2 = 2, CL) = 1 and v1 = 2, v2 = 1, v3 = 1.) Once we evaluate 
this probability for all (p, v), the expected value E(Z,,) can be determined 
via an obvious relation: 

E(Z,,) =n c PAP, ~1. (3.39) 
(II, v) 

As for P&, v), it is given by 

&,(I+“,+ ... +v,+~“,-, 1 (3.40) 

(v, = 0). Indeed, the multinomial coefficient is the number of ways to divide 
the group {02, . . . . o,, } into k distinct groups of respective sizes v, , . . . . vk. 
Further, the first factor in the product is the probability that w,, . . . . o, all 
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have a common initial segment of length at least pi; the second factor is 
the probability that the next pz digits of oi will be common for ws from 
all the groups, except the first group, whose ws disagree with o1 on the 
value of the (pl + 1 )th digit. The subsequent factors are interpreted 
similarly. Rearranging factors in (3.40), we simplify it to 

where 

P,(p, v) = (n - I)! f-j (2-“))“+,!, (3.41) 
,=l 

Wlj= 1 +/L, + ... +/JjLi’ 1 <j<k. 

In view of (3.38), 0 <m, -C . . < m k ; in particular, mj >, j for 1 d j 6 k. 
A combination of (3.39) and (3.41) yields 

=xX fi 1 (x/2”q”qvj! 
mj=l L v,z I I 

=x c fi g(x/2”1) (g(u)=e”- 1). (3.42) 
I?7 /=l 

We cannot simplify the last expression any further since the condition 
0 < m, < . . . < mk ties mi together. To get around this obstacle, let us intro- 
duce a weaker condition mj 2 j, 1 <j< k. Since the Taylor coeflicients of 
g(u) are all nonnegative, the identity (3.42) leads to an inequality 

x ,,,>,c, >k / I , Ir, J 

= coeff ,[xUk(x)], 

where 

U,(x) = ii U,(X)> u,(x)= 1 g(xP”) 
j=l m> j  

(compare with (3.5)). 
Now we are ready to prove the last lemma. 

LEMMA 3.3. Let k = log, n + r, log log n = o(r). Z&W 

E(Z,,) = qe-“nF,(n)) = O(n2-1’ +0(I))+), n-,oo. 

(3.43) 

(3.44) 
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Therefore 

if kz = log, n + (1 + s,)(2 log, n)“*, E,~ 2 a > 0, and a is fixed. 

Proof Not too surprisingly, we are going to use contour integration 
again. Significantly-in view of a more complicated function U,(x)-now 
we can afford some short cuts since we do not need an estimate as sharp 
as those in Lemmas 3.1 and 3.2. 

To begin with, let us choose the circular contour 9 of radius equal to 
n (cf. (3.14) (3.28)), and write (see (3.43)), 

A,, = (27ci)-’ j” xpnUk(x) dx 
2 

6 (2nn ‘--l)-l sIn IUk(nesB)I de. 

Further, using (3.44) and the inequality (3.17), we have 

(3.45) 

(3.46) 
j= 1 

where 

4&v= c %rn(~)~ u,,(B) = g(n/2”) exp( -ce2n/2”) (3.47) 
tX>J 

and c is a positive constant. A closer study demonstrates that, for each 
series u,(0), the first term v,(e) is dominant; more precisely, for some 
constant j > 0, 

j3, u,(e) G eDrjfil &j(e) (3.48) 

(r = k -log, n). Consequently, by the definition of v,(e), F,(n), and (3.46), 

Iuk(neis)l <eSrFk(n) exp[-ce*n(l -2-k-‘)]. 

So, using (3.45), 

A,, = O(e”‘n -“+ “*Fk(n)), n-co, 

and, (see (3.23), (3.43)), 

E(Z,,) = O(eB’n! n-“+‘12Fk(n)) = O(eB’e-“nF,(n)) 

= O(n2- (1+0(l))&* 
h n+oo. 
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Thus, it remains only to prove (3.48). 
By (3.47) and the definition of g( ), the ratio of two consecutive terms 

in a series uni( 0) is given by 

rlnm = en’2m. 

Simple calculus shows that q”(u] + 1))’ is a decreasing function of 
9 E [0, l), provided that tl< 5. Since we may and do assume that crc2 < 4, 
w,,(O) increases with m, whence 

w,,(0) f lim w,,,,(0) = 4, Vn, m, 8. (3.49) 
,c + m 

To estimate u,,(0), consider separately 1 <j f m, and m, < j 6 k, where 
m, = Llog, n -log, log nJ 

(i) 1 < j<m,. 

Since n/2”n > log n, we have 

w,,(B)dw,,,(8)~n~(‘--~“)~n-““, if mdm,, 

w n,m,+ I(@ fn- 
(1 ~ c@J/* d n ~ l/4. 

It follows that, see also (3.49), 

unj(S)= 2 u,,(@+ c &I,(~) 
m=j  lF7>WI” 

= (1 + U(n-1”)) u,(e)+ O(n-l’%,(0)) 

= (1 + O(n-“4)) u,(0). 

(ii) m, < j< k. 

Invoking again (3.49), we have trivially 

(3.50) 

unj(e)= o(Onj(s)). (3.51) 

Putting together (3.50) and (3.51) and remembering that k-m, = 
O(log log n + Y) = O(r), we arrive at 

< e”‘( 1 + O(m,n-1/4)) fi u*,(e) 
/=l 

d eBr ,!, unite), 

where fi > c1 are constants. 
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The lemma is completely proven. 

Since ZC2) 2 k iff C,, k Z,, > 0, it immediately follows from this lemma 
that, for evky E > 0, 

lim P(XL*)> log, n + (1 + &)(2 log, n)‘!‘) = 0. 

Together with (3.25), the last relation completes the proof of the theorem. 

Final Remark. The proof of a more general relation 

S$)= log, n + (1 + 0,(1))(2C’ log, n)‘12, n-+03, 

goes along the same lines, with g(u) = e”- 1 replaced by gd(u) = 
eU-Coaicd-I uj/j!. 
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