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1. INTRODUCTION 

Let A be a ring, and consider the category of all finitely generated left 
A-modules. Recall that the Grothendieck group P(A) of this category is 
the abelian additive group generated by all symbols [M’j, where M ranges 
over all finitely generated left A-modules, with relations 

[W = [M’] + [-v”] 

whenever there exists a short exact sequence of A-modules 

O+M’+M-+M”+O. 

In particular, let G be a finite group, and let R = alg. int. {F}, the ring of 
all algebraic integers of the algebraic number field F. Denote by FG the group 
algebra of G over F, and by RG the integral group ring of G over R. The 
Grothendieck group KO(RG) may be given a ring structure as follows: for 
all [MJ, [N~EKO(RG), set [Mj[N] = [M $&N], where M&N is an 
RG-module with action of G given by g(m @ n) = gm @ gn, for all g E G. 
Similarly define multiplication in KO(FG) by [M*][N*] = [M* @IV*]. 
Swan [5j has shown that this makes KO(RG) and KO(FG) into commutative 
rings with identities [R] and [Fj, respectively. 

The Grothendieck ring KO(RG) has been studied by Heller and Reiner [2,3] 
and Swan [5,6]. In [3], Heller and Reiner have given an explicit formula 
for the additive structure of KO(RG), and in [6], Swan has given a formula 
for multiplication in P(ZG) when G is cyclic of prime power order. In 
this paper we shall generalize Swan’s results to the case where G is an 
arbitrary cyclic group, and in addition shall show how multiplication in 
KO(ZG) may be determined when G is an elementary abelian group. 
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2. STATEMENT OF THE PROBLEM 

Keeping the notation of Section 1, we define a mapping 

0 : KO(RG) + KO(FG) 

by B[M] = [F OR M]. HereF OR M is an FG-module with action of F given 
by &LX @ m) = /~CX @ m, for all fi E F, and action of G given by g(a @ m) = 
OL @ gm, for all g E G. It is easily verified that 0 is a ring epimorphism, and 
we thus obtain an exact sequence 

0 -+ ker 0 -+ KO(RG) 5 KO(FG) -+ 0. 

DEFINITION 2.1. A linear mapping f : KO(FG) + Ka(RG) such that 
0f = 1 is called a lifting map for KO(RG). 

We summarize some results of Swan as 

PROPOSITION 2.2. (Swan [6]) Let f be a lifting map for KO(RG). Then, as 
Abelian groups, KO(FG) + ker 8 g KO(RG), the isomorphism being giwn by 
(x, y)+f(x) + y. Furthermore, ker 0 is a square-nilpotent ideal in KO(RG). 

Proposition 2.2 shows that in order to determine multiplication in KO(RG) 
we must calculate all products of the form 

(f(x1) +Yd(f(xz) +Yz) =fWfkJ +fwYz +fwYl- 

For each FG-module M*, denote by x(M*) the F-character of M*. One 
verifies without difficulty that the mapping [M*] -+ x(&Z*) is a ring iso- 
morphism between KO(FG) and the character ring of G, and thus KO(FG) 
may be regarded as a known ring. Also, if {M,* : 1 < i < m> is a full set of 
non-isomorphic irreducible FG-modules, then the Jordan-HBlder theorem 
for FG-modules implies that KO(FG) is the free abelian group with basis 
{[M$] : 1 Q i < m}. Thus, in order to determine multiplication in KO(RG) 
it will suffice to find the following products: 

f [Mt] . f [MT], for 1 < i,j < m (1) 

and 

f[Mf] - y, for 1 < i < m, y E ker 0. (2) 

The remainder of this paper will be devoted to determining the products (1) 
and (2) for various choices of G and R. 
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3. THE CYCLIC CASE 

Throughout this section, G will denote a cyclic group of order n with 
generator g. Let Q be the rational field and 2 the ring of rational integers. 
We shall determine multiplication in KO(ZG). 

Let pn be a fixed primitive nth root of unity, and for each s dividing n, 
set ps = pi/“. Then ps is a primitive sth root of unity. Denote by Qs the 
QG-module Q!(pJ on which g acts as ps . If g’ is a generator of G such that 
g’ # g, let Qi denote the QG-module Q(pJ on which g’ acts as ps . 

LEMMA 3.1. Q: E Qd as QG-modules. 

Proof. Since g’ and g both generate G, g’ = g”, for some K, (k, n) = 1. 
Let u denote the Q-automorphism of Q(p,) induced by the mapping ps + psk. 
The mapping of Q: onto Q8 defined by 01--t 010, for all OL E Q: , is the desired 
QG-isomorphism. 

The above Lemma shows that we may refer unambiguously to the 
QG-module Qs . Similarly, we may refer to the ZG-module 2, , where 2, 
denotes the ZG-module Z[p,] on which g acts as ps . 

It is well-known that {Qs : s 1 n> is a full set of non-isomorphic irreducible 
QG-modules, and hence P(QG) is the free abelian group with basis 
{[QJ : s 1 n}. Definef : Ks(QG) + KO(ZG) by f [QJ = [Z,], for all s dividing 
12, f extended linearly to all of KO(QG). It is clear that f is a lifting map for 
KO(ZG), and Swan [6] has shown that f is in fact a ring homomorphism. 
Since KO(QG) is a known ring, this allows us to compute all products of the 
form given in (1). 

It remains to determine all products of the form [Zr] y, for all I 
dividing n and y E ker 8. The results of Heller and Reiner [3] show that 
ker 0 = {&, ([As] - [Z,]) : A, = Z,-ideal in Q8}. Thus it will suffice to 

find L%lW81 - Kl), f or a 11 Y, s dividing 11 and all choices of A, . For each I, 
let G, be the quotient group of G of order Y, and form the ZG-module ZG, . 
The following Lemma shows that it suffices to determine all products of the 
form [Z~r1([4 - [Z,l>: 

LEMMA 3.2. In KO(ZG), [Z,l = zdlr p(r/d)[ZG,], where p is the Mijbius 
function. 

Proof. Let @r(x) be the cyclotomic polynomial of order Y. It is well- 
known that @r(x) = l’&, (x4 - l)~(~/@. Now, Z, g Z[X]/(@,.(X)), where g 
acts on the right-hand side as X, whence Z, g Z[X]/(J&~ (x” - l)~(~l~)). It is 
clear that Z[x]/(l&, (x” - l)~(~l~)) E &,r p(r/d)(Z[x]/(xd - l)), and since 
Z[x]/(xd - 1) E ZG, , the Lemma is proved. 

Let s 1 n, and let A, be any Z,-ideal in Qs . Then Z,/A, is a ZG-module on 
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which g acts as js , where ps is ps reduced modulo A, . I f  w is any sth root of 
unity, we denote by (2,/A,)(~) the ZG-module Z,/A, on which g acts as W. 

We also introduce the following notation: if s 1 n, t j s, then Q(QJQJ will 
denote the Galois group of Qs over Qt and N,,, the norm from Qs to Q1 . 

LEMMA 3.3. Let 0 E @(QJQ). Then (Z,/A,)(~,“) G Z,/A:-’ as ZG-modules. 

Proof. Map (Z,/A,)(pSU) onto Z,/A:-’ by a + Ei” -I. This the desired 

ZG-isomorphism. 
We now state the main result of this section. 

THEOREM 3.4. Let G be a cyclic group of order n. Then multiplication in 
KO(ZG) is given by the following formula: 

WX41 - L&l) = C (Ws/&Wd - Ed, 
a 

for all r, s dividing n, where t = s/(Y, s) and d ranges over all divisors of [r, s] 
such that ([r, s]/d, t) = 1. 

Proof. The proof is by induction on m, the number of distinct prime 
divisors of r. 

Let m = 1. Then Y = pa, for some prime p, with a > 0. If  a = 0, then 
ZG, = Z and the theorem is trivial. Hence we may suppose a > 0. Let 
2 = Z,/AS . Since 0 -+ A, -+ Z, -+ J?-+ 0 is an exact sequence of 
ZG-modules, [ZG,]([A,] - [Z,]) = -[ZG,. &a, and it will suffice to 
find the ZG-module M = ZG, oz 2. Since Y = pa, ZG, g Z[x]/(xP” - I), 
and we obtain M s Z[X]/( 9” - l), where g acts as &V on the right-hand 
side. We now write s = pas’, where b 2 0 and ( p, s’) = 1, and proceed by 
cases: 

Case 1. Suppose a < b. Then ps = pw, where p is some primitive s’th 
root of unity and w is some primitive pbth root of unity. Set wr = ~9~~. 
Then wr is a primitive path root of unity. Since Z, contains all p”th roots 
of unity, 

xP’ - 1 = fir (X - 6,“) in Z[X], 

whence 

M gg 5 &l/(x - ciilk) s 5 g(pswl”). 
k=l k=l 
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Now if a < b, ,J g~lk is a primitive sth root of unity for each k, 1 < k < pa, 
and we denote by ck the Q-automorphism of Qs induced by the mapping 
ps. + pswrk. Then 

k-l 

and thus, by Lemma 3.3, 

But it is clear that as k ranges from 1 to pa, ok ranges over all elements of 

0(QdQ,w)> and hence M G x, Z,/A: , u E S(QJQ,++). Therefore 
M s Z,/N,,+-+(A,)Z, . This yields the desired result when u < b. 

If  a - b, then wt = W, and 

k=l k=l k=l 

Thus M E xj Z(&) + zi Z+yi), where 1 < j < p”, (j, p) = 1, and 
l<i<p”,(i,p)# l.Sincc(j,p)-1, each ,& is a primitive sth root of 
unity, and an analysis similar to that carried out for the case a < b shows 
that Cj .&ii) g Z,/N,,,,(A,)Z, . 

Now consider 

where 1 < h < pa-c, (h, p) - 1. Set Y : Z(@9. It is clear that Y is 
a Z[p&]-module, and as such,Y E zlpw~“]/N,,,+4A,) (see [q, pp. 27-28). 
Consequently, as a ZG-module, 

Y g (Z,.-.,,/N,,,~-,,,(A,))<pw”p’). 

For each h, 1 < h -( PO-O, (h, p) = 1, let a, be the element of O(Q,,(Hs,/Qs,) 
induced by the mapping pg.,-+ - p&p’. By I,emma 3.3, 

y  s z,~,,/(N8,D~e8,(f1(1))0~1, 

and hence we find that 

1 i?(pWhpC) s Z~H~~/N~,~,(A~)Z~O~,~, , for each e, eq 1 < e < a. 
h 
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Therefore 

This gives the desired result when a = b. 

Case 2. Suppose a > b. Then 

x9O - 1 = (x”” - 1) fi @gW 
k-b+1 

whence M s a~]/(@ - 1) + ~&XI/(@+(X)). By Case 1, 

z[x]/(x”*-‘) s i Z~.,~IN,,,~(A,)Z,.,~ . 
s-o 

Therefore it will suffice to find z[x]/(@,h(x)) for b + 1 < k < a. 
Fix k, and set w = (P+)‘~~. Then w is a primitive pbth root of unity, and 

in Z[x], a@(x) = I$ (x”” -W’), where 1 <j<pb, (j,p) = 1. Thus 

Z[x]/(@‘,*(x)) gg F Z[x]/(x@-” - 2). 

Now, for each j, ~[x]/(x@” - G?) is isomorphic to (z,~,~/~~,~,,)(p~~~k): 
the isomorphism is given by mapping an element Cp &x+ of ax]/(x”” - G) 
onto the element xi z$k of ZPk,~/A~Pk8~ . Therefore 

where 1 <j <p*, (j,p) = 1. 
For each j, let a, be the element of 6(QgkS,/QS*) induced by the mapping 

PA + ,‘%I’$ , and 7j be aj restricted to QS . Then by Lemma 3.3, 

and since 

it easily follows that 
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Thus 

&1/P&)) r .Gb~I~*/d(-wl+,~ 9 
and this, together with the formula for Z[x]/(xd - l), gives the desired 
result for M. This completes the proof of Case 2. 

We have now established the theorem for the case m = 1. Now let m be 
greater than 1, and assume the theorem true for all [ZG,,]([A,] - [Z,]), 
where Y’ has fewer than m distinct prime divisors. Write Y = p”r’, where p 
is a prime, a > 0, and ( p, r’) = 1. We have G, s GPo x G,, , and it is 
well-known that this implies ZG, s ZG,, @r .ZG,s . Thus [ZGr] = 
[ZG,.][ZG,,] in P(ZG). S ince the theorem is true for ZG,* and ZGDo, we 
obtain 

i?WL%l - LGI) = W%PI c ([~dW~~l - L&*1) d 

where t’ = s/o’, s), d’ ranges over all divisors of [Y’, s] such that 
([Y’, syd’, t’) = 1, and for each d’, d” = d’/( pa, d’) and e ranges over all 
divisors of [pa, d’] such that ([pa, &l/e, d”) = 1. 

Now, since ([I’, s]/d’, t’) = 1, t’ 1 d’ and hence Q1* is contained in Qd, . 
Similarly, Qd” is contained in Qs . Furthermore, d’ 1 [I’, s], (p, r’) = 1, and 
([Y’, s]/d’, t’) = 1 t oge th er imply that (pa, d’) = (pa, s). Then t’ 1 d’ implies 
that s/(Y, s) = t divides d”. Hence Qt is contained in Qdn . We now have the 
following inclusion diagram: 

“\ /pl\QIQe 
Qt- ,, 

\/ Qt 
FIG. 1 

It is easy to verify that Q(Qt,/Qt) = 6(Qa,/Qd-), and thus that 

We therefore obt.ah W,l([41 - [.%I) = Cd* CL ([~8~d4)Z,I - [&I), 
where d’ ranges over all divisors of [I’, s] such that ([Y’, s]/d’, t’) = 1, and for 
each d’, e ranges over all divisors of [ pa, d’] such that ([ pa, d’]/e, d’/( pa, d’)) = 1. 
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Now write s = pbs’, ( p, s’) = 1. Then d’ / [Y’, s] = pb[r’, s’], and 
( pb[~‘, s’]/d’, pbs’/(y’, pbs’)) = 1 implies that d’ = pbk, where s’/(Y’, s’) 1 K, 
K j [Y’, s’], and ([Y’, s’]/K, s’/(Y’, s’)) = 1. Then e 1 [pa, d’] = [p”,pbk], and 
([pa, pblz]/e, pbk/( pa, pbk)) = 1. Thus, if a < 6, then e = d’, while if u > b, 
we have e = p%, for 0 < i < a. Therefore we obtain the following formulas 
for PG-IPLI - [Zsl): 
(i) if a < b, 

LWN.~sl - [Zsl) = C ([~&Wcrl - E&,1), d’ 

where d’ 1 [Y’, s] and ([Y’, s]/d’, t’) = 1; 

(ii) if a > b, 

where s’/(Y’, s’) I K I [T’, s’] and ([r’, s’]/K, s’/(r’, s’)) = 1. Now consider 

where d I [I, s] and ([Y, s]/d, t) = 1. Let Y = p?‘, s = pbs’ as above. Then if 
a < b, [I, s] = [I’, s], and ([Y, s]/d, t) = 1 if and only if ([Y’, s]/d, t’) = 1. 
Thus we may take d dividing [Y’, s] with ([I’, s]/d, t’) = 1, so that if u < 6, 

Cd ws/t(4m i [Zdl) a rees g with formula (i) for [ZG,.]([/lJ - [Z,]). 
Similarly, if a 3 b, we find that d = fk, 0 < i < a, where s’/(Y’, s’) / K / [Y’, s’] 
and ([Y’, s’]/K, s’/(Y’, s’)) ‘= 1, whence & ([N,,,(A,)Z,I - [Z,]) agrees with 
formula (ii) for [ZG,]([/lJ - [Z,]) w h en a > b. This concludes the proof of 
the theorem. 

4. THE ELEMENTARY ABELIAN CASE 

Let G be an Abelian group, F an algebraic number field which is a splitting 
field for G, and R = alg. int. {F>. We shall determine multiplication in 
KO(RG). 

Write G = Gr x .a* x G, , where Gi is cyclic of order n, with generator gi , 
and let pi be a fixed primitive n,th root of unity, for 1 Q i < K. Denote by 
F{u, ,...; uk) the FG-module F on which gi acts as pq’, 1 < i < k. Similarly, 
if A is an R-ideal in F, A(u, ,..., ak) will denote the RG-module A on which gi 
acts as pqi. It is easily seen that {F{a, ,..., a,&: 1 < a, < q, 1 < i < k} is 
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a full set of non-isomorphic irreducible FG-modules, whence {[F(a, ,..., a,)]: 
1 < ai ,< n, , 1 < i < K} is a basis for KO(FG). 

Define f : KO(FG) --f KO(RG) by f [F(a, ,..., a&] = [R(a, ,..., a,)], f 
extended linearly to all of KO(FG). Clearly, f is a lifting map for KO(RG). 

LEMMA 4.1. f is a rink homomorphzlvm. 

Proof. Consider 

iMap 

W 1 ,*a., ad @ W, ,a.., b,) onto F(a, + b, ,..., ak f brc) by (I @/I + UP. 
F 

It is easily verified that this mapping is an FG-isomorphism, and hence 

[IQ, ,..., ad][F(b, ,..., bk)] = [F<Q, i- b, ,...I uk + b&l. 

Similarly, 

[WQ, ,..., a,)][R@, ,..., blr)] = [W, + b1 ,..., ak + &)I, 
and therefore f is a ring homomorphism. 

Heller and Reiner [2] have shown that every element of ker 8 may be 
written as a sum of elements of the form [A(a, ,..., ak)] - [R(a, ,..,, a,)], 
for various choices of the idea1 A and the positive integers a, ,..., a,. The 
following Lemma therefore completes the description of multiplication in 
KO(RG). 

LEMMA 4.2. In KO(RG), 

[WI ,..., hJl([W, ,..., a31 - [R(a, ,... , +>I) 
= [A(a, + b, ,..., aR -t b,)] - [Ka, + b, ,..., a, + 01. 

Proof. The argument of the proof of Lemma 4.1 shows that 

[WI ,..., bk)l[4a, ,..., +>I = [A+, + b, ,..., ak + ML 
and this clearly implies the Lemma. 

Now let G = G, x .a. x GI, be an elementary Abelian group, with Gi cyclic 
of order p, 1 < i < k. Let p be a fixed primitive pth root of unity, F = Q(p), 
R = .@I. Then F is a splitting field for G, and hence multiplication in 
K’J(RG) is known. 

As above, F(a, ,..., at) will denote the FG-module F on which gi acts as 
pai, for i < i < k, and similarly for A(a, ,..., a&. Note that, by restriction of 
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operators, F(a, ,..., a& and A(a, ,..., aa) are QG- and PIG-modules, respec- 
tively. Let S be the collection of QG-modules listed below: 

Q,F< P,..., P, lhF< P,..., P, 1, ak> where 1 < ak < p,-, 

F< P, 1, a, ,..., ak> where l<ai<P for 3<i<k, 

FO, a2 ,---, ak> where 1 < at < p for 2<i<k. 

For ease of notation, we shall denote an element of S of the form 

F( P,..., P, 1, a5+, ,..., akh 1 < j  < k, by J’<aj+l , . . . . ak>- 

LEMMA 4.3. S is a full set of nonisomorphic irreducible &G-modules. 

Proof. The elements of S are clearly irreducible QG-modules, and the 
sum of their Q-ranks is pk = (G : l), so there are the correct number of them. 
Thus it suffices to show that no two of them are isomorphic as &G-modules. 

Let 1 < j < k, and suppose that F(aj+l ,..., am) g F(b,+, ,..., bk> as 
QG-modules, where a, # b, for some t. Then under the isomorphism, 
1 + /? for some p # 0, whence @‘t = g;” * 1 -+ g,“$ = pa+?. But also, 

P at = g, . 1 -+ g$ = pb$?, and therefore we have a contradiction. Now 
suppose that F(aj+l ,..., ak) g F(b,+l ,..., bk), for some i, 1 < i < k, where 
i # j. Without loss of generality, we may assume j < i. Then under the 
isomorphism, 1 + /?, for some /I # 0, and hence p = gi * 1 + gj/3 = pp/3 = /3. 
Therefore 1 -+ /I and also p + 8, a contradiction. Since it is clear that Q is 
not isomorphic to any of the other elements of S, we have thus shown that 
no two of the elements of S are isomorphic, and the Lemma is proved. 

DEFINITION 4.4. Define # : IP(ZG) -+ KO(RG) by #[Ml = [R & MJ, 
for all [M] E Ks(ZG), where R &M is an RG-module with action of R 
given by Y’(Y @ m) = Y’Y @ m and action of G given by g(r @ m) = I @gm, 
for all r’ E R, g E G. Similarly, define 

77 : P(QG) -+ P(FG) by r][M*] = [F @ M*], 
Q 

for all [M*] E P(QG). 

LEMMA 4.5. I/ and 7 are ring homomorphisms and the following diagram 
commutes and is exact: 

0 + ker 0, + Ko(RG) a KO(FG) + 0 

t 
* 

t 
* 

t 
? 

0 + ker ~9~ + P(ZG) 2 KO(QG) + 0 

t 
0 
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Proof. The proof that # and 71 are ring homomorphisms is straightforward. 
The rows of the diagram are exact by the remarks at the beginning of 
Section 2, and the Noether-Deuring Theorem ([I], p. 2001) implies that r] 
is manic. One easily checks that # maps ker 8, into ker BR and that 0,# = 70,. 

Let A be an R-ideal in F. We shall denote by Aft) the image of A under 
the Q-automorphism of F induced by the mapping p -+ pt, 1 < t < p - 1. 
Also, A(u~+~ ,..., aa) will denote the ZG-module A( p ,..., p, 1, u~+~ ,..., uk), 
1 < j < k. By Lemma 4.3, KO(QG) is the free Abelian group with basis 
{[M*] : M* E S}, and hence we may define a lifting map fi : KO(QG) + KO(ZG) 
as follows: 

MQI = Fl,f~[F<~~+l ,..., @I = [RGQ+~ ,..., &I for 1 <j < k 

with fi extended linearly to all of KO(QG). The results of Heller and Reiner [A 
now show that every element of ker 0, is a sum of elements of the form 
PW,, ,..., +c>l - [Rh+l ,..., ah)]. Thus the following Lemma determines 
#(ker 0,): 

LEMMA 4.6. 

9-l 

4~[4~,+1 ,---s ad] = C [A(‘)( P ,..., P, 4 %+l ,..., WI. 
t-1 

Proof. Let M = R C& A(u,+~ ,..., uk), so that ~[A(u~, ,..., ax)] = [Ml, 
and let Q,(X) be the cyclotomic polynomial of order p. For all r @ a E M, 

@&)(r @ a) = I @ qg,)u = r @ @,(p)u = 0; 

so @,(g,)M = 0. Let b, = 1, 

bt = fj (& - P’), for l<t<p-1. 
i-l 

Then M=b,,M3b,M3**~3b,lM=0. 
Foreacht,l<t<p-1,define 

yt : M + A(t)( p ,..., 9, t, tuf+l ,..., tuk) by Y(Y @ u) = I@). 

It is easily seen that yt is a well-defined RG-epimorphism for each t. Con- 
sequently, yt : b,-,M -+ b,-,A(t)( p ,..., p, t, tu,+l ,..., tu,) is an epimorphism. 
However, Att)( p ,..., p, t, tuf+, ,..., tuk) is isomorphic to 

b,,A’t’( p ,..., p; t, taj+, ,..., ta,) 

by the mapping y + bt-o; hence we may assume that Yt maps b,M onto 
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A”‘( p )..., p, t, ia,+l ,..., ta,), for 1 < t < p - 1. iNote that b,M is contained 
in the kernel of this mapping, since (gj - p”) annihilates 

A”‘( p ,...) p, t, laj+l )...) kz,). 

Consider yr mapping b&Z = M onto A”‘\: p ,..., p, I, uj+l ,..., ak). Let MI 
be the kernel of this mapping. Then M~:M, z A(“( p ,..., p, 1, u~+~ ,.,., uk), 
and Ml contains b,M. Since Ml contains b,M, ya maps Ml onto 

At2’( p ,..., p, 2, 2~,+~ ,..., 2~). 

Let M2 be the kernel of this mapping. Then 

M,IM, s At2’< P,..., P, 2,2q+, ,... , 2&, 

and M, contains b,M. Continuing in this manner, we obtain 

M = M,3 Ml3 -e-3 M,e130, 

where M,-,/M, E Act)( p ,..., p, t, lUj+l ,..., ta,), for 1 < t < p - 1. Hence, 
in KO(RG), 

D-1 

[Ml = C [Mt-,/WI + W,-,I 
t-1 

9-l 

= C [A'Y P,..., P, t, lq+l ,...I %>I + [M,J. 
i=l 

NOW, (M : R) = p - 1 and (A”‘( p ,..., p, t, tUj+l ,..., tc+) : R) = 1 for 
1 < t Q p - 1, so a consideration of R-ranks shows that (MD-, : R) = 0. 
However, &2,-r is a submodule of the R-torsion-free R-module M, and thus 
is itself R-torsion-free. Hence (MD-, : R) = 0 implies that [MD-,] = 0, 
and the Lemma is proved. 

PROPOSITION 4.7. 4 : KO(ZG) + KO(RG) is a monomorphism. 

Proof. Let x E ker 0,. Then x is a sum of elements of KO(ZG) of the form 

[A<uj+l -*--, a,>] - CR(uj+l t.--, u&l* 

where 1 < j < K and 1 < ui < p for j < i < k, for various R-ideals A. 
Thus, by Lemma 4.6, $(x) is a sum of elements of KO(RG) of the form 

P-l 

Heller and Reiner [2] have shown that such a sum in KO(RG) is zero only if 
each ideal appearing in the sum may be written as the product of a principal 
ideal and a power of some prime ideal P, where P divides the order of G. 
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It is well-known that the only prime ideal of R which divides p is the principal 
ideal (1 - p); consequently, #(x) = 0 in KO(RG) only if each ideal appearing 
in the sum for #(x) is principal. However, if each ideal appearing in the sum 
for I,&) is principal, then surely each ideal A appearing in the sum for 
x E ker 0, is principal. But if A is principal, then A (U~+~ ,..., a& E 
Wj+l,..., arc) as ZG-modules, whence [A(u~+~ ,..., a,)] - [R(aj+, ,..., a&] = 0, 
and thus x = 0. Therefore $ : ker 0, + ker OR is manic. Now apply the 
Five-Lemma to the diagram of Lemma 4.5 to conclude that 

t,b : KO(ZG) -+ KO(RG) 
is manic. 

COROLLARY 4.8. The lifting map fz is a ring homomorphism. 

Proof. Let f  be the lifting map for KO(RG) of Lemma 4.1. An easy 
calculation shows that fi = #-If+ Therefore, since 7, f, and $J-’ are ring 
homomorphisms, so is fi . 

Let x, y E KO(ZG). Since # is a ring monomorphism xy = (CI-l(#(x) #(y)), 
and the product #(x) I,@) may be calculated with the aid of Lemma 4.2. 
Thus we have shown how multiplication in KO(ZG) may be determined when 
G is elementary abelian. We proceed to give formulas which completely 
describe the multiplication. 

THEOREM 4.9. Let G be an elementary Abelian group. The following 
formulas describe multiplication in KO(ZG): 

(i) [Zjx = x, for all x E KO(ZG) 

(ii) [R(bj+l ,-, bd]([A(a,+l ,-., ad] - [R(ai+l j.-9 ad]) 
P-l 

= zl ([Aft'<bj+l >-**> b,-1 9 bi + t, bi+l + tai+l s***, b/s + tad] 

- [R<bj+l ,.*-, bi-19 bi + t, bi+l + tai+l ,**-, bk + tar>]), ;f j  < i, 

P-l 

z2 ([Act)<( P + 1 - t)bi+l + tai+l,***, (p + 1 - t)bk + tadI 

- [R<( p + 1 - t)bi+l + &+I ,-., (p + 1 - t)bk + tad]), if j = i, 

V-l 

zl (W=~+I ,...> aj-1 9 aj + t, aj+l + tbj+l s***y ak + tbdl 

- [R<ai+l ,-ej ajml , aj i- t, aj+l -t %+I ,..., ak -t tbk)]), if j > i- 

Proof. Formula (i) is clearly true. In order to prove (ii), we note that, since 

Y  = [R(bj+l ,-, &)]([A(%+1 ,--, ak>] - [R(ai+l P., ak>l) E kerb 9 
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y is a sum of elements of the form 

and therefore I+(Y) E ker 0, is a sum of elements of the form 

9-l 

z1 WYPY,P, t, h,l ,*a', %c)l - [Wp,...,p, t, tc,+1 ,..., &>I). 

It is clear that the elements [C(c,+, ,..., ck)] appearing in the sum for y can 
be found by determining the elements of form [On{ p,..., p, 1, c,+i ,..., ck)] 
appearing in the sum for #(y). 

Suppose j < i. Applying Lemmas 4.6 and 4.2, we find that 

D-l 8-l 

$qy) = c c ([A'Yp ,..., p, s, Sbj+1,..., Sk-1, & + t, s&+1 + t4+1, . . . . 4 + &>I 
kl s=1 

- [W PP.., P, 4 Sbj+, ,***9 &.1,4 + t, &+1 + t~,+1,...,~~, + WC)]) 

P-1 

=tpTp,...,p, 1, bi+1 ,*-*, h-1, b, + c&+1 + tat+1 ,*.*, b, + t&J1 

- [W P, . . . . P, 1, bj+l ,..., h-1 , bi + t, bi+l + tat+, ,... , h + &)I) + u, 

where u E ker 0, and none of the elements appearing in u have the form 
[C( p ,..., p, 1, c,+~ ,..., c~)]. Therefore, 

9-l 

y = c (P@j+, ,**a, h-1 ,bi + t, h,l + t~i+l,...,h + k>l 
t=1 

- [Wb,, ,..., h-1 9 bi + 4 b+1 + 4+1,..., b, + WI), 

which agrees with the formula. The same procedure will establish the formulas 
for the cases j = i, j > i. This completes the proof of the theorem. 
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