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1. INTRODUCTION

Let A be a ring, and consider the category of all finitely generated left
A-modules, Recall that the Grothendieck group K%A4) of this category is
the abelian additive group generated by all symbols [M], where M ranges
over all finitely generated left 4-modules, with relations

[M] = [M'] 4 [M"]
whenever there exists a short exact sequence of A-modules
0O->M->M-—->M —0.

In particular, let G be a finite group, and let R == alg. int. {F}, the ring of
all algebraic integers of the algebraic number field F. Denote by FG the group
algebra of G over F, and by RG the integral group ring of G over R. The
Grothendieck group K°(RG) may be given a ring structure as follows: for
all [M], [N]e K%RG), set [M][N] = [M Xz N], where M Xz N is an
RG-module with action of G given by g(m ®n) = gm ® gn, for all ge G.
Similarly define multiplication in K%FG) by [M*][N*] = [M* Xr N*].
Swan [5] has shown that this makes K%RG) and K%FG) into commutative
rings with identities [R] and [F], respectively.

The Grothendieck ring K% RG) has been studied by Heller and Reiner {2, 3]
and Swan [5, 6]. In [3], Heller and Reiner have given an explicit formula
for the additive structure of K°(RG), and in [6], Swan has given a formula
for multiplication in K%ZG) when G is cyclic of prime power order. In
this paper we shall generalize Swan’s results to the case where G is an
arbitrary cyclic group, and in addition shall show how multiplication in
K%ZG) may be determined when G is an elementary abelian group.
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2. STATEMENT OF THE PROBLEM
Keeping the notation of Section 1, we define a mapping
0 : KYRG) — KYFG)

by 8[M] = [F Xz M]. Here F (X)r M is an FG-module with action of F given
by B« ® m) = Ba &® m, for all B € F, and action of G given by g« ® m) =
a X gm, for all g € G. It is easily verified that @ is a ring epimorphism, and
we thus obtain an exact sequence

0 - ker 8 — K(RG) > KY(FG) > 0.

DerinrTiON 2.]. A linear mapping f: K%(¥FG) — K%RG) such that
0f = 1 is called a lLifting map for K%(RG).
We summarize some results of Swan as

ProposITION 2.2. (Swan [6]) Let f be a lifting map for K(RG). Then, as
Abelian groups, KY(FG) + ker 8 ~ K%RG), the isomorphism being given by
(%, ¥)—> f(%) + y. Furthermore, ker 8 is a square-nilpotent ideal in K%RG).

Proposition 2.2 shows that in order to determine multiplication in K%RG)
we must calculate all products of the form

(f(or) + y)(f(%2) + ¥2) = fly) f (%) + f(x1) y2 + f(%2) 31 -

For each FG-module M*, denote by yx(M*) the F-character of M*. One
verifies without difficulty that the mapping [M*] — x(M*) is a ring iso-
morphism between K%FG) and the character ring of G, and thus K%(FG)
may be regarded as a known ring. Also, if {M}¥ : 1 < 7 < m} is a full set of
non-isomorphic irreducible FG-modules, then the Jordan-Hélder theorem
for FG-modules implies that K°(FG) is the free abelian group with basis
{IM}]:1 < i < m}. Thus, in order to determine multiplication in K%RG)
it will suffice to find the following products:

FIMY] - fIM}], for 1<ij<m 1
and

fIMf] -y, for 1<i<myckerd. )

The remainder of this paper will be devoted to determining the products (1)
and (2) for various choices of G and R.
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3. Tue Cycric Case

Throughout this section, G will denote a cyclic group of order n» with
generator g. Let O be the rational field and Z the ring of rational integers.
We shall determine multiplication in K%ZG).

Let p, be a fixed primitive nth root of unity, and for each s dividing =,
set p, = pi/%. Then p, is a primitive sth root of unity. Denote by Q, the
QG-module O(p,) on which g acts as p, . If g’ is a generator of G such that
g’ +# g, let Q; denote the OG-module Q(p,) on which g’ acts as p, .

Lemma 3.1, Q) =~ Q, as QG-modules.

Proof. Since g’ and g both generate G, g' = g*, for some &, (k,n) = 1.
Let o denote the Q-automorphism of Q(p,) induced by the mapping p, — p,*.
The mapping of Q;, onto Q, defined by o — o7, for all x Q) , is the desired
OG-isomorphism.

The above Lemma shows that we may refer unambiguously to the
OG-module Q, . Similarly, we may refer to the ZG-module Z,, where Z,
denotes the ZG-module Z[p,] on which g acts as p, .

It is well-known that {Q, : s | n} is a full set of non-isomorphic irreducible
OG-modules, and hence K%QG) is the free abelian group with basis
{[Q] : s | n}. Define f : KYQG) — K%ZG) by f[Q,] = [Z], for all s dividing
n, f extended linearly to all of K%QG). It is clear that f is a lifting map for
K%ZG), and Swan [6] has shown that f is in fact a ring homomorphism.
Since K%(QG) is a known ring, this allows us to compute all products of the
form given in (1).

It remains to determine all products of the form [Z]y, for all r
dividing 7 and y € ker 8. The results of Heller and Reiner [3] show that
ker 6 = {3y, ([4s] — [Z]) : A; = Z-ideal in Q). Thus it will suffice to
find [Z,)([4,] — [Z,]), for all 7, s dividing # and all choices of 4, . For each 7,
let G, be the quotient group of G of order r, and form the ZG-module ZG, .
The following Lemma shows that it suffices to determine all products of the
form [ZG,)([A4J] — [Z)):

Lemma 3.2. In KNZG),[Z,] = X 4, p(r/d)ZG,), where p is the Mibius
Junction.

Proof. Let ®,(x) be the cyclotomic polynomial of order r. It is well-
known that @,(x) =[], (x3 — 1)¥7/9, Now, Z, ~ Z[x]/(P(x)), where g
acts on the right-hand side as x, whence Z, ~ Z[x]/(I T4, (x8 — 1)#7/®). It is
clear that Z[x]/(TTa, (x* — 1)#7/®) = 3, u(r/d)(Z[x]/(x* — 1)), and since
Z[x])(x* — 1) ¢ ZG;, the Lemma is proved.

Let s | n, and let A, be any Z-ideal in Q, . Then Z,/4, is a ZG-module on
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which g acts as p, , where p, is p, reduced modulo 4; . If w is any sth root of
unity, we denote by (Z,/4)<{@)> the ZG-module Z /A on which g acts as @.
We also introduce the following notation: if s |#,t{s, then G(Q,/Q;) will
denote the Galois group of O, over Q, and N/, the norm from Q, to O, .

LemMa 3.3. Letoe G(Q4/Q). Then (Z,/A)p> == Z,JAS as ZG-modules.

Proof. Map (Z,/A)Xps> onto ZJAS" by a—a” . This the desired
ZG-isomorphism.
We now state the main result of this section.

THEOREM 3.4. Let G be a cyclic group of order n. Then multiplication in
K%ZG) is given by the following formula:

[2G)([4d] — [Z.]) = ;([Ns/t(‘qs)zd] — [Zd)),

for all r, s dividing n, where t = s/(r, s) and d ranges over all divisors of [r, s]
such that ([r, s]/d,t) = 1.

Proof. The proof is by induction on m, the number of distinct prime
divisors of 7.

Let m = 1. Then r = p%, for some prime p, with @ == 0. If a = 0, then
ZG, = Z and the theorem is trivial. Hence we may suppose a > 0. Let
2=127JA,. Since 0—>A,—>Z,—~2—>0 is an exact sequence of
ZG-modules, [ZG,)([4,] — [Z,)) = —[ZG, Rz Z], and it will suffice to
find the ZG-module M = ZG, )z Z. Since r = p%, ZG, == Z[«]/(x*" — 1),
and we obtain M ~ Z[x]/(x*" — 1), where g acts as p,x on the right-hand
side. We now write s = p%’, where b >> 0 and ( p, s') = 1, and proceed by
cases:

Case 1. Suppose a < b. Then p, = pw, where p is some primitive s'th
root of unity and w is some primitive p*th root of unity. Set w, = w?
Then w, is a primitive p°th root of unity. Since Z, contains all poh roots
of unity,

x? — 1 = ﬁ (x — @) in Z[x],

k=1

whence

M= Y 2l — )= Y Zpgar.
k=1 k=1
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Now if @ < b, pgewy® is a primitive sth root of unity for cach k, 1 < k < p9,
and we denote by ¢, the Q-automorphism of Q, induced by the mapping
ps > pswi®. Then

MY 2G5,

k=1

and thus, by Lemma 3.3,

»° 1
M~ Z Zs/Ag" .

k=1

But it is clear that as & ranges from 1 to p%, o, ranges over all elements of
G(Qy/Qpsay), and hence M =3 Z,/JA7, o€ &(Q,/0mp-ay). Therefore
M ~ Z [Ny ppay(A)Z, . This yields the desired result when a < b.

If a — b, then w; = w, and

M~ Z Zpw*y = Z Zpa+®y = Z Zpa®y.

k=1

Thus M =~ Y; Z{pw’y + ¥; Z{pw'd, where 1 <j < p° (j,p) =1, and
1<e<<p (4, p) # 1. Since (f, p) — 1, cach pw’ is a primitive sth root of
unity, and an analysis similar to that carried out for the casc a < b shows

that 3°; Z{pw’> o Z,IN,,(A)Z, .
Now consider

S 2Gaty = ¥, ¥ 2y
3 eml A

where 1 < b << p%¢, (b, p) — L. Set Y — Z{pw?*>. It is clear that Y is
a Z[pw?]-module, and as such,Y = Z[pw?*|/ N, o-+,(4,) (see [4], pp. 27-28).
Consequently, as a ZG-module,

YV~ (Zv“"s'/Ns/n“"s'(As))<fz;hme>-

For each h, 1 < h <C po-, (h, p) = 1, let o, be the element of G(Qey/0,)
induced by the mapping pja—s,;s — pw?’. By T.emma 3.3,

Y= Zzz"_‘s'/(Ns/n"_‘s'(As))orls

and hence we find that

ZZ(;I;’”") o Zoeoy [Ny (A2 jo—sy, foreach e, eql <e< a
Rk

481/7/1-6
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Therefore

a
M =~ Z,|Ny (4,7, + Z Zp"“S'/Ns/s’(As)Zp““s’ .
e=1
This gives the desired result when a = b.
Case 2. Suppose a > b. Then
a
2" — 1 = (x* — 1) [] Prx);
kb4l

whence M 2= Z[x}/(x** — 1) + Yx2[x]/(P,x(x)). By Case 1,

2 = Y, Ze [Nl A ey

e=0

Therefore it will suffice to find 2[x]/(Px(x)) for b + 1 < k& < a.
Fix k, and set @ = (p#)”" . Then w is a primitive p’th root of unity, and
in 2[x], ®u(x) = IT; (x* " — &), where 1 <j < p% (j,p) = 1. Thus

2/(@ ) 2= 1 2] (e — @)

Now, for each j, Z[x]/(x**” — @) is isomorphic to (Z4,/A,Z 3y )pspid:
the isomorphism is given by mapping an element ¥, &a* of 2[x)/(x" — &)
onto the element aspin of Z ey |A,Z e . Therefore

Z[x]/(djnk(x)) = Z (Zp"s’/ABZpks')<P's_P;k>:

)

where 1 <] <Pb’ (])P) =1
For each j, let o; be the element of G(Qy,/Q, ) induced by the mapping
Pors — pspir , and 7; be o; restricted to O, . Then by Lemma 3.3,
(Zp*s'/AaZp"a')<Ps—Pi"> = Zyry/ (Aszp”a')a"_l’
and since
Zypo[(AsZpes)’s o2 Zypy [ApZory

it easily follows that

S (Zgrr|AZ oo Koot 22 Y, Zyry| A5 Z 2y 7€ B(Q4/Q).

H
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Thus
Z[x]/ (¢p"(x)) = Zz)"s'/ N s/ s'(As)th' ’

and this, together with the formula for Z[x]/(x*" — 1), gives the desired
result for M. This completes the proof of Case 2.

We have now established the theorem for the case m = 1. Now let m be
greater than 1, and assume the theorem true for all [ZG,/)([4,] — [Z.]),
where 7" has fewer than m distinct prime divisors. Write r = p%’, where p
is a prime, @ >0, and (p,7') = 1. We have G, >~ G,. X G-, and it is
well-known that this implies ZG, ~ ZG, Rz ZG, . Thus [ZG,] =
[ZG,:][ZG, ] in K%ZG). Since the theorem is true for ZG,» and ZG,,, we
obtain

[2G)([4s] — [Z]) = [2Gy) ; (Ner(45)2s] — [24])

= Z; (N 1a-(Noye(A)24)2,] — [Z,)),

where t' =s/(r',s), d’ ranges over all divisors of [r/,s] such that
(', s}/d’, t'y = 1, and for each d',d" = d'/(p? d') and e ranges over all
divisors of [ p%, d'] such that ([ p%, d’]/e, d") = 1.

Now, since ([r',s]/d’,t') = 1, t' | d’ and hence Oy is contained in Q- .
Similarly, Q;~ is contained in Q,. Furthermore, d' | [r', 5], ( p, ') = 1, and
([r", s1/d’, t') = 1 together imply that ( p%, d') = (% 5). Then ¢’ | d' implies
that s/(r, s) = t divides d”. Hence Q, is contained in Q4~ . We now have the
following inclusion diagram:

os\ | / Qd'\o /o
N4

Qt
Fic. 1

It is easy to verify that 6(Q,/Q,) = 6(Q4/Q4-), and thus that
Na1a"(Nyi(A)Zs)Z, = Ny A)Z, .

We therefore obtain [ZG,)([4,] — [Z]) = Za (X, ([Nyd4)Z,] — [Z.)),
where d’ ranges over all divisors of [, 5] such that ([, s}/d’, t’) = 1, and for
each d’, e ranges over all divisors of [ p%, d'] such that([ p%, d']/e, d'/( p,d"))=1.
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Now write s =p%', (p,5') = 1. Then d'|[r,s] = p*[r,s], and
(oL, s')/d’, pos'[(r', p°s’)) = 1 implies that d' = pPk, where s'/(r',s') | &,
k| [r, &', and ([r, sV/k, s'/(r', 8')) = 1. Then e|[p% d'] = [ p° p°k], and
([ p* pPkl/e, pPR/( p°, pPk)) = 1. Thus, if a < b, then e = d’, while if a == b,
we have e = p'k, for 0 < 7 < a. Therefore we obtain the following formulas
for [ZG,[([4:] — [Z]):

G) ifa<b,
[2G,)([4.] — [Z)) = ;([Ns/t(As)Zd'] —[Z#]),

whered’ | [#', s} and ([, sJ/d, 1) = 1;
(i) if a>b,

[ZG )[4 — [2)]) = i Y (N A)Zpix] — [Zy4]),

i=0 %k
where §'/(r',s") | R | [, '] and ([, s'}/k, §'/(',5')) = 1. Now consider

%,([Ns/t(As)Zd] — [Zd)),

where d | [r, s] and ([r, s]/d, t) = 1. Let r = p%', s = p¥’ as above. Then if
a <b, [r,s] =[r,s], and ([r,s}/d, t) = 1 if and only if ([, s]/d, t") = 1.
Thus we may take 4 dividing [7’, 5] with ([7/, s]/d, t') = 1, so that if a < b,
S (N.(A)Z4) — [Z) agrees with formula (i) for [ZG,)[4,] — [Z.)).
Similarly, if @ > b, we find thatd = p’k,0 << i < a, wheres'/(7',s') | k| [, 5']
and ([, s']/k, s'/(r', ')y = 1, whence Y ; ([Ny(4:)Z4] — [Z;]) agrees with
formula (ii) for [ZG,}([4,] — [Z,]) when a = b. This concludes the proof of
the theorem.

4. 'ToHe ELEMENTARY ABELIAN CASE

Let G be an Abelian group, F an algebraic number field which is a splitting
field for G, and R = alg. int. {F}. We shall determine multiplication in
KYRG).

Write G = G, X ** X G, where G; is cyclic of order n; with generator g; ,
and let p; be a fixed primitive n,th root of unity, for 1 <C 7 < k. Denote by
Fla, ,...;-a) the FG-module F on which g, acts as pj+, 1 < ¢ < k. Similarly,
if A is an R-ideal in F, A{a, ,..., a;) will denote the RG-module 4 on which g;
acts as pfs. It is easily seen that {Fla; ,...,a;): 1 < a; < n;, 1 <i << k}is
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a full set of non-isomorphic irreducible FG-modules, whence {{F{a, ,..., a,)]:
1 <a; < n,1 <1< k}is a basis for KO(FG).

Define f: KA(FG)— KYRG) by f[Flay,.., a)] = [Ray,..,az)], [
extended linearly to all of K%(FG). Clearly, f is a lifting map for K°(RG).

LemMma 4.1. f is a ring homomorphism.

Proof. Consider

(Flay oo, @ D)[FCby ..., b)) = [Flay ..., @) X) Flby ..., b))
F
Map

Flay s, @) () F<by ..., by onto Flay + by ,...,a +b> by a®pB— op.
F

It is easily verified that this mapping is an FG-isomorphism, and hence

[Fay vy @D)[FCDy o ] = [Flay 4 by ooy ay + b

Similarly,

[Rlay ..., ap)][REDy oovy b)) = [REay + by ..., @y + b)),

and therefore f is a ring homomorphism.

Heller and Reiner [2] have shown that every element of ker § may be
written as a sum of elements of the form [4{La, ,..., a;)] — [R{ay ,..., ai)],
for various choices of the ideal 4 and the positive integers a, ,..., @, . The

following Lemma therefore completes the description of multiplication in
K%RG).

Lemma 4.2. In K%RG),
[R<b1 ooy bk>]([A<al gerey ak>] - [R<al yoeey ak>])
= [ALay + b, ,..., a, -+ b,>] — [R{ay + by ..., @ + b).
Proof. The argument of the proof of Lemma 4.1 shows that

[R¢by yonn, bON ALy vy @] = [ALay + by ooy @, + B,

and this clearly implies the Lemma.

Now let G = G, X *-- X G, be an elementary Abelian group, with G, cyclic
of order p, 1 < 1 < k. Let p be a fixed primitive pth root of unity, F = Q(p),
R = Z[p]. Then F is a splitting field for G, and hence multiplication in
K% RG) is known. _

As above, Fla, ,..., a;> will denote the FG-module F on which g, acts as
p%, for i < i < k, and similarly for A<ay ,..., a;). Note that, by restriction of
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operators, F{a, ,..., a;) and A<ay ..., @y are QG- and ZG-modules, respec-
tively. Let .S be the collection of QG-modules listed below:
O, F pyeey P, 1D, F Py 0, 1, a3 where 1 < a < pyey
Fp,1,a4,..,a> where 1<a; <p for 3 i< A,
F(, ay ..., a3 where 1 <a;<p for 2<i<k

For ease of notation, we shall denote an element of S of the form
Fpyis 0,1, 8545 sy ), L < j <k, by Flaj,,..., ap).

Lemma 4.3. S is a full set of nonisomorphic irreducible QG-modules.

Proof. The elements of S are clearly irreducible QG-modules, and the
sum of their Q-ranks is p* = (G : 1), so there are the correct number of them.
Thus it suffices to show that no two of them are isomorphic as QG-modules.

Let 1 <j<k and suppose that Fla;, ..., @z o= F{b; , ,..., by as
OG-modules, where @, = b, for some ¢. Then under the isomorphism,
1—pB for some B # 0, whence p% = gjt -1 — g} = pB. But also,
p* =g, -1 —>gB = p*B, and therefore we have a contradiction. Now
suppose that F{a,,, ,..., @) =2 F{b;,; ,..., by, for some 7, 1 < i < k, where
f # j. Without loss of generality, we may assume j <C 7. Then under the
isomorphism, 1 — B, for some  # 0, and hencep = g; - 1 — g;,8 = p?B = 8.
Therefore 1 — B and also p — 8, a contradiction. Since it is clear that Q is
not isomorphic to any of the other elements of .S, we have thus shown that
no two of the elements of S are isomorphic, and the Lemma is proved.

DerintTiON 4.4. Define ¢ : K(ZG) — K%RG) by $[M] = [R X)z M],
for all [M]e K%ZG), where R (X)z M is an RG-module with action of R
given by 7' (r ® m) = r'r @ m and action of G given by g(r @ m) = r @ gm,
for all ¥ € R, g € G. Similarly, define

7 : KYQG) —~ KYFG) by 5[M*] =[F ) M*,
0
for all [M*] € KYQG).

LemMa 4.5. o and 7 are ring homomorphisms and the following diagram

commutes and is exact:

0 — ker 8z — KYRG) —2» KYFG) — 0

PP §

0 — ker 6; — K%(ZG) —%> KYQG) — 0

I

0
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Proof. The proof that ¢ and 7 are ring homomorphisms is straightforward.
The rows of the diagram are exact by the remarks at the beginning of
Section 2, and the Noether-Deuring Theorem ([], p. 200]) implies that 5
is monic. One easily checks that ¢y maps ker 8, into ker 8 and that 8xp = 75 .

Let A be an R-ideal in F. We shall denote by A the image of A under
the Q-automorphism of F induced by the mapping p —p%, 1 <2< p — L.
Also, A<a;.4 .., ay will denote the ZG-module A{ p,..., p, 1, @55 ..., @),
1 <j < k By Lemma4.3, KQG) is the free Abelian group with basis
{[M*] : M* € S}, and hence we may define a lifting map f : K%(QG)— KYZG)
as follows:

f2[Q) = [Z], f2[Fays1 s @)] = [RGs11 sy 9] for 1 <j <R,

with f extended linearly to all of K%(QG). The results of Heller and Reiner [3]
now show that every element of ker 8, is a sum of elements of the form
[AL@j 41 5oees @] — [R{@j41 yeees @)]. Thus the following Lemma determines

P(ker 0z):

LemMma 4.6.
-1

¢[A<a5+1 Iveey ak)] = z [A(t)< P:"" P, t) ta:i+l yseey tak>]'

t=1
PfOOf. Let M =R ®Z A<aj+1 yoory ak>, so that l/J[A<aj+1 yoosy ak>] = [M],
and let @,(x) be the cyclotomic polynomial of order p. For allr ¥ a € M,
‘pp(gi)(’ ® a) =r® ‘Dp(gj)a =7 @,,(p)a =0;
50 D (g )M = 0. Let b, = 1,

|2
by=T[(g;—p") for 1<t<p—1

i=1

Then M =bMDObMD---Db, M =0.
Foreach#,1 <t < p — 1, define
vt M— A p,..., p, L, tay, .., 13> BY Yr @ @) = ra'?.

It is easily seen that y, is a well-defined RG-epimorphism for each ¢. Con-
sequently, y, : b,_ M — b, LAV p,..., p, , ta;,; ,..., ta,) is an epimorphism.
However, AU p,ous, Py L, ta544 yueey tag) is isomorphic to

byt AO Pyonsy B 1, tyg ey 10D

by the mapping ¥ — b, ,y; hence we may assume that y, maps b, ;M onto
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AU po, Dyt ta; .., tag), for 1 << t < p — 1. Note that b,M is contained
in the kernel of this mapping, since (g; — p*) annihilates
AO Proesy Py by L85 guue, tAD.

Consider y; mapping 8,M == M onto AV p,..., p, 1, a;,, ..., a;). Let M,
be the kernel of this mapping. Then M/M; ~ AN p,..., p, 1, ;4 youey 41,
and M, contains b, M. Since M, contains b, M, y, maps M, onto

AR P, 902,205, .00y 24,0,
Let M, be the kernel of this mapping. Then
MI/M2 = A(2)< p»'"’ P» 2’ 2'af+1 PR ] 2ak>»
and M, contains b,M. Continuing in this manner, we obtain
M=MOMD--DOM,,D0,
where M,_ /M, ~ A p,..., p, L, t@;,q 50, tay), for 1 << t << p — 1. Hence,
in K%RG),
p-1

[M] = Z [Mt—l/Mt] + [Ma~1]

t=1

-1
=Y (A9 Pyeres Py 1, 18131 oy La)] + [M,_4).
t=1

Now, (M:R)=p —1 and (AU{p,..,p,t,ta;, 1, .., tay : R) =1 for
1 <t < p— 1, so a consideration of R-ranks shows that (M,_, : R) = 0.
However, M,,_, is a submodule of the R-torsion-free R-module M, and thus
is itself R-torsion-free. Hence (M,_; : R) = 0 implies that [M,_,] =0,
and the Lemma is proved.

ProposiTION 4.7. ¢ : KYZG) — K%RG) is a monomorphism.
Proof. Letx eker 0. Then x is a sum of elements of K% ZG) of the form
[ALa; iy yoeey @10} — [RLG 4y 5eees GRD],
where 1 <j << kand 1 < a; < p forj <i <k, for various R-ideals A.
Thus, by Lemma 4.6, i(x) is a sum of elements of K% RG) of the form

p-1

Y, ([AD Pyeves P18, 285141 seney 18;)]) — [RE Prees Py 8y Ay 1y yeney taRD]).

tel
Heller and Reiner [2] have shown that such a sum in K°(RG) is zero only if
each ideal appearing in the sum may be written as the product of a principal
ideal and a power of some prime ideal P, where P divides the order of G.
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It is well-known that the only prime ideal of R which divides p is the principal
ideal (1 — p); consequently, $(x) = 0 in K°(RG) only if each ideal appearing
in the sum for y(x) is principal. However, if each ideal appearing in the sum
for ¢(x) is principal, then surely each ideal A appearing in the sum for
xcker0; is principal. But if A is principal, then A4 {a;,.., &) =
Rla;,,,-.., @,y as ZG-modules, whence [A<{a;,y ..., @;)] — [R@j, 1100y @] = 0,
and thus x = 0. Therefore i : ker 6, — ker 8 is monic. Now apply the
Five-Lemma to the diagram of Lemma 4.5 to conclude that
J : KYZG) — K%RG)

is monic.

CoroLLARY 4.8. The lifting map f; is a ring homomorphism,

Proof. Let f be the lifting map for K%RG) of Lemmad4.l. An easy
calculation shows that f; = ¢~ifn. Therefore, since 7, f, and ! are ring
homomorphisms, so is fz .

Let x, y € K%ZG). Since ¢ 1s a ring monomorphism xy = ~1((x) (),
and the product (x) $)(y) may be calculated with the aid of Lemma 4.2.
Thus we have shown how multiplication in K% ZG) may be determined when
G is elementaty abelian. We proceed to give formulas which completely
describe the multiplication.

THEOREM 4.9. Let G be an elementary Abelian group. The following
Jormulas describe multiplication in K%(ZG):
(i) [Z]x =«x, forall xe KYZG)
(ii) [RCbjyq seees bi0)([ALGusq yeoes @] — [RLGigy 5-os @xD])

-1
= Z ([Am<bj+l e bi—l ’ bz’ + L bi+1 + tat'+l 30y bk + tak>]
t=1
- [R<b7‘+1 LI ] bi—l ’ b:‘ +¢ bi+1 + tai+1 3oty bk + tak>])’ lf ] < i’
p-1
Y ([ADK(p + 1 — iy + taisy s (P + 1 — )by + 0]
=2

— [RUp + 1 — yya + tasyy e, (p + 1 — Db+ 1a]), of j=1,

»—1

z ([AL@iy seors iy s @5 + 8, @5y + thygy yens @i 1 D]

t=1

—[RLasiy yoes G5y s @5 + 8y @y + thyyy e, @ H0R)), o § >0
Proof. Formula (i) is clearly true. In order to prove (ii), we note that, since

¥ = [Rbjsq vy BDN([ALBi4y seees @10] — [RBisy 5oy D)) € ker 8,
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y is a sum of elements of the form

[Cleriy s €] — [RLEpsa senes €]
and therefore (y) € ker 8 is a sum of elements of the form

-1

2, ([CO Prenes By 1y torsy sovny 264D] — [RE Py Py &y gy sovny 1))
t=1
It is clear that the elements [C{c,,, ,..., ¢;>] appearing in the sum for y can
be found by determining the elements of form [CV p,..., p, 1, €, pq suers €]
appearing in the sum for ().
Suppose j < 7. Applying Lemmas 4.6 and 4.2, we find that

p--1 p~1

lﬁ(y) = Z Z ([A(“<P,...,p, §, Sbi+1"")Sbi—l’ Sb,‘ + t, Sbi-}-l + tai+1,...,5bk + tak>]
=1 s=1
— [R Pyeves Py Sy $hyyq geues SByy , 8by + 8, sy + tagy ..., sby -+ tap)])
-1

= ([ADY Pyees Dy 1, bjy oy by by 4 1, by + 18541 5eeny by + 1a1))
=1

— [R(pres Dy L bjog yens big by + 1, b+ tas4y e, by + 123 )]) + 4,

where u € ker 6 and none of the elements appearing in u have the form

[C pyewes Py 1, €ty yoess €10]- Therefore,

-1

¥y = ([A9bjs1 e big, by + 1, by + 1054 .., by + tap))
t=1

— [RCbjyq sees biy s by + 1, by + tagyy 5oy by + ta3)]),

which agrees with the formula. The same procedure will establish the formulas
for the cases j = 7, j > 4. This completes the proof of the theorem.
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