JOURNAL OF ALGEBRA 7, 77-90 (1967)

Multiplication in Grothendieck Rings of Integral Group Rings

D. L. STANCL

Mathematics Institute, University of Warwick, Coventry, England Communicated by J. A. Green Received September 6, 1966

1. INTRODUCTION

Let A be a ring, and consider the category of all finitely generated left A-modules. Recall that the Grothendieck group $K^{0}(A)$ of this category is the abelian additive group generated by all symbols [M], where M ranges over all finitely generated left A-modules, with relations

[M] = [M'] + [M'']

whenever there exists a short exact sequence of A-modules

$$0 \to M' \to M \to M'' \to 0.$$

In particular, let G be a finite group, and let $R = \text{alg. int.} \{F\}$, the ring of all algebraic integers of the algebraic number field F. Denote by FG the group algebra of G over F, and by RG the integral group ring of G over R. The Grothendieck group $K^0(RG)$ may be given a ring structure as follows: for all $[M], [N] \in K^0(RG)$, set $[M][N] = [M \bigotimes_R N]$, where $M \bigotimes_R N$ is an RG-module with action of G given by $g(m \otimes n) = gm \otimes gn$, for all $g \in G$. Similarly define multiplication in $K^0(FG)$ by $[M^*][N^*] = [M^* \bigotimes_F N^*]$. Swan [5] has shown that this makes $K^0(RG)$ and $K^0(FG)$ into commutative rings with identities [R] and [F], respectively.

The Grothendieck ring $K^0(RG)$ has been studied by Heller and Reiner [2, 3] and Swan [5, 6]. In [3], Heller and Reiner have given an explicit formula for the additive structure of $K^0(RG)$, and in [6], Swan has given a formula for multiplication in $K^0(ZG)$ when G is cyclic of prime power order. In this paper we shall generalize Swan's results to the case where G is an arbitrary cyclic group, and in addition shall show how multiplication in $K^0(ZG)$ may be determined when G is an elementary abelian group.

STANCL

2. STATEMENT OF THE PROBLEM

Keeping the notation of Section 1, we define a mapping

$$\theta: K^{0}(RG) \rightarrow K^{0}(FG)$$

by $\theta[M] = [F \bigotimes_R M]$. Here $F \bigotimes_R M$ is an FG-module with action of F given by $\beta(\alpha \otimes m) = \beta \alpha \otimes m$, for all $\beta \in F$, and action of G given by $g(\alpha \otimes m) = \alpha \otimes gm$, for all $g \in G$. It is easily verified that θ is a ring epimorphism, and we thus obtain an exact sequence

$$0 \to \ker \theta \to K^0(RG) \stackrel{\theta}{\to} K^0(FG) \to 0.$$

DEFINITION 2.1. A linear mapping $f: K^{0}(FG) \rightarrow K^{0}(RG)$ such that $\theta f = 1$ is called a *lifting map for* $K^{0}(RG)$.

We summarize some results of Swan as

PROPOSITION 2.2. (Swan [6]) Let f be a lifting map for $K^0(RG)$. Then, as Abelian groups, $K^0(FG) + \ker \theta \cong K^0(RG)$, the isomorphism being given by $(x, y) \rightarrow f(x) + y$. Furthermore, $\ker \theta$ is a square-nilpotent ideal in $K^0(RG)$.

Proposition 2.2 shows that in order to determine multiplication in $K^{0}(RG)$ we must calculate all products of the form

$$(f(x_1) + y_1)(f(x_2) + y_2) = f(x_1)f(x_2) + f(x_1)y_2 + f(x_2)y_1$$

For each FG-module M^* , denote by $\chi(M^*)$ the F-character of M^* . One verifies without difficulty that the mapping $[M^*] \rightarrow \chi(M^*)$ is a ring isomorphism between $K^0(FG)$ and the character ring of G, and thus $K^0(FG)$ may be regarded as a known ring. Also, if $\{M_i^* : 1 \leq i \leq m\}$ is a full set of non-isomorphic irreducible FG-modules, then the Jordan-Hölder theorem for FG-modules implies that $K^0(FG)$ is the free abelian group with basis $\{[M_i^*] : 1 \leq i \leq m\}$. Thus, in order to determine multiplication in $K^0(RG)$ it will suffice to find the following products:

$$f[M_i^*] \cdot f[M_j^*], \quad \text{for} \quad 1 \leq i, j \leq m \tag{1}$$

and

$$f[M_i^*] \cdot y$$
, for $1 \leq i \leq m, y \in \ker \theta$. (2)

The remainder of this paper will be devoted to determining the products (1) and (2) for various choices of G and R.

3. The Cyclic Case

Throughout this section, G will denote a cyclic group of order n with generator g. Let Q be the rational field and Z the ring of rational integers. We shall determine multiplication in $K^0(ZG)$.

Let ρ_n be a fixed primitive *n*th root of unity, and for each *s* dividing *n*, set $\rho_s = \rho_n^{n/s}$. Then ρ_s is a primitive *s*th root of unity. Denote by Q_s the *QG*-module $Q(\rho_s)$ on which *g* acts as ρ_s . If *g'* is a generator of *G* such that $g' \neq g$, let Q'_s denote the *QG*-module $Q(\rho_s)$ on which *g'* acts as ρ_s .

LEMMA 3.1. $Q'_s \simeq Q_s$ as QG-modules.

Proof. Since g' and g both generate G, $g' = g^k$, for some k, (k, n) = 1. Let σ denote the Q-automorphism of $Q(\rho_s)$ induced by the mapping $\rho_s \to \rho_s^k$. The mapping of Q'_s onto Q_s defined by $\alpha \to \alpha^{\sigma}$, for all $\alpha \in Q'_s$, is the desired QG-isomorphism.

The above Lemma shows that we may refer unambiguously to the QG-module Q_s . Similarly, we may refer to the ZG-module Z_s , where Z_s denotes the ZG-module $Z[\rho_s]$ on which g acts as ρ_s .

It is well-known that $\{Q_s : s \mid n\}$ is a full set of non-isomorphic irreducible QG-modules, and hence $K^0(QG)$ is the free abelian group with basis $\{[Q_s] : s \mid n\}$. Define $f : K^0(QG) \rightarrow K^0(ZG)$ by $f[Q_s] = [Z_s]$, for all s dividing n, f extended linearly to all of $K^0(QG)$. It is clear that f is a lifting map for $K^0(ZG)$, and Swan [6] has shown that f is in fact a ring homomorphism. Since $K^0(QG)$ is a known ring, this allows us to compute all products of the form given in (1).

It remains to determine all products of the form $[Z_r] y$, for all r dividing n and $y \in \ker \theta$. The results of Heller and Reiner [3] show that $\ker \theta = \{\sum_{s|n} ([A_s] - [Z_s]) : A_s = Z_s$ -ideal in $Q_s\}$. Thus it will suffice to find $[Z_r]([A_s] - [Z_s])$, for all r, s dividing n and all choices of A_s . For each r, let G_r be the quotient group of G of order r, and form the ZG-module ZG_r . The following Lemma shows that it suffices to determine all products of the form $[ZG_r]([A_s] - [Z_s])$:

LEMMA 3.2. In $K^0(ZG)$, $[Z_r] = \sum_{d|r} \mu(r/d)[ZG_d]$, where μ is the Möbius function.

Proof. Let $\Phi_r(x)$ be the cyclotomic polynomial of order r. It is wellknown that $\Phi_r(x) = \prod_{d \mid r} (x^d - 1)^{\mu(r/d)}$. Now, $Z_r \simeq Z[x]/(\Phi_r(x))$, where gacts on the right-hand side as x, whence $Z_r \simeq Z[x]/(\prod_{d \mid r} (x^d - 1)^{\mu(r/d)})$. It is clear that $Z[x]/(\prod_{d \mid r} (x^d - 1)^{\mu(r/d)}) \simeq \sum_{d \mid r} \mu(r/d)(Z[x]/(x^d - 1))$, and since $Z[x]/(x^d - 1) \simeq ZG_d$, the Lemma is proved.

Let $s \mid n$, and let A_s be any Z_s -ideal in Q_s . Then Z_s/A_s is a ZG-module on

which g acts as $\bar{\rho}_s$, where $\bar{\rho}_s$ is ρ_s reduced modulo A_s . If ω is any sth root of unity, we denote by $(Z_s/A_s)\langle \bar{\omega} \rangle$ the ZG-module Z_s/A_s on which g acts as $\bar{\omega}$. We also introduce the following notation: if $s \mid n, t \mid s$, then $\mathfrak{G}(Q_s/Q_t)$ will denote the Galois group of Q_s over Q_t and $N_{s/t}$ the norm from Q_s to Q_t .

LEMMA 3.3. Let $\sigma \in \mathfrak{G}(Q_s|Q)$. Then $(Z_s|A_s)\langle \bar{\rho}_s{}^{\sigma} \rangle \cong Z_s|A_s^{\sigma^{-1}}$ as ZG-modules. *Proof.* Map $(Z_s|A_s)\langle \bar{\rho}_s{}^{\sigma} \rangle$ onto $Z_s|A_s^{\sigma^{-1}}$ by $\bar{a} \to \bar{a}^{\sigma^{-1}}$. This the desired ZG-isomorphism.

We now state the main result of this section.

THEOREM 3.4. Let G be a cyclic group of order n. Then multiplication in $K^0(ZG)$ is given by the following formula:

$$[ZG_r]([A_s] - [Z_s]) = \sum_d ([N_{s/t}(A_s)Z_d] - [Z_d]),$$

for all r, s dividing n, where t = s/(r, s) and d ranges over all divisors of [r, s] such that ([r, s]/d, t) = 1.

Proof. The proof is by induction on m, the number of distinct prime divisors of r.

Let m = 1. Then $r = p^a$, for some prime p, with $a \ge 0$. If a = 0, then $ZG_r = Z$ and the theorem is trivial. Hence we may suppose a > 0. Let $\hat{Z} = Z_s/A_s$. Since $0 \to A_s \to Z_s \to \hat{Z} \to 0$ is an exact sequence of ZG-modules, $[ZG_r]([A_s] - [Z_s]) = -[ZG_r \otimes_Z \hat{Z}]$, and it will suffice to find the ZG-module $M = ZG_r \otimes_Z \hat{Z}$. Since $r = p^a$, $ZG_r \cong Z[x]/(x^{p^a} - 1)$, and we obtain $M \cong \hat{Z}[x]/(x^{p^a} - 1)$, where g acts as $\bar{\rho}_s x$ on the right-hand side. We now write $s = p^b s'$, where $b \ge 0$ and (p, s') = 1, and proceed by cases:

Case 1. Suppose $a \leq b$. Then $\rho_s = \rho \omega$, where ρ is some primitive s'th root of unity and ω is some primitive p^{b} th root of unity. Set $\omega_1 = \omega p^{b^{-a}}$. Then ω_1 is a primitive p^{a} th root of unity. Since Z_s contains all p^{a} th roots of unity,

$$x^{p^a} - 1 = \prod_{k=1}^{p^a} (x - \bar{\omega}_1^k)$$
 in $\hat{Z}[x]$

whence

$$M \simeq \sum_{k=1}^{p^a} \hat{Z}[x]/(x - \bar{\omega}_1^k) \simeq \sum_{k=1}^{p^a} \hat{Z}\langle \overline{\rho_s \omega_1}^k \rangle.$$

Now if a < b, $\rho_s \omega_1^k$ is a primitive sth root of unity for each $k, 1 \le k \le p^a$, and we denote by σ_k the *Q*-automorphism of Q_s induced by the mapping $\rho_s \rightarrow \rho_s \omega_1^k$. Then

$$M \simeq \sum_{k=1}^{p^a} \hat{Z} \langle \bar{\rho}_s^{\sigma_k} \rangle,$$

and thus, by Lemma 3.3,

$$M \cong \sum_{k=1}^{p^a} Z_s / A_{s^k}^{\sigma_k^{-1}}.$$

But it is clear that as k ranges from 1 to p^a , σ_k ranges over all elements of $\mathfrak{G}(Q_s|Q_{p^{b-a_s'}})$, and hence $M \cong \sum_{\sigma} Z_s/A_s^{\sigma}$, $\sigma \in \mathfrak{G}(Q_s|Q_{p^{b-a_s'}})$. Therefore $M \cong Z_s/N_{s/p^{b-a_s'}}(A_s)Z_s$. This yields the desired result when a < b. If a = b, then $\omega_1 = \omega$, and

$$M \simeq \sum_{k=1}^{p^a} \hat{Z} \langle \overline{\rho_s \omega^k} \rangle = \sum_{k=1}^{p^a} \hat{Z} \langle \overline{\rho \omega^{1+k}} \rangle = \sum_{k=1}^{p^a} \hat{Z} \langle \overline{\rho \omega^k} \rangle.$$

Thus $M \cong \sum_{i} \hat{Z} \langle \overline{\rho \omega^{i}} \rangle + \sum_{i} \hat{Z} \langle \overline{\rho \omega^{i}} \rangle$, where $1 \leq j \leq p^{a}$, (j, p) = 1, and $1 \leq i \leq p^{a}$, $(i, p) \neq 1$. Since (j, p) = 1, each $\rho \omega^{j}$ is a primitive sth root of unity, and an analysis similar to that carried out for the case a < b shows that $\sum_{j} \hat{Z} \langle \overline{\rho \omega^{j}} \rangle \cong Z_{s} / N_{s/s'} (A_{s}) Z_{s}$.

Now consider

$$\sum_{i} \hat{Z} \langle \overline{\rho \omega}^{i} \rangle = \sum_{e=1}^{a} \sum_{h} \hat{Z} \langle \overline{\rho \omega}^{h p^{e}} \rangle,$$

where $1 \leq h \leq p^{a-e}$, (h, p) - 1. Set $Y - \hat{Z}\langle \overline{\rho\omega}^{hp^e} \rangle$. It is clear that Y is a $Z[\rho\omega^{p^e}]$ -module, and as such, $Y \simeq Z[\rho\omega^{p^e}]/N_{s/p^{a-e}s'}(A_s)$ (see [4], pp. 27–28). Consequently, as a ZG-module,

$$Y \cong (Z_{p^{a-\epsilon_{s'}}}/N_{s/p^{a-\epsilon_{s'}}}(A_s)) \langle \rho \omega^{h p^{\epsilon}} \rangle.$$

For each $h, 1 \leq h \leq p^{a-e}$, (h, p) = 1, let σ_h be the element of $\mathfrak{G}(Q_{p^{a-e}s'}/Q_{s'})$ induced by the mapping $\rho_{p^{a-e}s'} \to \rho \omega^{hp^e}$. By Lemma 3.3,

$$Y \cong Z_{p^{\circ - \epsilon_{s'}}}/(N_{s/p^{\circ - \epsilon_{s'}}}(A_s))^{\sigma_h^{-1}},$$

and hence we find that

$$\sum_{h} \hat{Z} \langle \overline{\rho \omega}^{h p^e} \rangle \cong Z_{p^{\bullet - \bullet_{s'}}} / N_{s/s'} (A_s) Z_{p^{\bullet - \bullet_{s'}}}, \text{ for each } e, \text{ eq } 1 \leqslant e \leqslant a.$$

481/7/1-6

Therefore

$$M \cong Z_s/N_{s/s'}(A_s)Z_s + \sum_{e=1}^a Z_{p^{a-e_{s'}}}/N_{s/s'}(A_s)Z_{p^{a-e_{s'}}}.$$

This gives the desired result when a = b.

Case 2. Suppose a > b. Then

$$x^{p^a} - 1 = (x^{p^b} - 1) \prod_{k=b+1}^{a} \Phi_{p^k}(x);$$

whence $M \simeq \hat{Z}[x]/(x^{pb}-1) + \sum_k \hat{Z}[x]/(\Phi_{pk}(x))$. By Case 1,

$$\hat{Z}[x]/(x^{p^b-1}) \cong \sum_{s=0}^{a} Z_{p^s s'} / N_{s/s'}(A_s) Z_{p^s s'}$$

Therefore it will suffice to find $\hat{Z}[x]/(\Phi_{p^k}(x))$ for $b+1 \leq k \leq a$. Fix k, and set $\omega = (\rho_{p^k})^{p^{k-\delta}}$. Then ω is a primitive p^{b} th root of unity, and in $\hat{Z}[x]$, $\Phi_{p^k}(x) = \prod_j (x^{p^{k-\delta}} - \bar{\omega}^j)$, where $1 \leq j \leq p^b$, (j, p) = 1. Thus

$$\hat{Z}[x]/(\Phi_{p^k}(x)) \simeq \sum_j \hat{Z}[x]/(x^{p^{k-b}} - \bar{\omega}^j).$$

Now, for each j, $\hat{Z}[x]/(x^{p^{k-b}} - \bar{\omega}^j)$ is isomorphic to $(Z_{p^ks'}/A_sZ_{p^ks'})\langle \overline{\rho_s\rho}_{p^k}^j \rangle$: the isomorphism is given by mapping an element $\sum_i \tilde{\alpha}_i x^i$ of $\hat{Z}[x]/(x^{p^{k-b}} - \tilde{\omega}^j)$ onto the element $\sum_{i} \overline{\alpha_{i}} \rho_{p^{k}}^{ji}$ of $Z_{p^{k}s'} / A_{s} Z_{p^{k}s'}$. Therefore

$$\hat{Z}[x]/(\Phi_{p^{k}}(x)) \cong \sum_{j} (Z_{p^{k}s'}/A_{s}Z_{p^{k}s'})\langle \overline{\rho_{s}\rho_{p^{k}}} \rangle,$$

where $1 \leq j \leq p^b$, (j, p) = 1.

For each j, let σ_j be the element of $\mathfrak{G}(Q_{p^ks'}/Q_{s'})$ induced by the mapping $\rho_{pks'} \rightarrow \rho_s \rho_{pk}^j$, and τ_j be σ_j restricted to Q_s . Then by Lemma 3.3,

$$(Z_{\mathfrak{p}^k\mathfrak{s}'}|A_\mathfrak{s}Z_{\mathfrak{p}^k\mathfrak{s}'})\langle \overline{\rho_\mathfrak{s}\rho}^j_{\mathfrak{p}^k}\rangle \cong Z_{\mathfrak{p}^k\mathfrak{s}'}|(A_\mathfrak{s}Z_{\mathfrak{p}^k\mathfrak{s}'})^{\sigma_j^{-1}},$$

and since

$$Z_{p^ks'}/(A_sZ_{p^ks'})^{\sigma_j} \cong Z_{p^ks'}/A_s^{\tau_j}Z_{p^ks'},$$

it easily follows that

$$\sum_{j} \langle Z_{\mathfrak{p}^{k}\mathfrak{s}'} | A_{\mathfrak{s}} Z_{\mathfrak{p}^{k}\mathfrak{s}'} \rangle \langle \overline{\rho_{\mathfrak{s}}} \overline{\rho_{\mathfrak{p}^{k}}} \rangle \cong \sum_{\tau} Z_{\mathfrak{p}^{k}\mathfrak{s}'} | A_{\mathfrak{s}}^{\tau} Z_{\mathfrak{p}^{k}\mathfrak{s}'}, \tau \in \mathfrak{G}(Q_{\mathfrak{s}} | Q_{\mathfrak{s}'}).$$

Thus

$$\hat{Z}[x]/(\Phi_{p^k}(x)) \cong Z_{p^ks'}/N_{s/s'}(A_s)Z_{p^ks'},$$

and this, together with the formula for $\hat{Z}[x]/(x^{p^b}-1)$, gives the desired result for *M*. This completes the proof of Case 2.

We have now established the theorem for the case m = 1. Now let *m* be greater than 1, and assume the theorem true for all $[ZG_{r'}]([A_s] - [Z_s])$, where *r'* has fewer than *m* distinct prime divisors. Write $r = p^a r'$, where *p* is a prime, a > 0, and (p, r') = 1. We have $G_r \cong G_{p^a} \times G_{r'}$, and it is well-known that this implies $ZG_r \cong ZG_{p^a} \bigotimes_Z ZG_{r'}$. Thus $[ZG_r] =$ $[ZG_{p^a}][ZG_{r'}]$ in $K^0(ZG)$. Since the theorem is true for $ZG_{r'}$ and ZG_{p^a} , we obtain

$$\begin{split} [ZG_{r}]([A_{s}] - [Z_{s}]) &= [ZG_{p^{a}}] \sum_{d'} \left([N_{s/t'}(A_{s})Z_{d'}] - [Z_{d'}] \right) \\ &= \sum_{s} \sum_{d'} \left([N_{d'/d'}(N_{s/t'}(A_{s})Z_{d'})Z_{s}] - [Z_{s}] \right), \end{split}$$

where t' = s/(r', s), d' ranges over all divisors of [r', s] such that ([r', s]/d', t') = 1, and for each $d', d'' = d'/(p^a, d')$ and e ranges over all divisors of $[p^a, d']$ such that $([p^a, d']/e, d'') = 1$.

Now, since ([r', s]/d', t') = 1, t' | d' and hence $Q_{t'}$ is contained in $Q_{d'}$. Similarly, $Q_{d''}$ is contained in Q_e . Furthermore, d' | [r', s], (p, r') = 1, and ([r', s]/d', t') = 1 together imply that $(p^a, d') = (p^a, s)$. Then t' | d' implies that s/(r, s) = t divides d''. Hence Q_t is contained in $Q_{d''}$. We now have the following inclusion diagram:

Fig. 1

It is easy to verify that $\mathfrak{G}(Q_{t'}/Q_t) = \mathfrak{G}(Q_{d'}/Q_{d'})$, and thus that

$$N_{d'/d'}(N_{s/t'}(A_s)Z_{d'})Z_e = N_{s/t}(A_s)Z_e$$

We therefore obtain $[ZG_r]([A_s] - [Z_s]) = \sum_{d'} (\sum_{e} ([N_{s/t}(A_s)Z_e] - [Z_e]),$ where d' ranges over all divisors of [r', s] such that ([r', s]/d', t') = 1, and for each d', e ranges over all divisors of $[p^a, d']$ such that $([p^a, d']/e, d'/(p^a, d')) = 1$. Now write $s = p^b s'$, (p, s') = 1. Then $d' | [r', s] = p^b[r', s']$, and $(p^b[r', s']/d', p^b s'/(r', p^b s')) = 1$ implies that $d' = p^b k$, where s'/(r', s') | k, k | [r', s'], and ([r', s']/k, s'/(r', s')) = 1. Then $e | [p^a, d'] = [p^a, p^b k]$, and $([p^a, p^b k]/e, p^b k/(p^a, p^b k)) = 1$. Thus, if a < b, then e = d', while if $a \ge b$, we have $e = p^i k$, for $0 \le i \le a$. Therefore we obtain the following formulas for $[ZG_r]([A_s] - [Z_s])$:

(i) if a < b,

$$[ZG_r]([A_s] - [Z_s]) = \sum_{a'} ([N_{s/t}(A_s)Z_{a'}] - [Z_{a'}]),$$

where d' | [r', s] and ([r', s]/d', t') = 1;(ii) if $a \ge b$,

$$[ZG_r]([A_s] - [Z_s]) = \sum_{i=0}^{a} \sum_{k} ([N_{s/t}(A_s)Z_{p^ik}] - [Z_{p^ik}]),$$

where s'/(r', s') | k | [r', s'] and ([r', s']/k, s'/(r', s')) = 1. Now consider

$$\sum_{d} \left(\left[N_{s/t}(A_s) Z_d \right] - \left[Z_d \right] \right),$$

where $d \mid [r, s]$ and ([r, s]/d, t) = 1. Let $r = p^a r', s = p^b s'$ as above. Then if a < b, [r, s] = [r', s], and ([r, s]/d, t) = 1 if and only if ([r', s]/d, t') = 1. Thus we may take d dividing [r', s] with ([r', s]/d, t') = 1, so that if $a < b, \sum_d ([N_{s/t}(A_s)Z_d] - [Z_d])$ agrees with formula (i) for $[ZG_r]([A_s] - [Z_s])$. Similarly, if $a \ge b$, we find that $d = p^i k, 0 \le i \le a$, where $s'/(r', s') \mid k \mid [r', s']$ and ([r', s']/k, s'/(r', s')) = 1, whence $\sum_d ([N_{s/t}(A_s)Z_d] - [Z_d])$ agrees with formula (ii) for $[ZG_r]([A_s] - [Z_s])$ when $a \ge b$. This concludes the proof of the theorem.

4. The Elementary Abelian Case

Let G be an Abelian group, F an algebraic number field which is a splitting field for G, and $R = \text{alg. int. } \{F\}$. We shall determine multiplication in $K^0(RG)$.

Write $G = G_1 \times \cdots \times G_k$, where G_i is cyclic of order n_i with generator g_i , and let ρ_i be a fixed primitive n_i th root of unity, for $1 \leq i \leq k$. Denote by $F\langle a_1, ..., a_k \rangle$ the FG-module F on which g_i acts as $\rho_i^{a_i}, 1 \leq i \leq k$. Similarly, if A is an R-ideal in $F, A\langle a_1, ..., a_k \rangle$ will denote the RG-module A on which g_i acts as $\rho_i^{a_i}$. It is easily seen that $\{F\langle a_1, ..., a_k \rangle: 1 \leq a_i \leq n_i, 1 \leq i \leq k\}$ is a full set of non-isomorphic irreducible FG-modules, whence $\{[F \langle a_1, ..., a_k \rangle]: 1 \leq a_i \leq n_i, 1 \leq i \leq k\}$ is a basis for $K^0(FG)$.

Define $f: K^{0}(FG) \rightarrow K^{0}(RG)$ by $f[F\langle a_{1},...,a_{k}\rangle] = [R\langle a_{1},...,a_{k}\rangle], f$ extended linearly to all of $K^{0}(FG)$. Clearly, f is a lifting map for $K^{0}(RG)$.

LEMMA 4.1. f is a ring homomorphism.

Proof. Consider

$$[F\langle a_1,...,a_k\rangle][F\langle b_1,...,b_k\rangle] = [F\langle a_1,...,a_k\rangle \bigotimes_F F\langle b_1,...,b_k\rangle].$$

Map

$$F\langle a_1,...,a_k\rangle \bigotimes_F F\langle b_1,...,b_k\rangle$$
 onto $F\langle a_1+b_1,...,a_k+b_k\rangle$ by $\alpha \otimes \beta \to \alpha\beta$.

It is easily verified that this mapping is an FG-isomorphism, and hence

$$[F\langle a_1,...,a_k\rangle][F\langle b_1,...,b_k\rangle] = [F\langle a_1+b_1,...,a_k+b_k\rangle].$$

Similarly,

$$[R\langle a_1,...,a_k\rangle][R\langle b_1,...,b_k\rangle] = [R\langle a_1+b_1,...,a_k+b_k\rangle],$$

and therefore f is a ring homomorphism.

Heller and Reiner [2] have shown that every element of ker θ may be written as a sum of elements of the form $[A\langle a_1,...,a_k\rangle] - [R\langle a_1,...,a_k\rangle]$, for various choices of the ideal A and the positive integers $a_1,...,a_k$. The following Lemma therefore completes the description of multiplication in $K^0(RG)$.

LEMMA 4.2. In $K^0(RG)$,

$$[R\langle b_1, ..., b_k \rangle]([A\langle a_1, ..., a_k \rangle] - [R\langle a_1, ..., a_k \rangle])$$

= $[A\langle a_1 + b_1, ..., a_k + b_k \rangle] - [R\langle a_1 + b_1, ..., a_k + b_k \rangle].$

Proof. The argument of the proof of Lemma 4.1 shows that

$$[R\langle b_1,...,b_k\rangle][A\langle a_1,...,a_k\rangle] = [A\langle a_1 + b_1,...,a_k + b_k\rangle],$$

and this clearly implies the Lemma.

Now let $G = G_1 \times \cdots \times G_k$ be an elementary Abelian group, with G_i cyclic of order $p, 1 \leq i \leq k$. Let ρ be a fixed primitive pth root of unity, $F = Q(\rho)$, $R = Z[\rho]$. Then F is a splitting field for G, and hence multiplication in $K^0(RG)$ is known.

As above, $F\langle a_1, ..., a_k \rangle$ will denote the *FG*-module *F* on which g_i acts as ρ^{a_i} , for $i \leq i \leq k$, and similarly for $A\langle a_1, ..., a_k \rangle$. Note that, by restriction of

operators, $F\langle a_1, ..., a_k \rangle$ and $A\langle a_1, ..., a_k \rangle$ are QG- and ZG-modules, respectively. Let S be the collection of QG-modules listed below:

For ease of notation, we shall denote an element of S of the form

 $F\langle p,...,p,1,a_{j+1},...,a_k\rangle, 1 \leq j \leq k$, by $F\langle a_{j+1},...,a_k\rangle$.

LEMMA 4.3. S is a full set of nonisomorphic irreducible QG-modules.

Proof. The elements of S are clearly irreducible QG-modules, and the sum of their Q-ranks is $p^k = (G:1)$, so there are the correct number of them. Thus it suffices to show that no two of them are isomorphic as QG-modules.

Let $1 \leq j \leq k$, and suppose that $F\langle a_{j+1}, ..., a_k \rangle \cong F\langle b_{j+1}, ..., b_k \rangle$ as *QG*-modules, where $a_t \neq b_t$ for some t. Then under the isomorphism, $1 \rightarrow \beta$ for some $\beta \neq 0$, whence $\rho^{a_t} = g_j^{a_t} \cdot 1 \rightarrow g_j^{a_t}\beta = \rho^{a_t}\beta$. But also, $\rho^{a_t} = g_t \cdot 1 \rightarrow g_t\beta = \rho^{b_t}\beta$, and therefore we have a contradiction. Now suppose that $F\langle a_{j+1}, ..., a_k \rangle \cong F\langle b_{i+1}, ..., b_k \rangle$, for some $i, 1 \leq i \leq k$, where $i \neq j$. Without loss of generality, we may assume j < i. Then under the isomorphism, $1 \rightarrow \beta$, for some $\beta \neq 0$, and hence $\rho = g_j \cdot 1 \rightarrow g_j\beta = \rho^p\beta = \beta$. Therefore $1 \rightarrow \beta$ and also $\rho \rightarrow \beta$, a contradiction. Since it is clear that Q is not isomorphic to any of the other elements of S, we have thus shown that no two of the elements of S are isomorphic, and the Lemma is proved.

DEFINITION 4.4. Define $\psi: K^0(ZG) \to K^0(RG)$ by $\psi[M] = [R \bigotimes_Z M]$, for all $[M] \in K^0(ZG)$, where $R \bigotimes_Z M$ is an RG-module with action of R given by $r'(r \otimes m) = r'r \otimes m$ and action of G given by $g(r \otimes m) = r \otimes gm$, for all $r' \in R, g \in G$. Similarly, define

 $\eta: K^{0}(QG) \rightarrow K^{0}(FG) \text{ by } \eta[M^{*}] = [F \bigotimes_{Q} M^{*}],$

for all $[M^*] \in K^0(QG)$.

LEMMA 4.5. ψ and η are ring homomorphisms and the following diagram commutes and is exact:

$$0 \to \ker \theta_R \to K^0(RG) \xrightarrow{\theta_R} K^0(FG) \to 0$$

$$\uparrow^{\psi} \qquad \uparrow^{\psi} \qquad \uparrow^{\eta}$$

$$0 \to \ker \theta_Z \to K^0(ZG) \xrightarrow{\theta_Z} K^0(QG) \to 0$$

$$\uparrow$$

$$0$$

Proof. The proof that ψ and η are ring homomorphisms is straightforward. The rows of the diagram are exact by the remarks at the beginning of Section 2, and the Noether-Deuring Theorem ([1], p. 200]) implies that η is monic. One easily checks that ψ maps ker θ_Z into ker θ_R and that $\theta_R \psi = \eta \theta_Z$.

Let A be an R-ideal in F. We shall denote by $A^{(t)}$ the image of A under the Q-automorphism of F induced by the mapping $\rho \rightarrow \rho^t$, $1 \leq t \leq p - 1$. Also, $A\langle a_{j+1}, ..., a_k \rangle$ will denote the ZG-module $A\langle p, ..., p, 1, a_{j+1}, ..., a_k \rangle$, $1 \leq j \leq k$. By Lemma 4.3, $K^0(QG)$ is the free Abelian group with basis $\{[M^*]: M^* \in S\}$, and hence we may define a lifting map $f_Z: K^0(QG) \rightarrow K^0(ZG)$ as follows:

$$f_{Z}[Q] = [Z], f_{Z}[F \langle a_{j+1}, ..., a_{k} \rangle] = [R \langle a_{j+1}, ..., a_{k} \rangle] \quad \text{for} \quad 1 \leqslant j \leqslant k,$$

with f_Z extended linearly to all of $K^0(QG)$. The results of Heller and Reiner [3] now show that every element of ker θ_Z is a sum of elements of the form $[A\langle a_{j+1},...,a_k\rangle] - [R\langle a_{j+1},...,a_k\rangle]$. Thus the following Lemma determines $\psi(\ker \theta_Z)$:

LEMMA 4.6.

$$\psi[A\langle a_{j+1},...,a_k\rangle] = \sum_{i=1}^{p-1} [A^{(i)}\langle p,...,p,t,ta_{j+1},...,ta_k\rangle].$$

Proof. Let $M = R \bigotimes_{\mathbb{Z}} A \langle a_{j+1}, ..., a_k \rangle$, so that $\psi[A \langle a_{j+1}, ..., a_k \rangle] = [M]$, and let $\Phi_p(x)$ be the cyclotomic polynomial of order p. For all $r \otimes a \in M$,

$$\Phi_p(g_j)(r\otimes a)=r\otimes \Phi_p(g_j)a=r\otimes \Phi_p(\rho)a=0;$$

so $\Phi_{p}(g_{i})M = 0$. Let $b_{0} = 1$,

$$b_t = \prod_{i=1}^t (g_i - \rho^i), \quad \text{for} \quad 1 \leq t \leq p-1.$$

Then $M = b_0 M \supset b_1 M \supset \cdots \supset b_{p-1} M = 0$. For each $t, 1 \leq t \leq p-1$, define

$$\gamma_t: M \to A^{(t)} \langle p, ..., p, t, ta_{j+1}, ..., ta_k \rangle \quad \text{by} \quad \gamma(r \otimes a) = ra^{(t)}.$$

It is easily seen that γ_t is a well-defined RG-epimorphism for each t. Consequently, $\gamma_t : b_{t-1}M \to b_{t-1}A^{(t)} \langle p, ..., p, t, ta_{j+1}, ..., ta_k \rangle$ is an epimorphism. However, $A^{(t)} \langle p, ..., p, t, ta_{j+1}, ..., ta_k \rangle$ is isomorphic to

 $b_{t-1}A^{(t)}\langle p,...,p,t,ta_{j+1},...,ta_k\rangle$

by the mapping $y \to b_{t-1}y$; hence we may assume that γ_t maps $b_{t-1}M$ onto

 $A^{(t)}\langle p,..., p, t, ta_{j+1},..., ta_k\rangle$, for $1 \leq t \leq p-1$. Note that b_iM is contained in the kernel of this mapping, since $(g_j - \rho^t)$ annihilates

$$A^{(t)}\langle p,...,p,t,ta_{j+1},...,ta_k\rangle$$
.

Consider γ_1 mapping $b_0M = M$ onto $A^{(1)} \langle p, ..., p, 1, a_{j+1}, ..., a_k \rangle$. Let M_1 be the kernel of this mapping. Then $M/M_1 \cong A^{(1)} \langle p, ..., p, 1, a_{j+1}, ..., a_k \rangle$, and M_1 contains b_1M . Since M_1 contains b_1M , γ_2 maps M_1 onto

 $A^{(2)}\langle p,..., p, 2, 2a_{j+1},..., 2a_k\rangle.$

Let M_2 be the kernel of this mapping. Then

$$M_1/M_2 \simeq A^{(2)} \langle p, ..., p, 2, 2a_{j+1}, ..., 2a_k \rangle,$$

and M_2 contains b_2M . Continuing in this manner, we obtain

 $M = M_0 \supset M_1 \supset \cdots \supset M_{p-1} \supset 0,$

where $M_{t-1}/M_t \cong A^{(t)} \langle p, ..., p, t, ta_{j+1}, ..., ta_k \rangle$, for $1 \leq t \leq p-1$. Hence, in $K^0(RG)$,

$$[M] = \sum_{t=1}^{p-1} [M_{t-1}/M_t] + [M_{p-1}]$$
$$= \sum_{t=1}^{p-1} [A^{(t)} \langle p, ..., p, t, ta_{j+1}, ..., ta_k \rangle] + [M_{p-1}]$$

Now, (M:R) = p - 1 and $(A^{(t)} \langle p, ..., p, t, ta_{j+1}, ..., ta_k \rangle : R) = 1$ for $1 \leq t \leq p - 1$, so a consideration of *R*-ranks shows that $(M_{p-1}:R) = 0$. However, M_{p-1} is a submodule of the *R*-torsion-free *R*-module *M*, and thus is itself *R*-torsion-free. Hence $(M_{p-1}:R) = 0$ implies that $[M_{p-1}] = 0$, and the Lemma is proved.

PROPOSITION 4.7. $\psi: K^0(ZG) \to K^0(RG)$ is a monomorphism.

Proof. Let $x \in \ker \theta_Z$. Then x is a sum of elements of $K^0(ZG)$ of the form

$$[A\langle a_{j+1},...,a_k\rangle] - [R\langle a_{j+1},...,a_k\rangle]$$

where $1 \leq j \leq k$ and $1 \leq a_i \leq p$ for $j < i \leq k$, for various *R*-ideals *A*. Thus, by Lemma 4.6, $\psi(x)$ is a sum of elements of $K^0(RG)$ of the form

$$\sum_{t=1}^{p-1} ([A^{(t)} \langle p, ..., p, t, ta_{j+1}, ..., ta_k \rangle] - [R \langle p, ..., p, t, ta_{j+1}, ..., ta_k \rangle]).$$

Heller and Reiner [2] have shown that such a sum in $K^0(RG)$ is zero only if each ideal appearing in the sum may be written as the product of a principal ideal and a power of some prime ideal P, where P divides the order of G.

It is well-known that the only prime ideal of R which divides p is the principal ideal $(1 - \rho)$; consequently, $\psi(x) = 0$ in $K^0(RG)$ only if each ideal appearing in the sum for $\psi(x)$ is principal. However, if each ideal appearing in the sum for $\psi(x)$ is principal. However, if each ideal appearing in the sum for $x \in \ker \theta_Z$ is principal. But if A is principal, then $A \langle a_{j+1}, ..., a_k \rangle \cong R \langle a_{j+1}, ..., a_k \rangle$ as ZG-modules, whence $[A \langle a_{j+1}, ..., a_k \rangle] - [R \langle a_{j+1}, ..., a_k \rangle] = 0$, and thus x = 0. Therefore ψ : ker $\theta_Z \to \ker \theta_R$ is monic. Now apply the Five-Lemma to the diagram of Lemma 4.5 to conclude that

$$\psi: K^0(ZG) \to K^0(RG)$$

is monic.

COROLLARY 4.8. The lifting map f_z is a ring homomorphism.

Proof. Let f be the lifting map for $K^0(RG)$ of Lemma 4.1. An easy calculation shows that $f_Z = \psi^{-1} f \eta$. Therefore, since η , f, and ψ^{-1} are ring homomorphisms, so is f_Z .

Let $x, y \in K^0(ZG)$. Since ψ is a ring monomorphism $xy = \psi^{-1}(\psi(x) \psi(y))$, and the product $\psi(x) \psi(y)$ may be calculated with the aid of Lemma 4.2. Thus we have shown how multiplication in $K^0(ZG)$ may be determined when G is elementary abelian. We proceed to give formulas which completely describe the multiplication.

THEOREM 4.9. Let G be an elementary Abelian group. The following formulas describe multiplication in $K^0(ZG)$:

(i) [Z]x = x, for all $x \in K^0(ZG)$

(ii)
$$[R\langle b_{i+1},...,b_k\rangle]([A\langle a_{i+1},...,a_k\rangle] - [R\langle a_{i+1},...,a_k\rangle])$$

$$=\sum_{t=1}^{p-1} \left(\left[A^{(t)} \langle b_{j+1}, \dots, b_{i-1}, b_i + t, b_{i+1} + ta_{i+1}, \dots, b_k + ta_k \rangle \right] \\ - \left[R \langle b_{j+1}, \dots, b_{i-1}, b_i + t, b_{i+1} + ta_{i+1}, \dots, b_k + ta_k \rangle \right] \right), \quad if \quad j < i,$$

$$\sum_{t=2}^{p-1} \left(\left[A^{(t)} \langle (p+1-t)b_{i+1} + ta_{i+1}, \dots, (p+1-t)b_k + ta_k \rangle \right] \\ - \left[R \langle (p+1-t)b_{i+1} + ta_{i+1}, \dots, (p+1-t)b_k + ta_k \rangle \right] \right), \quad if \quad j = i,$$

$$\sum_{t=1}^{p-1} \left(\left[A \langle a_{i+1}, \dots, a_{j-1}, a_j + t, a_{j+1} + tb_{j+1}, \dots, a_k + tb_k \rangle \right] \\ - \left[R \langle a_{i+1}, \dots, a_{j-1}, a_j + t, a_{j+1} + tb_{j+1}, \dots, a_k + tb_k \rangle \right] \right), \quad if \quad j > i.$$

Proof. Formula (i) is clearly true. In order to prove (ii), we note that, since $y = [R\langle b_{i+1}, ..., b_k \rangle]([A\langle a_{i+1}, ..., a_k \rangle] - [R\langle a_{i+1}, ..., a_k \rangle]) \in \ker \theta_Z,$ y is a sum of elements of the form

$$[C\langle c_{r+1},...,c_k\rangle]-[R\langle c_{r+1},...,c_k\rangle],$$

and therefore $\psi(y) \in \ker \theta_R$ is a sum of elements of the form

$$\sum_{t=1}^{p-1} ([C^{(t)} \langle p, ..., p, t, tc_{r+1}, ..., tc_k \rangle] - [R \langle p, ..., p, t, tc_{r+1}, ..., tc_k \rangle]).$$

It is clear that the elements $[C\langle c_{r+1},...,c_k\rangle]$ appearing in the sum for y can be found by determining the elements of form $[C^{(1)}\langle p,...,p,1,c_{r+1},...,c_k\rangle]$ appearing in the sum for $\psi(y)$.

Suppose j < i. Applying Lemmas 4.6 and 4.2, we find that

$$\begin{split} \psi(y) &= \sum_{t=1}^{p-1} \sum_{s=1}^{p-1} ([A^{(t)} \langle p, ..., p, s, sb_{j+1}, ..., sb_{i-1}, sb_i + t, sb_{i+1} + ta_{i+1}, ..., sb_k + ta_k)] \\ &- [R \langle p, ..., p, s, sb_{j+1}, ..., sb_{i-1}, sb_i + t, sb_{i+1} + ta_{i+1}, ..., sb_k + ta_k)]) \\ &= \sum_{t=1}^{p-1} ([A^{(t)} \langle p, ..., p, 1, b_{j+1}, ..., b_{i-1}, b_i + t, b_{i+1} + ta_{i+1}, ..., b_k + ta_k)] \\ &- [R \langle p, ..., p, 1, b_{j+1}, ..., b_{i-1}, b_i + t, b_{i+1} + ta_{i+1}, ..., b_k + ta_k)]) + u, \end{split}$$

where $u \in \ker \theta_R$ and none of the elements appearing in u have the form $[C \langle p, ..., p, 1, c_{r+1}, ..., c_k \rangle]$. Therefore,

$$y = \sum_{i=1}^{p-1} \left(\left[A^{(i)} \langle b_{j+1}, ..., b_{i-1}, b_i + t, b_{i+1} + ta_{i+1}, ..., b_k + ta_k \rangle \right] - \left[R \langle b_{j+1}, ..., b_{i-1}, b_i + t, b_{i+1} + ta_{i+1}, ..., b_k + ta_k \rangle \right] \right),$$

which agrees with the formula. The same procedure will establish the formulas for the cases j = i, j > i. This completes the proof of the theorem.

References

- 1. CURTIS, C. W. AND REINER, I. "Representation Theory of Finite Groups and Associative Algebras." Interscience, New York, 1962.
- 2. HELLER, A. AND REINER, I. Grothendieck groups of orders in semi-simple algebras. Trans. Am. Math. Soc. 112 (1964), 344-355.
- HELLER, A. AND REINER, I. Grothendieck groups of integral group rings. Illinois J. Math. 9 (1965), 349-359.
- 4. SERRE, J.-P. "Corps Locaux." Hermann, Paris, 1962.
- SWAN, R. G. Induced representations and projective modules. Ann. Math. 71 (1960), 552-578.
- 6. SWAN, R. G. The Grothendieck ring of a finite group. Topology 2 (1963), 85-110.