provided by Elsevier - Publisher Conned

JOURNAL OF ALGEBRA 7, 77-90 (1967)

Multiplication in Grothendieck Rings of Integral Group Rings

D. L. STANCL

Mathematics Institute, University of Warwick, Coventry, England Communicated by J. A. Green Received September 6, 1966

1. INTRODUCTION

Let A be a ring, and consider the category of all finitely generated left A-modules. Recall that the Grothendieck group $K⁰(A)$ of this category is the abelian additive group generated by all symbols $[M]$, where M ranges over all finitely generated left A -modules, with relations

 $[M] = [M'] + [M'']$

whenever there exists a short exact sequence of A -modules

$$
0 \to M' \to M \to M'' \to 0.
$$

In particular, let G be a finite group, and let $R = \text{alg. int.} \{F\}$, the ring of all algebraic integers of the algebraic number field F . Denote by FG the group algebra of G over F , and by RG the integral group ring of G over R . The Grothendieck group $K^0(RG)$ may be given a ring structure as follows: for all $[M], [N] \in K^0(RG)$, set $[M][N] = [M \otimes_R N]$, where $M \otimes_R N$ is an RG-module with action of G given by $g(m \otimes n) = gm \otimes gn$, for all $g \in G$. Similarly define multiplication in $K^0(FG)$ by $[M^*][N^*] = [M^* \otimes_F N^*].$ Swan [5] has shown that this makes $K^0(RG)$ and $K^0(FG)$ into commutative rings with identities $[R]$ and $[F]$, respectively.

The Grothendieck ring $K^0(RG)$ has been studied by Heller and Reiner [2, 3] FILE SHORICHER AND FIRE GIVEN SUBSECT AND THE GRAPH $[5,5]$ and swan $[3, 0]$, in $[3]$, itener and internet have given an explicit formula for the additive structure of $K(NO)$, and in $[0]$, owan has given a formula tor mumpheamon in $K^2(\mathbb{Z}G)$ when G is cyclic or prime power order. In this paper we shall generalize Swan's results to the case where G is an arbitrary cyclic group, and in addition shall show how multiplication in $K^0(ZG)$ may be determined when G is an elementary abelian group.

78 STANCL

2. STATEMENT OF THE PROBLEM

Keeping the notation of Section 1, we define a mapping

$$
\theta: K^0(RG) \to K^0(FG)
$$

by $\theta[M] = [F \bigotimes_R M]$. Here $F \bigotimes_R M$ is an FG-module with action of F given by $\beta(\alpha \otimes m) = \beta \alpha \otimes m$, for all $\beta \in F$, and action of G given by $g(\alpha \otimes m) =$ $\alpha \otimes \varrho m$, for all $\varrho \in G$. It is easily verified that θ is a ring epimorphism, and we thus obtain an exact sequence

$$
0 \to \ker \theta \to K^0(RG) \stackrel{\theta}{\to} K^0(FG) \to 0.
$$

DEFINITION 2.1. A linear mapping $f : K^0(FG) \to K^0(RG)$ such that $\theta f = 1$ is called a *lifting map for* $K^0(RG)$.

We summarize some results of Swan as

PROPOSITION 2.2. (Swan [6]) Let f be a lifting map for $K^0(RG)$. Then, as Abelian groups, $K^0(FG) + \ker \theta \simeq K^0(RG)$, the isomorphism being given by $(x, y) \rightarrow f(x) + y$. Furthermore, ker θ is a square-nilpotent ideal in K^o(RG).

Proposition 2.2 shows that in order to determine multiplication in $K^0(RG)$ we must calculate all products of the form

$$
(f(x_1) + y_1)(f(x_2) + y_2) = f(x_1)f(x_2) + f(x_1)y_2 + f(x_2)y_1.
$$

For each FG-module M^* , denote by $\chi(M^*)$ the F-character of M^* . One verifies without difficulty that the mapping $[M^*] \rightarrow \chi(M^*)$ is a ring isomorphism between $K^0(FG)$ and the character ring of G, and thus $K^0(FG)$ may be regarded as a known ring. Also, if $\{M_i^*: 1 \leq i \leq m\}$ is a full set of non-isomorphic irreducible FG -modules, then the Jordan-Hölder theorem for FG-modules implies that $K^0(FG)$ is the free abelian group with basis $\{[M_i^*]: 1 \leq i \leq m\}$. Thus, in order to determine multiplication in $K^0(RG)$ it will suffice to find the following products:

$$
f[M_i^*] \cdot f[M_j^*], \quad \text{for} \quad 1 \leqslant i, j \leqslant m \tag{1}
$$

and

$$
f[M_i^*] \cdot y, \quad \text{for} \quad 1 \leqslant i \leqslant m, \, y \in \ker \theta. \tag{2}
$$

The remainder of this paper will be devoted to determining the products (1) I'm remainder of this paper will be devot

3. THE CYCLIC CASE

Throughout this section, G will denote a cyclic group of order n with generator g. Let Q be the rational field and Z the ring of rational integers. We shall determine multiplication in $K^0(ZG)$.

Let ρ_n be a fixed primitive nth root of unity, and for each s dividing n, set $\rho_s = \rho_n^{n/s}$. Then ρ_s is a primitive sth root of unity. Denote by Q_s the QG-module $Q(\rho_s)$ on which g acts as ρ_s . If g' is a generator of G such that $g' \neq g$, let Q'_s denote the QG-module $Q(\rho_s)$ on which g' acts as ρ_s .

LEMMA 3.1. $Q'_s \cong Q_s$ as QG-modules.

Proof. Since g' and g both generate G, $g' = g^k$, for some k, $(k, n) = 1$. Let σ denote the Q-automorphism of $Q(\rho_s)$ induced by the mapping $\rho_s \rightarrow \rho_s^k$. The mapping of Q'_s onto Q_s defined by $\alpha \rightarrow \alpha^{\sigma}$, for all $\alpha \in Q'_s$, is the desired QG-isomorphism.

The above Lemma shows that we may refer unambiguously to the QG-module Q_s . Similarly, we may refer to the ZG-module Z_s , where Z_s denotes the ZG-module $Z[\rho_s]$ on which g acts as ρ_s .

It is well-known that ${Q_s : s \mid n}$ is a full set of non-isomorphic irreducible QG -modules, and hence $K^0(QG)$ is the free abelian group with basis $\{[Q_s] : s | n\}$. Define $f : K^0(QG) \to K^0(ZG)$ by $f[Q_s] = [Z_s]$, for all s dividing n, f extended linearly to all of $K^0(QG)$. It is clear that f is a lifting map for $K^0(ZG)$, and Swan [6] has shown that f is in fact a ring homomorphism. Since $K^0(QG)$ is a known ring, this allows us to compute all products of the form given in (1).

It remains to determine all products of the form $[Z_r]$ y, for all r dividing *n* and $y \in \ker \theta$. The results of Heller and Reiner [3] show that ker $\theta = \sum_{s|n} ([A_s] - [Z_s]) : A_s = Z_s$ -ideal in Q_s . Thus it will suffice to find $[Z_r]([A_s] - [Z_s])$, for all r, s dividing n and all choices of A_s . For each r, let G_r be the quotient group of G of order r, and form the ZG-module ZG_r . The following Lemma shows that it suffices to determine all products of the form $[ZG_r]([A_s] - [Z_s])$:

LEMMA 3.2. In $K^0(ZG), [Z_r] = \sum_{d|r} \mu(r/d)[ZG_d]$, where μ is the Möbius function.

Proof. Let $\Phi_r(x)$ be the cyclotomic polynomial of order r. It is well $k = 1$ \log_k , \log_k and \log_k is equally that \log_k \log_k action that $\mathcal{L}_r(x) = \prod_{d|r} (x^2 - 1)^{r^{(1)}/r^2}$. INOW, $\mathcal{L}_r \leq \mathcal{L}[\mathcal{X}](\mathcal{Y}_r(\mathcal{X}))$, where \mathcal{Y} acts on the right-hand side as x, whence $Z_r \cong Z[x]/(\prod_{d|r} (x^d - 1)^{\mu(r/d)})$. It is clear that $Z[x]/(\prod_{d|r} (x^d - 1)^{\mu(r/d)}) \cong \sum_{d|r} \mu(r/d)(Z[x]/(x^d - 1))$, and since $Z[x]/(x^d - 1) \cong ZG_d$, the Lemma is proved.

Let s | n, and let A_s be any Z_s -ideal in Q_s . Then Z_s/A_s is a ZG -module on

which g acts as $\bar{\rho}_s$, where $\bar{\rho}_s$ is ρ_s reduced modulo A_s . If ω is any sth root of unity, we denote by $(Z_s/A_s)\langle \bar{\omega} \rangle$ the ZG-module Z_s/A_s on which g acts as $\bar{\omega}$. We also introduce the following notation: if $s | n, t | s$, then $\mathfrak{G}(Q_s/Q_t)$ will denote the Galois group of Q_s over Q_t and $N_{s/t}$ the norm from Q_s to Q_t .

LEMMA 3.3. Let $\sigma \in \mathfrak{G}(Q_s/Q)$. Then $(Z_s/A_s) \tilde{\rho}_s^{\sigma} \rangle \simeq Z_s/A_s^{\sigma^{-1}}$ as ZG-modules. **Proof.** Map $(Z_s/A_s)\overline{\langle \rho_s\sigma \rangle}$ onto $Z_s/A_s^{\sigma^{-1}}$ by $\overline{\alpha} \rightarrow \overline{\alpha}^{\sigma^{-1}}$. This the desired ZG-isomorphism.

We now state the main result of this section.

THEOREM 3.4. Let G be a cyclic group of order n. Then multiplication in $K^0(ZG)$ is given by the following formula:

$$
[ZG_r]([A_s] - [Z_s]) = \sum_{d} ([N_{s/t}(A_s)Z_d] - [Z_d]),
$$

for all r, s dividing n, where $t = s/(r, s)$ and d ranges over all divisors of $[r, s]$ such that $([r, s]/d, t) = 1$.

Proof. The proof is by induction on m , the number of distinct prime divisors of r.

Let $m = 1$. Then $r = p^a$, for some prime p, with $a \ge 0$. If $a = 0$, then $ZG_r = Z$ and the theorem is trivial. Hence we may suppose $a > 0$. Let $\hat{Z} = Z_s/A_s$. Since $0 \to A_s \to Z_s \to \hat{Z} \to 0$ is an exact sequence of ZG-modules, $[ZG_r]([A_s] - [Z_s]) = -[ZG_r \otimes_Z \hat{Z}]$, and it will suffice to find the ZG-module $M = ZG_r \bigotimes_Z \hat{Z}$. Since $\hat{Y} = p^a$, $ZG_r \cong Z[x]/(x^{p^a} - 1)$, and we obtain $M \cong \hat{Z}[x]/(x^{p^a}-1)$, where g acts as $\bar{\rho}_s x$ on the right-hand side. We now write $s = p^b s'$, where $b \ge 0$ and $(p, s') = 1$, and proceed by cases:

Case 1. Suppose $a \leq b$. Then $\rho_s = \rho \omega$, where ρ is some primitive s'th root of unity and ω is some primitive p^b th root of unity. Set $\omega_1 = \omega^{p^{b-a}}$. $T_{\rm eff}$ is a primitive path root of unity. Since $Z_{\rm eff}$ is all path roots all path \overline{a} unity, \overline{a}

$$
x^{p^a}-1=\prod_{k=1}^{p^a} (x-\bar{\omega}_1{}^k)\quad {\rm in}\quad \hat{Z}[x],
$$

whence

$$
M \cong \sum_{k=1}^{p^a} \widehat{Z}[x]/(x - \bar{\omega}_1^{k}) \cong \sum_{k=1}^{p^a} \widehat{Z}\langle \overline{\rho_s\omega_1^{k}}\rangle.
$$

Now if $a < b$, $\rho_s \omega_1^k$ is a primitive sth root of unity for each k, $1 \leq k \leq p^a$, and we denote by σ_k the Q-automorphism of Q_s induced by the mapping $\rho_s \rightarrow \rho_s \omega_1^k$. Then

$$
M \simeq \sum_{k=1}^{p^a} \hat{Z} \langle \bar{\rho}_{s}^{a_k} \rangle,
$$

and thus, by Lemma 3.3,

$$
M \simeq \sum_{k=1}^{p^{\alpha}} Z_s / A_s^{q^{-1}}.
$$

But it is clear that as k ranges from 1 to p^a , σ_k ranges over all elements of $\mathfrak{G}(Q_s/Q_{p^b-a_s}),$ and hence $M \cong \sum_{\alpha} Z_s/A_s^{\alpha}, \, \alpha \in \mathfrak{G}(Q_s/Q_{p^{b-a_s}}).$ Therefore $M \simeq Z_s/N_{s/\mathit{p^{b-a}s'}}(A_s)Z_s$. This yields the desired result when $a < b$. If $a = b$, then $\omega_1 = \omega$, and

$$
M \simeq \sum_{k=1}^{p^a} \hat{Z} \langle \overline{\rho_s \omega^k} \rangle = \sum_{k=1}^{p^a} \hat{Z} \langle \overline{\rho \omega^{1+k}} \rangle = \sum_{k=1}^{p^a} \hat{Z} \langle \overline{\rho \omega^k} \rangle.
$$

Thus $M \simeq \sum_{i} 2\langle \overline{\rho\omega^i} \rangle + \sum_{i} 2\langle \overline{\rho\omega^i} \rangle$, where $1 \leq j \leq p^a$, $(j, p) = 1$, and $1 \leq i \leq p^a$, $(i, p) \neq 1$. Since $(j, p) = 1$, each $\rho \omega^j$ is a primitive sth root of unity, and an analysis similar to that carried out for the case $a < b$ shows that $\sum_i Z \langle \rho \omega^i \rangle \simeq Z_s/N_{s/s'}(A_s)Z_s$.

Now consider

$$
\sum_i\hat{Z}\langle\overline{\rho\omega^i}\rangle=\sum_{e=1}^a\sum_{h}\hat{Z}\langle\overline{\rho\omega^{hp^e}}\rangle,
$$

where $1 \leqslant h \leqslant p^{a-e}$, $(h, p) - 1$. Set $Y - \hat{Z} \langle \overline{\rho \omega}^h \overline{\nu}^e \rangle$. It is clear that Y is a $Z[\rho\omega^{p^e}]$ -module, and as such, $Y \simeq Z[\rho\omega^{p^e}]/N_{s/p^{a-e}s}(A_s)$ (see [4], pp. 27–28). Consequently, as a ZG-module,

$$
Y \simeq (Z_{p^{a-s}s'}/N_{s/p^{a-s}s'}(A_s)) \langle \rho \omega^{\lambda p^s} \rangle.
$$

For each h, $1 \leqslant h \leqslant p^{a-\epsilon}$, $(h, p) = 1$, let σ_b be the element of $\mathfrak{G}(Q_{p^{a-\epsilon}s'}/Q_{s'})$ induced by the mapping $\rho_{\mathbf{p}^a \to \mathbf{p}} \rightarrow \rho \omega^{hp^a}$. By Lemma 3.3,

$$
Y \simeq Z_{p^{\alpha-s}s'}/(N_{s/p^{\alpha-s}s'}(A_s))^{\sigma_{h}^{-1}},
$$

and hence we find that

$$
\sum_{h} \hat{Z} \langle \overline{\rho \omega}^{h p^e} \rangle \simeq Z_{p^{e-a}s'} |N_{s/s'}(A_s) Z_{p^{a-a}s'} , \text{ for each } e, \text{ eq } 1 \leqslant e \leqslant a.
$$

 $481/7/1 - 6$

Therefore

$$
M \simeq Z_s/N_{s/s'}(A_s)Z_s + \sum_{e=1}^a Z_{p^{a-e}s'}/N_{s/s'}(A_s)Z_{p^{a-e}s'}.
$$

This gives the desired result when $a = b$.

Case 2. Suppose $a > b$. Then

$$
x^{p^a}-1=(x^{p^b}-1)\prod_{k=b+1}^a \Phi_{p^k}(x);
$$

whence $M \simeq \hat{Z}[x]/(x^{p^b} - 1) + \sum_k \hat{Z}[x]/(\Phi_{p^k}(x))$. By Case 1,

$$
\hat{Z}[x]/(x^{p^b-1}) \simeq \sum_{s=0}^a Z_{p^s s'} / N_{s/s'}(A_s) Z_{p^s s'}.
$$

Therefore it will suffice to find $\hat{Z}[x]/(\Phi_n(x))$ for $b + 1 \leq k \leq a$.

Fix k, and set $w = (p_1)^{p^{k-3}}$. Then w is a primitive p^{b} th root of unity, and in $\hat{Z}[x]$, $\Phi_{\mu}(x) = \prod_{i} (x^{p^{k-1}} - \bar{\omega}^{i})$, where $1 \leq i \leq p^{k}$, $(i, p) = 1$. Thus

$$
\hat{Z}[x]/(\Phi_{p^k}\!(x)) \cong \sum_{j} \hat{Z}[x]\Big/(x^{p^{k-b}} - \bar{\omega}^j).
$$

Now, for each j, $\hat{Z}[x]/(x^{p^{k-3}} - \bar{\omega}^j)$ is isomorphic to $(Z_{p^k s'}/A_s Z_{p^k s'})\langle \overline{\rho_s \rho_{p'}^j} \rangle$: the isomorphism is given by mapping an element $\sum_i \bar{\alpha}_i x^i$ of $\hat{Z}[x]/(x^{p^{k-3}} - \bar{\omega}^j)$ onto the element $\sum_i \overline{\alpha_i \rho_p^{i_k}}$ of $Z_{p^ks'}/A_sZ_{p^ks'}$. Therefore

$$
\hat{Z}[x]/(\Phi_{p^k}(x)) \simeq \sum_{j} (Z_{p^ks'}/A_sZ_{p^ks'})\langle \rho_{s}\rho_{p^ks'}^{j}\rangle,
$$

where $1 \leq j \leq p^{b}$, $(j, p) = 1$.

For each j, let σ_j be the element of $\mathfrak{G}(Q_{p^ks'}/Q_{s'})$ induced by the mapping $\rho_{n^ks'} \to \rho_s \rho_{n^k}^j$, and τ_j be σ_j restricted to Q_s . Then by Lemma 3.3,

$$
(Z_{p^ks'}/A_sZ_{p^ks'})\langle\rho_{s}\rho_{p^k}^{j}\rangle \simeq Z_{p^ks'}/(A_sZ_{p^ks'})^{\sigma_j^{-1}},
$$

and since

$$
Z_{p^ks'}/(A_sZ_{p^ks'})^{\sigma_j} \simeq Z_{p^ks'}/A_s^{\tau_j}Z_{p^ks'}\,,
$$

it easily follows that

$$
\sum_{j} (Z_{p^k s'} / A_s Z_{p^k s'}) \langle \overline{\rho_s \rho_{p'} s} \rangle \simeq \sum_{\tau} Z_{p^k s'} / A_s^{\tau} Z_{p^k s'} , \tau \in \mathfrak{G}(Q_s | Q_{s'}).
$$

Thus

$$
Z[x]/(\Phi_{p^k}(x)) \simeq Z_{p^ks'}/N_{s/s'}(A_s)Z_{p^ks'},
$$

and this, together with the formula for $\hat{Z}[x]/(x^{p^b}-1)$, gives the desired result for M. This completes the proof of Case 2.

We have now established the theorem for the case $m = 1$. Now let m be greater than 1, and assume the theorem true for all $[ZG_r][[A_r] - [Z_s]$), where r' has fewer than m distinct prime divisors. Write $r = p^a r'$, where p is a prime, $a > 0$, and $(p, r') = 1$. We have $G_r \simeq G_{p^a} \times G_{r'}$, and it is well-known that this implies $ZG_r \simeq ZG_{p^a} \otimes_Z ZG_{r'}$. Thus $[ZG_r] =$ $[ZG_{\mathfrak{g}^a}][ZG_{\mathfrak{r}'}]$ in $K^0(ZG)$. Since the theorem is true for $ZG_{\mathfrak{r}'}$ and $ZG_{\mathfrak{g}^a}$, we obtain

$$
[ZG_r]([A_s] - [Z_s]) = [ZG_{p^a}] \sum_{d'} ([N_{s/t'}(A_s)Z_{d'}] - [Z_{d'}])
$$

$$
= \sum_{e} \sum_{d'} ([N_{d'/d'}(N_{s/t'}(A_s)Z_{d'})Z_s] - [Z_e]),
$$

where $t' = s/(r', s)$, d' ranges over all divisors of $[r', s]$ such that $([r', s]/d', t') = 1$, and for each d', $d'' = d'/(\rho^a, d')$ and e ranges over all divisors of $[p^a, d']$ such that $([p^a, d']/e, d'') = 1$.

Now, since $([r', s]/d', t') = 1$, $t' | d'$ and hence $Q_{t'}$ is contained in $Q_{d'}$. Similarly, $Q_{d'}$ is contained in Q_e . Furthermore, $d' | [r', s]$, $(p, r') = 1$, and $([r', s]/d', t') = 1$ together imply that $(p^a, d') = (p^a, s)$. Then $t' | d'$ implies that $s/(r, s) = t$ divides d''. Hence Q_t is contained in $Q_{d'}$. We now have the following inclusion diagram:

It is easy to verify that $\mathfrak{G}(Q_t/Q_t) = \mathfrak{G}(Q_{d}/Q_{d})$, and thus that

$$
N_{a'/a''}(N_{s/t'}(A_s)Z_{a'})Z_e=N_{s/t}(A_s)Z_e.
$$

We therefore obtain $VZQ10A1 - VZ1$, $\sum_{k=1}^{\infty}$ (Eq. (4)Z,I = [Z]), we increase over $[Z\mathcal{Q}_r]([X_s] - [Z_s]) = \sum_{d'} (\sum_{e} ([Y_s](X_s)\mathcal{Z}_e) - [Z_e])$ where d' ranges over all divisors of $[r', s]$ such that $([r', s]/d', t') = 1$, and for each d', e ranges over all divisors of $[p^a, d']$ such that $([p^a, d']/e, d'/(p^a, d'))=1$.

Now write $s = p^{b}s'$, $(p, s') = 1$. Then $d' | [r', s] = p^{b}[r', s']$, and $(p^b[r', s']/d', p^b s'/(r', p^b s')) = 1$ implies that $d' = p^b k$, where $s'/(r', s') | k$, $k | [r', s']$, and $([r', s']/k, s'/(r', s')) = 1$. Then $e | [p^a, d'] = [p^a, p^b k]$, and $([p^a, p^b k]/e, p^b k/(p^a, p^b k)) = 1$. Thus, if $a < b$, then $e = d'$, while if $a \geq b$, we have $e = p^i k$, for $0 \leq i \leq a$. Therefore we obtain the following formulas for $[ZG_r]([A_s] - [Z_s])$:

(i) if $a < b$,

$$
[ZG_r]([A_s] - [Z_s]) = \sum_{d'} ([N_{s/t}(A_s)Z_{d'}] - [Z_{d'}]),
$$

where $d' | [r', s]$ and $([r', s]/d', t') = 1;$ (ii) if $a \geqslant b$,

$$
[ZG_r]([A_s] - [Z_s]) = \sum_{i=0}^a \sum_k ([N_{s/t}(A_s)Z_{p^ik}] - [Z_{p^ik}]),
$$

where $s'/(r', s') | k | [r', s']$ and $([r', s']/k, s'/(r', s')) = 1$. Now consider

$$
\sum_{d} ([N_{s/t}(A_s)Z_d] - [Z_d]),
$$

where $d | [r, s]$ and $([r, s]/d, t) = 1$. Let $r = p^a r'$, $s = p^b s'$ as above. Then if $a < b$, $[r, s] = [r', s]$, and $([r, s]/d, t) = 1$ if and only if $([r', s]/d, t') = 1$. Thus we may take d dividing $[r', s]$ with $([r', s]/d, t') = 1$, so that if $a < b$, $\sum_{d} ([N_{s/t}(A_s)Z_d] - [Z_d])$ agrees with formula (i) for $[ZG_r]([A_s] - [Z_s]).$ Similarly, if $a \ge b$, we find that $d = p^i k$, $0 \le i \le a$, where $s'/(r', s') | k | [r', s']$ and $([r', s']/k, s'/(r', s')) = 1$, whence $\sum_{d} ([N_{s/t}(A_s)Z_d] - [Z_d])$ agrees with formula (ii) for $[ZG_r]([A_s] - [Z_s])$ when $a \geq b$. This concludes the proof of the theorem.

4. THE ELEMENTARY ABELIAN CASE

Let G be an Abelian group, F an algebraic number field which is a splitting field for G, and $R = \text{alg. int.} \{F\}$. We shall determine multiplication in $K^0(RG)$. $W(x, \alpha, \alpha) = \alpha + \alpha + \alpha + \alpha + \alpha + \alpha$

which $\sigma = \sigma_1 \wedge \cdots \wedge \sigma_k$, where σ_i is cyclic of order n_i with generator s_i , and let ρ_i be a fixed primitive n_i th root of unity, for $1 \leq i \leq k$. Denote by $F\langle a_1, ..., a_k \rangle$ the FG-module F on which g_i acts as $\rho_i^{a_i}$, $1 \leq i \leq k$. Similarly, if *A* is an *R*-ideal in *F*, $A \langle a_1, ..., a_k \rangle$ will denote the *RG*-module *A* on which g_i acts as $\rho_i^{a_i}$. It is easily seen that $\{F \langle a_1, ..., a_k \rangle : 1 \leq a_i \leq n_i, 1 \leq i \leq k\}$ is a full set of non-isomorphic irreducible FG-modules, whence $\{[F\langle a_1, ..., a_k\rangle]\}$: $1 \leqslant a_i \leqslant n_i$, $1 \leqslant i \leqslant k$ is a basis for $K^0(FG)$.

Define $f: K^0(FG) \to K^0(RG)$ by $f[F\langle a_1, ..., a_k \rangle] = [R\langle a_1, ..., a_k \rangle], f$ extended linearly to all of $K^0(FG)$. Clearly, f is a lifting map for $K^0(RG)$.

LEMMA 4.1. f is a ring homomorphism.

Proof. Consider

$$
[F\langle a_1,\ldots,a_k\rangle][F\langle b_1,\ldots,b_k\rangle]=[F\langle a_1,\ldots,a_k\rangle\bigotimes_F F\langle b_1,\ldots,b_k\rangle].
$$

iMap

$$
F\langle a_1,\ldots,a_k\rangle \bigotimes_F F\langle b_1,\ldots,b_k\rangle \text{ onto } F\langle a_1+b_1,\ldots,a_k+b_k\rangle \text{ by } \alpha \bigotimes \beta \to \alpha\beta.
$$

It is easily verified that this mapping is an FG -isomorphism, and hence

$$
[F\langle a_1,\ldots,a_k\rangle][F\langle b_1,\ldots,b_k\rangle]=[F\langle a_1+b_1,\ldots,a_k+b_k\rangle].
$$

Similarly,

$$
[R\langle a_1,\ldots,a_k\rangle][R\langle b_1,\ldots,b_k\rangle]=[R\langle a_1+b_1,\ldots,a_k+b_k\rangle],
$$

and therefore f is a ring homomorphism.

Heller and Reiner [2] have shown that every element of ker θ may be written as a sum of elements of the form $[A\langle a_1, ..., a_k \rangle] - [R\langle a_1, ..., a_k \rangle],$ for various choices of the ideal A and the positive integers $a_1, ..., a_k$. The following Lemma therefore completes the description of multiplication in $K^0(RG)$.

LEMMA 4.2. In
$$
K^0(RG)
$$

$$
[R\langle b_1, ..., b_k\rangle][[A\langle a_1, ..., a_k\rangle] - [R\langle a_1, ..., a_k\rangle])
$$

= $[A\langle a_1 + b_1, ..., a_k + b_k\rangle] - [R\langle a_1 + b_1, ..., a_k + b_k\rangle].$

Proof. The argument of the proof of Lemma 4.1 shows that

$$
[R\langle b_1,\ldots,b_k\rangle][A\langle a_1,\ldots,a_k\rangle]=[A\langle a_1+b_1,\ldots,a_k+b_k\rangle],
$$

and this clearly implies the Lemma.

Now let $G = G_1 \times \cdots \times G_k$ be an elementary Abelian group, with G_i cyclic of order $p, 1 \leq i \leq k$. Let ρ be a fixed primitive pth root of unity, $F = Q(\rho)$, $R = Z[\rho]$. Then F is a splitting field for G, and hence multiplication in $K^0(RG)$ is known.

As above, $F\langle a_1, ..., a_k \rangle$ will denote the FG-module F on which g_i acts as ρ^{a_i} , for $i \leqslant i \leqslant k$, and similarly for $A \langle a_1, ..., a_k \rangle$. Note that, by restriction of operators, $F\langle a_1, ..., a_k \rangle$ and $A\langle a_1, ..., a_k \rangle$ are QG- and ZG-modules, respectively. Let S be the collection of QG-modules listed below:

$$
Q, F\langle p,\ldots,p,1\rangle, F\langle p,\ldots,p,1,a_k\rangle \quad \text{where} \quad 1 \leq a_k \leq p,\ldots, \\
F\langle p,1,a_3,\ldots,a_k\rangle \quad \text{where} \quad 1 \leq a_i \leq p \quad \text{for} \quad 3 \leq i \leq k, \\
F\langle 1,a_2,\ldots,a_k\rangle \quad \text{where} \quad 1 \leq a_i \leq p \quad \text{for} \quad 2 \leq i \leq k.
$$

For ease of notation, we shall denote an element of S of the form

 $F\langle p,\ldots,p,1,a_{i+1},\ldots,a_k\rangle, 1\leq j\leq k, \text{ by } F\langle a_{i+1},\ldots,a_k\rangle.$

LEMMA 4.3. S is a full set of nonisomorphic irreducible OG -modules.

Proof. The elements of S are clearly irreducible QG -modules, and the sum of their Q-ranks is $p^k = (G: 1)$, so there are the correct number of them. Thus it suffices to show that no two of them are isomorphic as QG -modules.

Let $1 \leq j \leq k$, and suppose that $F\langle a_{j+1},..., a_k \rangle \cong F\langle b_{j+1},..., b_k \rangle$ as QG-modules, where $a_t \neq b_t$ for some t. Then under the isomorphism, $1 \rightarrow \beta$ for some $\beta \neq 0$, whence $\rho^{a_i} = g_i^{a_i} \cdot 1 \rightarrow g_i^{a_i} \beta = \rho^{a_i} \beta$. But also, $\rho^{a_t} = g_t \cdot 1 \rightarrow g_t \beta = \rho^{b_t} \beta$, and therefore we have a contradiction. Now suppose that $F\langle a_{i+1},..., a_k\rangle \cong F\langle b_{i+1},..., b_k\rangle$, for some $i, 1 \leq i \leq k$, where $i \neq j$. Without loss of generality, we may assume $j < i$. Then under the isomorphism, $1 \rightarrow \beta$, for some $\beta \neq 0$, and hence $\rho = g_i \cdot 1 \rightarrow g_i \beta = \rho^p \beta = \beta$. Therefore $1 \rightarrow \beta$ and also $\rho \rightarrow \beta$, a contradiction. Since it is clear that Q is not isomorphic to any of the other elements of S, we have thus shown that no two of the elements of S are isomorphic, and the Lemma is proved.

DEFINITION 4.4. Define $\psi : K^0(ZG) \to K^0(RG)$ by $\psi[M] = [R \otimes_Z M]$, for all $[M] \in K^0(ZG)$, where $R \bigotimes_Z M$ is an RG-module with action of R given by $r'(r \otimes m) = r'r \otimes m$ and action of G given by $g(r \otimes m) = r \otimes gm$, for all $r' \in R$, $g \in G$. Similarly, define

 $\eta: K^0(QG) \to K^0(FG)$ by $\eta[M^*] = [F \otimes M^*]$

for all $[M^*] \in K^0(QG)$.

LEMMA 4.5. ψ and η are ring homomorphisms and the following diagram commutes and is exact:

$$
0 \to \ker \theta_R \to K^0(RG) \xrightarrow{\theta_R} K^0(FG) \to 0
$$

$$
\uparrow \psi \qquad \uparrow \psi \qquad \uparrow \eta
$$

$$
0 \to \ker \theta_Z \to K^0(ZG) \xrightarrow{\theta_Z} K^0(QG) \to 0
$$

$$
\uparrow
$$

$$
0
$$

Proof. The proof that ψ and η are ring homomorphisms is straightforward. The rows of the diagram are exact by the remarks at the beginning of Section 2, and the Noether-Deuring Theorem ([1], p. 200]) implies that η is monic. One easily checks that ψ maps ker θ_z into ker θ_R and that $\theta_R \psi = \eta \theta_z$.

Let A be an R-ideal in F. We shall denote by $A^{(t)}$ the image of A under the *O*-automorphism of F induced by the mapping $\rho \rightarrow \rho^t$, $1 \leq t \leq \rho - 1$. Also, $A\langle a_{i+1},..., a_k\rangle$ will denote the ZG-module $A\langle p,..., p, 1, a_{i+1},..., a_k\rangle$, $1 \leq j \leq k$. By Lemma 4.3, $K^0(QG)$ is the free Abelian group with basis $\{[M^*]: M^* \in S\}$, and hence we may define a lifting map $f_Z : K^0(QG) \to K^0(ZG)$ as follows:

$$
f_Z[Q] = [Z], f_Z[F\langle a_{i+1},..., a_k \rangle] = [R\langle a_{i+1},..., a_k \rangle] \text{ for } 1 \leq j \leq k,
$$

with f_Z extended linearly to all of $K^0(QG)$. The results of Heller and Reiner [3] now show that every element of ker θ_z is a sum of elements of the form $[A\langle a_{j+1},..., a_k\rangle] - [R\langle a_{j+1},..., a_k\rangle]$. Thus the following Lemma determines $\psi(\ker \theta_Z)$:

LEMMA 4.6.

$$
\psi[A \langle a_{i+1},..., a_k \rangle] = \sum_{i=1}^{p-1} [A^{(i)} \langle p,..., p, t, ta_{i+1},..., ta_k \rangle].
$$

Proof. Let $M = R \bigotimes_{\mathbb{Z}} A \langle a_{j+1},..., a_k \rangle$, so that $\psi[A \langle a_{j+1},..., a_k \rangle] = [M],$ and let $\Phi_n(x)$ be the cyclotomic polynomial of order p. For all $r \otimes a \in M$,

$$
\Phi_p(g_j)(r\otimes a)=r\otimes \Phi_p(g_j)a=r\otimes \Phi_p(\rho)a=0;
$$

so $\Phi_n(q_i)M = 0$. Let $b_0 = 1$,

$$
b_i = \prod_{i=1}^t (g_i - \rho^i), \quad \text{for} \quad 1 \leqslant t \leqslant p-1.
$$

Then $M=b_0M\supset b_1M\supset\cdots\supset b_{n-1}M=0.$ For each $t, 1 \leq t \leq p-1$, define

$$
\gamma_t: M \to A^{(t)} \langle p, ..., p, t, ta_{j+1}, ..., ta_k \rangle
$$
 by $\gamma(r \otimes a) = ra^{(t)}$.

It is easily seen that γ_t is a well-defined RG-epimorphism for each t. Consequently, $\gamma_i : b_{i-1}M \to b_{i-1}A^{(i)}(p,...,p, t, ta_{i+1},..., ta_k)$ is an epimorphism. However, $A^{(t)}(p, ..., p, t, ta_{j+1}, ..., ta_k)$ is isomorphic to

 $b_{t-1}A^{(t)}(p, ..., p, t, ta_{i+1}, ..., ta_k)$

by the mapping $y \rightarrow b_{t-1}y$; hence we may assume that γ_t maps $b_{t-1}M$ onto

 $A^{(t)}(p,...,p, t, ta_{i+1},..., ta_k)$, for $1 \leq t \leq p-1$. Note that b_tM is contained in the kernel of this mapping, since $(g_i - \rho^t)$ annihilates

 $A^{(t)}(p, ..., p, t, ta_{i+1}, ..., ta_i).$

Consider γ_1 mapping $b_0M = M$ onto $A^{(1)}(p, ..., p, 1, a_{i+1}, ..., a_k)$. Let M_1 . be the kernel of this mapping. Then $M/M_1 \cong A^{(1)}(p, ..., p, 1, a_{j+1}, ..., a_k)$, and M_1 contains b_1M . Since M_1 contains b_1M , γ_2 maps M_1 onto

 $A^{(2)}(p, ..., p, 2, 2a_{i+1}, ..., 2a_k).$

Let M_2 be the kernel of this mapping. Then

$$
M_1/M_2 \simeq A^{(2)} \langle p,\ldots,p,2,2a_{j+1},\ldots,2a_k\rangle,
$$

and M_2 contains b_2M . Continuing in this manner, we obtain

 $M = M_0 \supset M_1 \supset \cdots \supset M_{n-1} \supset 0$,

where $M_{t-1}/M_t \simeq A^{(t)}(p,...,p, t, ta_{j+1},..., ta_k)$, for $1 \leq t \leq p-1$. Hence, in $K^0(RG)$,

$$
[M] = \sum_{t=1}^{p-1} [M_{t-1}/M_t] + [M_{p-1}]
$$

=
$$
\sum_{t=1}^{p-1} [A^{(t)} \langle p,..., p, t, ta_{j+1},..., ta_k \rangle] + [M_{p-1}].
$$

Now, $(M : R) = p - 1$ and $(A^{(t)} \langle p, ..., p, t, ta_{j+1}, ..., ta_k \rangle : R) = 1$ for $1 \leq t \leq p - 1$, so a consideration of R-ranks shows that $(M_{p-1} : R) = 0$. However, M_{n-1} is a submodule of the R-torsion-free R-module M, and thus is itself R-torsion-free. Hence $(M_{n-1}: R) = 0$ implies that $[M_{n-1}] = 0$, and the Lemma is proved.

PROPOSITION 4.7. $\psi : K^0(ZG) \to K^0(RG)$ is a monomorphism.

Proof. Let $x \in \text{ker } \theta_Z$. Then x is a sum of elements of $K^0(ZG)$ of the form

$$
[A\langle a_{i+1},..., a_k\rangle] - [R\langle a_{i+1},..., a_k\rangle],
$$

where $1 \leq j \leq k$ and $1 \leq a_i \leq p$ for $j < i \leq k$, for various R-ideals A. Thus, by Lemma 4.6, $\psi(x)$ is a sum of elements of $K^0(RG)$ of the form

$$
\sum_{t=1}^{p-1} ([A^{(t)} \langle p,..., p, t, ta_{j+1},..., ta_k \rangle] - [R \langle p,..., p, t, ta_{j+1},..., ta_k \rangle]).
$$

Heller and Reiner [2] have shown that such a sum in $K^0(RG)$ is zero only if each ideal appearing in the sum may be written as the product of a principal ideal and a power of some prime ideal P , where P divides the order of G .

It is well-known that the only prime ideal of R which divides p is the principal ideal $(1 - \rho)$; consequently, $\psi(x) = 0$ in $K^0(RG)$ only if each ideal appearing in the sum for $\psi(x)$ is principal. However, if each ideal appearing in the sum for $\psi(x)$ is principal, then surely each ideal A appearing in the sum for $x \in \text{ker } \theta_Z$ is principal. But if A is principal, then $A \langle a_{i+1},..., a_k \rangle \cong$ $R\langle a_{i+1},..., a_k \rangle$ as ZG-modules, whence $[A\langle a_{i+1},..., a_k \rangle] - [R\langle a_{i+1},..., a_k \rangle] = 0$, and thus $x = 0$. Therefore ψ : ker $\theta_Z \rightarrow$ ker θ_R is monic. Now apply the Five-Lemma to the diagram of Lemma 4.5 to conclude that

$$
\psi: K^0(ZG) \to K^0(RG)
$$

is manic.

COROLLARY 4.8. The lifting map f_Z is a ring homomorphism.

Proof. Let f be the lifting map for $K^0(RG)$ of Lemma 4.1. An easy calculation shows that $f_z = \psi^{-1}f_\eta$. Therefore, since η , f, and ψ^{-1} are ring homomorphisms, so is f_z .

Let $x, y \in K^0(ZG)$. Since ψ is a ring monomorphism $xy = \psi^{-1}(\psi(x) \psi(y))$, and the product $\psi(x) \psi(y)$ may be calculated with the aid of Lemma 4.2. Thus we have shown how multiplication in $K^0(ZG)$ may be determined when G is elementary abelian. We proceed to give formulas which completely describe the multiplication.

THEOREM 4.9. Let G be an elementary Abelian group. The following formulas describe multiplication in $K^0(ZG)$:

(i) $[Z]x = x$, for all $x \in K^0(ZG)$

(ii)
$$
[R\langle b_{i+1},...,b_k\rangle][[A\langle a_{i+1},...,a_k\rangle]-[R\langle a_{i+1},...,a_k\rangle])
$$

$$
= \sum_{t=1}^{p-1} \left(\left[A^{(t)} \langle b_{j+1}, \dots, b_{i-1}, b_i + t, b_{i+1} + ta_{i+1}, \dots, b_k + ta_k \rangle \right] - \left[R \langle b_{j+1}, \dots, b_{i-1}, b_i + t, b_{i+1} + ta_{i+1}, \dots, b_k + ta_k \rangle \right] \right), \text{ if } j < i,
$$
\n
$$
\sum_{t=2}^{p-1} \left(\left[A^{(t)} \langle (p+1-t)b_{i+1} + ta_{i+1}, \dots, (p+1-t)b_k + ta_k \rangle \right] - \left[R \langle (p+1-t)b_{i+1} + ta_{i+1}, \dots, (p+1-t)b_k + ta_k \rangle \right] \right), \text{ if } j = i,
$$
\n
$$
\sum_{t=1}^{p-1} \left(\left[A \langle a_{i+1}, \dots, a_{j-1}, a_j + t, a_{j+1} + tb_{j+1}, \dots, a_k + tb_k \rangle \right] - \left[R \langle a_{i+1}, \dots, a_{j-1}, a_j + t, a_{j+1} + tb_{j+1}, \dots, a_k + tb_k \rangle \right] \right), \text{ if } j > i.
$$

Proof. Formula (i) is clearly true. In order to prove (ii), we note that, since $\gamma = [R(b_{i+1},..., b_k)][(A\langle a_{i+1},..., a_k\rangle] - [R\langle a_{i+1},..., a_k\rangle]) \in \text{ker } \theta_Z$,

 y is a sum of elements of the form

$$
[C \langle c_{r+1},..., c_k \rangle] - [R \langle c_{r+1},..., c_k \rangle],
$$

and therefore $\psi(y) \in \ker \theta_R$ is a sum of elements of the form

$$
\sum_{t=1}^{p-1}\left([C^{(t)}\langle p,...,p, t, tc_{r+1},..., tc_k\rangle]\right. - [R\langle p,...,p, t, tc_{r+1},..., tc_k\rangle]).
$$

It is clear that the elements $[C\langle c_{r+1},..., c_k\rangle]$ appearing in the sum for y can be found by determining the elements of form $[C^{(1)}(p,..., p, 1, c_{r+1},..., c_k)]$ appearing in the sum for $\psi(y)$.

Suppose $j < i$. Applying Lemmas 4.6 and 4.2, we find that

$$
\psi(y) = \sum_{t=1}^{p-1} \sum_{s=1}^{p-1} ([A^{(t)} \langle p, ..., p, s, sb_{i+1}, ..., sb_{i-1}, sb_i + t, sb_{i+1} + ta_{i+1}, ..., sb_k + ta_k)]
$$

\n
$$
- [R \langle p, ..., p, s, sb_{j+1}, ..., sb_{i-1}, sb_i + t, sb_{i+1} + ta_{i+1}, ..., sb_k + ta_k)]
$$

\n
$$
= \sum_{t=1}^{p-1} ([A^{(t)} \langle p, ..., p, 1, b_{j+1}, ..., b_{i-1}, b_i + t, b_{i+1} + ta_{i+1}, ..., b_k + ta_k)]
$$

\n
$$
- [R \langle p, ..., p, 1, b_{j+1}, ..., b_{i-1}, b_i + t, b_{i+1} + ta_{i+1}, ..., b_k + ta_k \rangle] + u,
$$

where $u \in \ker \theta_R$ and none of the elements appearing in u have the form $[C\langle p,..., p, 1, c_{r+1},..., c_k\rangle].$ Therefore,

$$
y = \sum_{i=1}^{p-1} ([A^{(t)} \langle b_{i+1},..., b_{i-1}, b_i + t, b_{i+1} + ta_{i+1},..., b_k + ta_k \rangle]
$$

- $[R \langle b_{i+1},..., b_{i-1}, b_i + t, b_{i+1} + ta_{i+1},..., b_k + ta_k \rangle],$

which agrees with the formula. The same procedure will establish the formulas for the cases $j = i, j > i$. This completes the proof of the theorem.

REFERENCES

- 1. CURTIS, C. W. AND REINER, I. "Representation Theory of Finite Groups and Letting C. 11. and Remark, 1. Representation 1 2. HELLER, A. A. AND J. Groups of orders in semi-simple algebras.
- Transa, 11. Am. Math. 1. Cromenticus g. Trans. Am. Math. Soc. 112 (1964), 344-355.
- 3. HELLER, A. AND REINER, I. Grothendieck groups of integral group rings. Illinois J. Math. 9 (1965), 349-359.
- 4. SERRE, J.-P. "Corps Locaux." Hermann, Paris, 1962.
- 5. SWAN, R. G. Induced representations and projective modules. Ann. Math. 71 $(1960), 552-578.$
- 6. SWAN, R. G. The Grothendieck ring of a finite group. Topology 2 (1963), 85-110.