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Gilles de la Tourette syndrome (GTS) is a common developmental neuropsychiatric disorder characterized by tics
and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to
disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly
structural and functional disorders in the striatum and cortico–striato–thalamo–cortical loops. We therefore
applied structural diffusion tensor imaging (DTI) to characterize changes in intrahemispheric white matter
connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric
comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 pre-
defined cortical and subcortical regions of interest. Connectivity values were combinedwith measures of clinical
severity rated by the Yale Global Tic Severity Scale (YGTSS). GTS patients showedwidespread structural connec-
tivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor
areas (SMA) with basal ganglia (pre-SMA–putamen, SMA–putamen) and in frontal cortico-cortical circuits.
There was an overall trend towards negative correlations between structural connectivity in these tracts and
YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing
actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with
the concept of GTS as a neurodevelopmental disorder of brain immaturity.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Gilles de la Tourette syndrome (GTS) is a complex developmental
neuropsychiatric disorder with childhood onset. Its hallmarks are tics,
i.e. repetitive, patterned movements akin to voluntary movements but
misplaced in context and time. Tics are highly variable in their phenom-
enology and often accompanied by premonitory sensations. They are
characterized by fluctuations in frequency and intensity (Jankovic,
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1997). Furthermore, patients are able to suppress tics to a certain
degree. Tics appear to result from a complex functional interplay of
cortico-subcortical brain circuits (Ganos et al., 2012). GTS can be viewed
as a model of aberrant activity in neuronal networks involved in
planning, executing and controlling motor actions.

The pathophysiologicalmechanism that constitutes tics still remains
elusive. However, increasing evidence from experimental, electrophys-
iological and imaging studies points to a disorder within fronto-striatal
pathways (Ganos et al., 2012; McNaught and Mink, 2011). Specifically,
structural and functional abnormalities in cortico–striato–thalamo–
cortical circuits have been found in relation to tic generation (Bronfeld
and Bar-Gad, 2013; Mink, 2006). In post-mortem neuropathological
studies of GTS patients, abnormalities in the dopaminergic system
were shown in frontal, primary motor and pre-motor cortical areas
(Yoon et al., 2007). Apparent imbalances of GABAergic neuron distribu-
tion in the internal segment of the globus pallidus and striatum have
also been proposed as pathophysiological correlates of a dysfunctional
cortico-subcortical circuitry (Kalanithi et al., 2005).
ved.
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On amacroscopic scale, knowledge on brainmorphology hasmainly
been gained through magnetic resonance imaging (MRI) studies,
although agreement on a common “GTS model” has not been reached.
This notwithstanding, findings from structural imaging studies have
advanced the understanding of GTS pathophysiology. Thinning of corti-
cal motor areas as well as altered basal ganglia volumes have been re-
ported and interpreted as reflections of altered cortico-subcortical
circuits involved in tic generation (Hyde et al., 1995; Peterson et al.,
2003). Cortical thinning correlating with tic severity has been found in
the cingulate area as well as supplementary motor, premotor, somato-
sensory and prefrontal cortex (Draganski et al., 2010; Muller-Vahl
et al., 2009; Sowell et al., 2008; Worbe et al., 2010). These structural
changes indicate that wider networks of cortical and subcortical gray
matter structures are involved in the pathophysiology of GTS.

In contrast to the large number of reports of structural analysis of
gray matter regions, studies of white matter components of cortical
projections in GTS are still scarce. Diffusion tensor imaging (DTI)
investigates white matter structure in vivo and allows reconstruction
of white matter tracts via estimation of the main fiber orientation
(Johansen-Berg and Behrens, 2006). Advances in DTI and tracking
methods have expedited the development of neuronal connectivity
models that aim to quantify anatomical links between different brain
regions (Le Bihan and Johansen-Berg, 2012). Using DTI, distinctive
changes between GTS and control groups have been detected in
motor connections, but also in white matter tracts of somatosensory,
fronto-striatal, and transcallosal circuits (Govindan et al., 2010; Neuner
et al., 2010; Thomalla et al., 2009).

Recently, findings from functional MRI in adolescent GTS patients
have advanced the concept of immature brain networks in GTS as a
disorder of neural development. Specifically, functional immaturity
and disintegration of cortico-basal ganglia and frontal cortico-cortical
networks have been detected by resting state fMRI (Church et al.,
2009; Worbe et al., 2012).

Here, we applied DTI to explore the structural connectivity pattern
between brain regions involved in motor control and their relation to
clinical features. We examined the connectivity of intrahemispheric
white matter tracts between 12 predefined regions of interest (ROIs)
in 15 adult GTS patients and healthy controls using probabilistic
tractography (Behrens et al., 2007). Only unmedicated adult GTS
patients without co-morbidities were included to avoid confounding
variables.Wehypothesized that distinctive changes in intrahemispheric
white matter connectivity would be present in GTS patients compared
to healthy adults reflecting abnormal brain maturation in GTS as a
neurodevelopmental disorder. More specifically, we hypothesized
structural connectivity to be altered in fronto–striato–thalamic circuits
that are involved in tic generation.

2. Materials and methods

2.1. Subjects

We analyzed clinical and MR data from 15 patients (13 men, mean
age: 34.5; SD ± 8.9 years) previously included in a study of structural
white matter integrity using voxel-based morphometry analysis of
fractional anisotropy (FA) (Thomalla et al., 2009). We only included
patients without psychiatric co-morbidities. Only four patients had
been on medication to treat tics during the 12 months prior to the
study, and all had stopped their medication at least 3 weeks prior to
enrollment. The control group comprised age- and gender-matched
healthy subjects (13 men, mean age: 34.6; SD ± 9.1 years). The study
was approved by the local ethics committee (No. 2514). Written con-
sent was obtained from all participants. Clinical assessment was per-
formed by a neurologist or psychiatrist experienced in diagnosing and
treating GTS patients. Lifetime clinical information was systematically
collected using standardized clinical assessment and a semi-structured
interview adapted from Robertson and Eapen (Eapen et al., 2001)
where patients are systematically screened for premonitory urges and
other sensory phenomena, disturbances of social behavior, impulse con-
trol disorder, as well as symptoms of depression or anxiety disorder.
GTS and ADHD were diagnosed according to DSM-IV-TR criteria.
Patients fulfilling criteria of OCD, ADHD or other co-morbidities were
excluded from the study. Tic severity was rated using the Yale Global
Tic Severity Scale (YGTSS) (Leckman et al., 1989).

2.2. Imaging

We performed MRI at 3 T field strength using a Magnetom Trio
TIM (Siemens, Erlangen, Germany) equipped with a gradient system
providing a maximum strength of 40 mT/m using an 8-channel
head coil. DTI data was measured with an echo planar imaging
(EPI) whole brain sequence. The sequence was configured as follows:
TE/TR = 105/18.500 ms, bandwidth = 1954 Hz/Px, 128 × 128 ma-
trix, FOV 256 × 192 mm, 60 axial slices, 2 mm slice thickness without
inter-slice gap, resulting in an isotropic voxel size of 2 × 2 × 2 mm3,
gradient pulses along 24 different directions with a b-value of
1000 s/mm2. Non-diffusion weighted image (b = 0 s/mm2) was
acquired after every eighth image to guide registration of individual
diffusion images. Measuring of DTI data was repeated to increase
signal-to-noise ratio resulting in a total scanning time of 16 min
and 50 s. Structural imaging was performed using a T1-weighted
imaging of the whole brain. The Fast Low Angle Shot (FLASH) 3D
sequence was configured as follows: TE/TR = 4.92/15 ms, flip angle
25, 192 slices, 1 mm slice thickness, 20% gap, 256 × 256 matrix, FOV
256 × 256 mm. Heads of participants were stabilized using foam pads
to minimize movement artifacts. For each subject measurements
of head displacement were derived from realignment parameters.

2.3. Data analysis

An overview of data processing is given in Fig. 1. Analysis of images
was performed using tools from the FMRIB Software Library (FSL)
(FMRIB Software Library, www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004).
For parcellation of cortical areas, we manually delineated ROIs on a
standard brain template (Montreal Neurological Institute, MNI 152)
by integration of functional and anatomical knowledge on specific
brain regions from previous studies. Specifically, 12 ROIs were chosen
to investigate the circuitry ofmotor andbehavior control (Fig 1): Primary
motor cortex (M1) (Geyer et al., 2000; Newton et al., 2006), primary
sensory cortex (S1) (Eickhoff et al., 2005; Ramnani, 2006), ventral
and dorsal premotor cortex (PMV and PMD) (Binkofski et al., 2004;
Germann et al., 2005; Geyer, 2004; Tomassini et al., 2007), supplementa-
ry motor cortex (SMA) (Johansen-Berg et al., 2004; Lehericy et al., 2004;
Picard and Strick, 2001), pre-supplementary motor cortex (Pre-SMA)
(Johansen-Berg et al., 2004; Lehericy et al., 2004; Picard and Strick,
2001), and prefrontal and orbitofrontal cortex (PFC and OFC) (Maldjian
et al., 2003). We included prefrontal areas and the OFC due to their
role in flexible control of behavior. Both regions have been associated
with impulse control and behavioral inhibition of motor actions (Aron
et al., 2003; Duncan and Owen, 2000). In GTS, structural changes in
both areas have been associated with tic severity (Draganski et al.,
2010). Subcortical regions were created based on the Basal Ganglia
Human Area Template (BGHAT) in MNI space (Prodoehl et al., 2008)
including the caudate nucleus (Caud), globus pallidus (GP), putamen
(Put) and thalamus (Thal).

ROIs were further refined to delineate the gray–white matter
boundary underlying the cortical areas to increase anatomical accuracy
for DTI fiber tracking: We reconstructed gray–white matter boundary
ROI from T1-weighted images in three steps: First, individual T1-
weighted images were visually inspected for data quality and brain
matter was extracted using the brain extraction tool (BET) available
with the FSL software. Secondly, images were registered into MNI-
space with the FMRIB linear and non-linear image registration tool

http://www.fmrib.ox.ac.uk/fsl
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Table 1
Demographic variables and clinical characteristics of patients. Abbreviations:
+ = present, − = absent, DCI = Diagnostic Confidence Index; YGTSS = Yale Global
Tic Severity Scale; M = male; F = female.

Subject Age Onset
age

Sex DCI YGTSS Motor tics Vocal tics

Simple Complex Simple Complex

P01 33 12 M 63 46 + + + +
P02 23 6 M 61 57 + + + −
P03 29 3 F 68 30 + + + +
P04 27 7 M 68 31 + + + −
P05 22 10 M 47 26 + + − −
P06 39 12 M 100 77 + + + +
P07 31 12 M 37 18 + − − −
P08 54 13 M 57 49 + + + −
P09 28 6 M 50 44 + − + −
P10 42 3 F 76 42 + + + −
P11 45 11 M 64 35 + + + −
P12 29 3 M 54 36 + + + −
P13 34 6 M 52 56 + − + −
P14 38 11 M 45 22 + − + −
P15 43 5 M 67 60 + + − −
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FLIRT and FNIRT (Jenkinson and Smith, 2001) implemented in FSL.
Third, we used FAST (FMRIB's Automated Segmentation Tool) to seg-
ment brain images into different tissue types (i.e. gray matter, white
matter, cerebrospinal fluid). FAST creates partial volume maps for
each class of segmentation. After segmentation white and gray matter
volumes were binarized, dilated and multiplied. The result was a
binarized border zone of voxels between gray and white matter
(Zhang et al., 2001). These voxels were selected and the resulting
ribbon-shaped masks multiplied with the ROIs defined previously. All
individual ROI were visually checked by two investigators (B.C. and
H.B.) for plausibility and accuracy.

FMRIB's Diffusion Toolbox (FDT) was used to perform all processing
of DTI data. Motion and eddy current correction as well as image aver-
aging were carried out on the diffusion data. Gradient directions were
rotated after image alignment. The extent of head displacement during
scanning was derived from alignment parameters and recorded in
terms of absolute and relative values. Maps of fractional anisotropy
were generated using DTI fit. To align diffusion imaging data to the
MNI152 standard space, we applied TBSS (tract-based spatial statistics)
on individual FA data (Smith et al., 2006; Yap et al., 2011). This resulted
in a coefficient file (“warp”) containing values for linear and non-linear
transformation of individual FA maps to the MNI152 space (using the
FMRIB58 template as reference). Gray–whitematter ROIs created previ-
ously were aligned to individual diffusion space applying the inverted
transformation coefficient file generated by TBSS. These ROIs were
then visually validated for accuracy and used as seedmasks for probabi-
listic tractography. ROI sizes and FA values within ROIs were compared
between patients and controls using a univariate general linear model
(GLM). In probabilistic tractography, connectivity distribution drops
with distance from the seed mask. We calculated the average length
between different ROI using the distance-correction option of probtrackx.
Values of average distances between seed and target ROI were included
into the statistical model to account for the confounding effect of tract
length.

Processing of diffusion data included application of a probabilistic
diffusion model modified to allow estimation of multiple (n = 2)
fiber directions using the program bedpostx (Behrens et al., 2003,
2007). From each seed ROI voxel, 5000 samples were initiated through
the probability distribution on principle fiber direction over one entire
hemisphere. Pathways were disregarded if they entered a voxel with
FA b 0.15. This arbitrary threshold was chosen based on pilot analyses
showing this threshold consistently preventing erroneous tracking
between neighboring gyri. Tracking resulted in individual maps
representing the connectivity value between the seed ROI and individ-
ual voxel. For each hemisphere, intrahemispheric structural connectivi-
ty between two regionswasmeasuredmasking each seedROI results by
each of the remaining 11 “target” ROIs. To account for differences in vol-
ume of ROI masks, a normalized connectivity index (CI) was calculated
by dividing the masked voxel values through the product of seed and
target ROI volumes: CI = sum of intensity values in target ROI / (seed
ROI volume × target ROI volume).

2.4. Statistical analysis

Measuring connectivity between ROIs resulted in CI for 66 tract
connections in each participant, hemisphere and direction. Prior to analy-
sis, distribution of data was visually inspected and data were log trans-
formed to reach normal distribution. Following statistical analyses, if not
otherwise indicated, log-transformed values were back-transformed.
Estimated means and 95% confidence intervals are reported.
Fig. 1. The image processing pipeline utilized in this paper (upper section). Cortical and subc
Institute (MNI) space (lower section). Abbreviations: FA: Fractional anisotropy; DWI: Diffusi
interest; M1: Primary motor cortex; S1: Primary sensory cortex; PMV and PMD: Ventral and d
motor cortex; PFC and OFC: Prefrontal and orbitofrontal cortex.
Maximum translation and rotation of individual head movements
were compared between patients and controls using a two-tailed
Mann–Whitney U-test. To examine and compare ROI characteristics,
we first calculated individual ROI sizes and mean FA values using FSL.
We then applied a univariate general linear model using either mean
FA (of the ROI) or ROI size as a depended variable adjusting for ROI
location, hemisphere side and group. We examined the interaction of
“Group × ROI” to detect potential differences in ROI characteristics
between the two groups. SPSS 20.0 (IBM Co., Somers, NY, USA) was
used for this analysis.

We then investigated the hypothesis whether patients and healthy
controls exhibit different connectivity between predefined ROIs in
a separate analysis. In order to control for the hierarchical structure
of the data, a multilevel model was calculated (Brown and Prescott,
2006). The model was adjusted for following fixed effects: group,
hemisphere side and track. All two-way and three-way interactions
were included into themodel. Likelihood ratio testwas used for variable
selection. Post-hoc group comparisons were carried out on estimated
means and a Bonferroni-correction was applied to correct for multiple
comparisons. SAS 9.3 (SAS Institute Inc., Cary, NC, USA) was used
for analysis of the multilevel model.

To investigate the clinical significance of altered structural connec-
tivity, behavioral data (YGTSS) were correlated with CI values of tracts
based on significant group results. Therefore, we used a two-tailed
Spearman's rank correlation (p b 0.05 uncorrected for multiple com-
parisons) in SPSS 20.0 (IBM Co., Somers, NY, USA).
3. Results

3.1. Clinical characteristics

Clinical data on patients are provided in Table 1. Simple motor tics
were present in all patients during the time of assessment and pre-
monitory urges preceded at least one of these tics in each patient.
Mean disease duration was 26.5 (SD ± 8.5) years, mean YGTSS score
was 42 (SD ± 16).
ortical region of interest shown on a structural brain template in Montreal Neurological
on weighted imaging; MNI: Montreal Neurological Institute template; ROIs: Regions of
orsal premotor cortex; SMA: Supplementary motor cortex; preSMA: Pre-supplementary



Fig. 2. Pyramid plot of mean values of connectivity indices (CI) for controls (left) and
patients (right). Bars in black demonstrate connections with significant group differences
resulting from post-hoc tests (controls vs. patients). Error bars mark 95% confidence
intervals. X-axis is log-transformed.
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3.2. Data quality and ROI characteristics

On visual inspection, no artifacts were detected on MRI data
that would preclude further image analysis. Head movement was
comparable between patients and controls: Median of absolute
head displacement was 1.38 mm (controls) and 1.79 mm (patients),
p = 0.389. Results from the univariate general linear model showed
no significant interaction of “Group × ROI” (F = 1.52; p = 0.122; 11
degrees of freedom (DF)). There was also no significant “Group × ROI”
interaction when using FA as depended variable (F = 1.47; p = 0.137;
11 DF) thus demonstrating comparability of FA values in ROIs in both
groups.

3.3. Connectivity indices between cortical regions of interest

In total, 7920 CI values were measured. Mean CI values from both
hemispheres are illustrated in Fig. 2. Connections between subcortical
structures showed high connectivity values. Lowest CI values were
measured in tracts connecting the orbitofrontal cortex to other cortical
areas.

3.4. Group differences of connectivity values

All measured CI values were included into the multilevel model.
Significant effects were detected for the two-way interactions of
“Group × Tract” (F = 3.94; p b 0.001; 65 DF) indicating tract-specific
differences between groups, and “Hemisphere Side × Tract” (F = 2.21;
p b 0.001; 65 DF). There was no significant influence of the two-way
interaction “Group × Hemisphere Side” (p = 0.848; 2 DF).

We conducted follow-up comparisons of the significant two-way in-
teraction of “Group × Tract” and calculated group differences for indi-
vidual tracts by means of percentage change (Fig. 3). After correction
for multiple comparisons, significantly lower CI values were shown in
the patient group for 10 tracts (Figs. 2, 3, 4 and Table 2). Of these, two
were aberrant from existing known direct anatomical connections
(SMA–pallidum and preSMA–pallidum) and have therefore been omit-
ted from further analysis in association with clinical data (see Table 3).
Overall, there were no tracts with significantly higher CI values for
patients.

3.5. Correlation with clinical score

Correlations of YGTSS scores with individual tract CI values were
analyzed for 10 white matter tracts based on significant results
of group comparison. Significant negative associations were found
for three tracts connecting M1 with OFC (R = −0.73, p = 0.002),
pre-SMA with putamen (R = −0.58, p = 0.024) and pre-SMA with
OFC (R = −0.53, p = 0.044). p-Values were not significant following
correction for multiple testing. Spearman rank correlation coefficients
and p-values are summarized in Table 3.

4. Discussion

Using DTI tractography, we investigated intrahemispheric structural
connectivity between regions involved in motor control in a well-
defined group of adult GTS patients. They had significantly lower con-
nectivity in comparison to healthy controls. These deficits weremarked
in tracts connecting frontal cortical areaswith basal ganglia and in frontal
cortico-cortical circuits. There was an overall trend towards negative
correlations between structural connectivity and tic severity.

Tics are the defining clinical feature of GTS. Although their exact
structural and functional neural basis remains elusive, involvement of
dysfunctional networks including the frontal cortex and its connections
to the basal ganglia has been proposed (Mink, 2001, 2006). In our pa-
tient group, connectivity indices were reduced between the pre-SMA/
SMA and putamen probably reflecting reduced structural connectivity
between these brain regions. Efferent projections from the pre-SMA
and SMA to the striatum have been demonstrated in animal studies
(Inase et al., 1999). In humans, distinct projections from both pre-SMA
and SMA to the striatum have been shown in vivo by DTI-
tractography (Lehericy et al., 2004). On the other hand,we also detected
significantly reduced connectivity values between pre-SMA/SMA and
the pallidum (Table 1) that cannot simply be explained by reduced
structural connectivity between these regions, as there are no direct



179B. Cheng et al. / NeuroImage: Clinical 4 (2014) 174–181
anatomical connections from cortical areas to the pallidum. These
findings may result from alterations along polysynaptic neuronal con-
nections that form elements of the cortico–striato–thalamocortical
loop, which, however, cannot be further discriminated due to the
general limitation of DTI fiber tracking.

Functionally, the pre-SMA and striatum are part of the neuronal
circuitry involved in the generation and control of voluntary move-
ments. The pre-SMA in particular plays a major role in motor inhibition
(Hoffstaedter et al., 2013;Nachev et al., 2007). In a recentmeta-analysis,
Swick et al. emphasized the importance of the SMA/pre-SMA in the con-
cept of inhibitory control of actions that are “out of context” (Swick
et al., 2011). In GTS, SMA overactivity has been a recurring theme in
functional imaging and electrophysiological studies. It has repeatedly
been identified in GTS patients performing voluntary movements
(Biswal et al., 1998) and related to sensory urges (Mantovani et al.,
2007). Based on these findings one might expect increased structural
connectivity of SMA as a reflection of increased activity. However,
structural connectivity in this part of the cortico-subcortical circuit
was reduced in our study. Both findings might be interpreted as signs
of abnormal structural and functional organization and connection of
frontal cortico-cortical circuits involving the SMA in GTS. One could
speculate that reduced structural connectivity leads to a less focused
and overall increased local brain activation in cortical areas.

In addition to supplementary motor areas, we also found decreased
connectivity values in circuits involving the OFC. In healthy controls,
both the OFC and dorsolateral prefrontal cortex have been implicated
in successful inhibition of stimuli or impulses that are not relevant to a
specificmotor task (Berlin et al., 2004). TheOFC is structurally heteroge-
neous and has widespread connections with prefrontal, limbic, sensory
and premotor areas (Zald et al., in press). In GTS patients, metabolism in
the OFC and a wide network of cortical and subcortical areas was
reduced in positron-emission tomography (PET) studies (Braun et al.,
1993). In keeping with these findings, connectivity was decreased in
circuits connecting the OFC to pre-SMA, SMA and M1 in our patients.
However, these data have to be interpreted with caution as anatomical
data demonstrating connections between the OFC and premotor or
motor areas are scarce. While there are some data from post-mortem
anatomical studies demonstrating OFC–premotor-connections in the
macaque monkey (Cavada et al., 2000), data on human OFC connectiv-
ity tomotor and premotor areas is limited (Kringelbach and Rolls, 2004;
Zald et al., in press). Altered connectivity valuesmay thus also arise from
changes in poly-synaptic connections between these areas that cannot
be resolved by DTI tractography. Moreover, all of the significantly
altered connections involving the OFC clustered at the end of lowest
connectivity values and may thus be more susceptible to errors
resulting from confounding influences from image acquisition and
postprocessing.

We studied adult GTS patients with mean disease duration of
27 years. This raises the question of whether the observed changes
reflect a primary diseasemarker or adaptive plasticity during the course
of the disease. With regard to this question, the observed correlation
between structural abnormalities and clinical parameters points
towards the interpretation of decreased structural connectivity being
part of the primary pathophysiology of GTS. There was an overall
trend towards negative correlations between connection strength and
YGTSS in tracts showing significant group differences of connectivity
(Table 3). However, these results have to be considered exploratory
since they were not based on clear hypotheses and we did not apply
corrections for multiple comparisons of correlation values.

To our knowledge, this is the first study assessing structural brain
connectivity in adult GTS patients using DTI-tractography. Applying
Fig. 3. Relative differences of connectivity indices between patients and controls (in per-
cent change). Negative values demonstrate lower connectivity in patients. Black bars sig-
nify connectionswith significant group differences resulting from post-hoc tests (controls
vs. patients).



Table 3
Spearman rank correlation of patient'smean Connectivity Indiceswith scores from clinical
evaluation (YGTSS). Results are shown for selected tracts with significant group
differences (patients vs. controls). Negative values demonstrate higher clinical severity
associated with lower connectivity. P-values are uncorrected for multiple comparisons.
Abbreviations: M1: Primary motor cortex; S1: Primary sensory cortex; PMV and PMD:
Ventral and dorsal premotor cortex; SMA: Supplementary motor cortex; preSMA: Pre-
supplementary motor cortex; PFC and OFC: Prefrontal and orbitofrontal cortex.

Tract r (95% CI) p-Value

PMV–SMA −0.25 (−0.74–0.35) 0.376
SMA–putamen −0.35 (−0.82–0.20) 0.196
PMV–preSMA −0.38 (−0.81–0.29) 0.164
SMA–OFC −0.38 (−0.79–0.13) 0.164
PMV–OFC −0.50 (−0.80–0.13) 0.060
preSMA–OFC −0.53 (−0.86–0.32) 0.044
preSMA–putamen −0.58 (−0.83–−0.15) 0.024
M1–OFC −0.73 (−0.88–−0.35) 0.002

Fig. 4. Simplified schematic overview of regions of interest included in the study. Green
dots and lines show ROIs and tracts with significant group differences in connectivity
indices resulting frompost-hoc tests (controls vs. patients). For the purpose of illustration,
mean results are shown on the left hemisphere.
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a similar technique, Makki et al. investigated the structural integrity of
fronto–striato–thalamic circuit in 18 children with GTS (Makki et al.,
2009) demonstrating significantly lower connectivity values between
the caudate and frontal areas in the left hemisphere in line with the
observation of reduced connectivity of motor areas in our study.

Connectivity as measured by DTI-tractography relates to structural
properties of largewhitematter tracts such as the degree ofmyelination,
number of axons, degree of axonal pruning and the cohesiveness or
truncation of axons (Danielian et al., 2010; Le Bihan and Johansen-
Berg, 2012). In the current study, reduced connectivity values were
demonstrated in almost two-thirds of all connections pointing towards
a disruption in the organization of neural networks engaged in move-
ment generation and control. Our findings are in line with other studies
showing myelination abnormalities in widespread brain areas shown
by diffusion imaging in GTS (Draganski et al., 2010; Neuner et al., 2010).

During brain development, increases of myelination have been pro-
posed to cause increases of fractional anisotropy (FA) (Zanin et al.,
2011) probably due to a combination of increased axonal density and
myelination (Beaulieu, 2002). Since both factors significantly influence
outcome of DTI tractography algorithms, the reduced connectivity
shown in our patient group could reflect delayed or incomplete
maturation of white matter tracts specifically noticeable in frontal
cortico-cortical and striato-cortical circuits.
Table 2
Absolute differences of estimated means (controls–patients) for tracts with significant
differences resulting from post-hoc tests (log-transformed values, Bonferroni-corrected,
95% confidence intervals are shown)Abbreviations:M1: Primarymotor cortex; S1: Primary
sensory cortex; PMV and PMD: Ventral and dorsal premotor cortex; SMA: Supplementary
motor cortex; preSMA: Pre-supplementary motor cortex; PFC and OFC: Prefrontal and
orbitofrontal cortex.

Tract Connectivity index p-Value

preSMA–OFC 0.464 (0.34–0.58) b0.000
PMV–preSMA 0.388 (0.27–0.51) b0.000
PMV–OFC 0.305 (0.18–0.43) b0.000
preSMA–putamen 0.285 (0.16–0.41) b0.000
preSMA–pallidum 0.238 (0.12–0.36) 0.008
M1–OFC 0.315 (0.19–0.44) 0.000
SMA–pallidum 0.214 (0.09–0.34) 0.034
SMA–putamen 0.229 (0.11–0.35) 0.014
SMA–OFC 0.263 (0.14–0.38) 0.001
PMV–SMA 0.218 (0.10–0.34) 0.028
Supporting the developmental theory of GTS, post-mortem neuro-
pathological studies have suggested disturbed maturation processes
leading to imbalances of neuronal distribution in the basal ganglia in
these patients (Kalanithi et al., 2005). Resting-state functional imaging
studies have recently lend support to the concept of GTS as a disorder
of brain immaturity in distinct neuronal circuits: Findings from a
study by Church et al. suggest that functional communication between
cortical areas of patients with GTS resembles that of younger children
(Church et al., 2009). Specifically, functional “under”-connectivity be-
tween long-distant cortical areas and “over”-communication between
adjacent areas was shown in fronto-parietal and cingular-opercular
task control networks. Similarly, graph theoretical measures from
resting-state functional networks have pointed to a disorganization
and “functional immaturity” of sensorimotor and pre-motor pathways
of adult GTS patients (Worbe et al., 2012). We propose the apparent
and widespread structural connectivity deficit in our GTS patients to
be a structural correlate of abnormal, immature, or delayed brain devel-
opment. However, a direct comparison between our results and studies
of functional imaging is difficult due to the absence of a common frame-
work in terms of network definition and performance parameters.
Future studies combining structural and functional imaging are therefore
highly desirable to elucidate the complex interplay between functional
and structural brain connectivity in GTS patients.

There are several limitations of our study. Due to its cross-sectional
character, we could not observe progression of structural changes that
would allow insights into the course of primary neurodevelopmental
deficit or a secondary compensatorymechanism.Moreover, in this anal-
ysis, we focused on an intrahemispheric network between cortical
areas, i.e. disregarded interhemispheric commissural pathways via the
corpus callosum. This was mainly done for methodological reasons
as probabilistic tracking of transcallosal pathways still carries some
unresolved problems, and the combination of tracking results of both
intra- and interhemispheric pathways brings about further statistical
problems of dependency which cannot easily be solved in the chosen
statistical model. Moreover, alterations of interhemispheric pathways
in GTS have already been demonstrated by changes of volume and
structural integrity of the corpus callosum (Plessen et al., 2009) and al-
terations of interhemispheric connectivity using combined transcranial
magnetic stimulation and DTI (Baumer et al., 2010). Future studies
should aim at combining intra- and interhemispheric connectivity
analysis of both structural and functional measures of connectivity to
get a more comprehensive view of alterations of brain connectivity in
GTS.

5. Conclusion

DTI-tractography demonstrated decreased structural connectivity in
cortico-subcortical and frontal cortico-cortical networks involved in
planning, controlling and execution of actions in GTS patients which
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was associatedwith tic severity. This is in linewith the concept of GTS as
a prototype neurodevelopmental disorder of brain immaturity leading
to problems with motor and behavior control.
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