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1. Introduction

The objective of this paper will be to prove the following resolution theorem:

Theorem 1.1. Let G be an abelian group with P¢ =P, where Pg = {p € P: Zp) € Bockstein basis o (G)}. Let n € N and let K be a
connected CW-complex with mp(K) = G, m(K) = 0 for 0 < k < n. Then for every compact metrizable space X with Xt K (i.e., with
K an absolute extensor for X), there exists a compact metrizable space Z and a surjective map m : Z — X such that

(a) m is cell-like,
(b) dimZ < n, and
(c) ZTK.

The word resolution refers to a map between topological spaces where the domain is in some way better than the range,
and the fibers (point preimages) meet certain requirements.
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Let us look at some examples of resolution theorems. Here is the cell-like resolution theorem, first stated by R. Ed-
wards [8], and later proven by J. Walsh in [22]:

Theorem 1.2. (R. Edwards (1978) [8]; ]. Walsh (1981) [22]) For every compact metrizable space X with dimz X < n, there exists a
compact metrizable space Z and a surjective map m : Z — X such that 7 is cell-like, and dim Z < n.

If n €N, then a subset Y C R" is called cellular if Y can be written as the intersection of a nested collection of n-cells
in R™. A space Y is called cell-like if for some n € N, there is an embedding F : Y — R" so that F(Y) is cellular. A map
7 :Z— X is called cell-like if for each x € X, w~1(x) is cell-like. Whenever X is a finite-dimensional compact metrizable
space, then X is cell-like if and only if X has the shape of a point. To detect that a compact metrizable space has the shape

of a point, it is sufficient to prove that there is an inverse sequence (Z;, pf“) of compact metrizable spaces Z; whose limit
is homeomorphic to X and such that for each i e N, p::“ 1 Ziy1 — Z; is null-homotopic. It is also sufficient to show that
every map of X to a CW-complex is null-homotopic.

The Edwards-Walsh Theorem has been generalized to the class of arbitrary metrizable spaces by L. Rubin and
P. Schapiro [20], and to the class of arbitrary compact Hausdorff spaces by S. Mardesi¢ and L. Rubin [17].

A similar statement to the Edwards-Walsh Theorem was proven by A. Dranishnikov, for the group Z/p, where p is an

arbitrary prime number:

Theorem 1.3. (A. Dranishnikov (1988) [2]) For every compact metrizable space X with dimz,, X < n, there exists a compact metrizable
space Z and a surjective map w : Z — X such that i is Z/p-acyclic, and dim Z < n.

A map 7 : Z — X between topological spaces is called G-acyclic if all its fibers 7w —1(x) have trivial reduced Cech coho-
mology with respect to the group G, or, equivalently, every map f:7~1(x) — K(G,n) is nullhomotopic. Note that a map
7 : Z — X being cell-like implies that 7 is also G-acyclic.

Akira Koyama and Katsuya Yokoi [13] were able to obtain this Z/p-resolution theorem of Dranishnikov both for the class
of metrizable spaces and for the class of compact Hausdorff spaces. Dranishnikov proved a statement similar to Theorem 1.3
for the group Q [4], but he could only obtain dimZ <n+1, and if n > 2, then additionally dimg Z < n. This result was later
improved by M. Levin:

Theorem 1.4. (M. Levin (2005) [16]) Let n € Nx». Then for every compact metrizable space X with dimg X < n, there exists a compact
metrizable space Z and a surjective map 7 : Z — X such that 7 is Q-acyclic, and dim Z < n.

The obvious question was whether a theorem similar to Theorem 1.3 could be stated for compact metrizable spaces and
arbitrary abelian groups. In their work [14], Koyama and Yokoi made a substantial amount of progress in answering this
question. Their method relied heavily on the existence of Edwards-Walsh complexes, which have been studied by ]. Dydak
and ]. Walsh in [6], and which had been applied originally, in a rudimentary form, in [22]. However, using a different
approach from the one in [14], M. Levin has proved a very strong generalization for Theorems 1.2 and 1.3, concerning
compact metrizable spaces and arbitrary abelian groups:

Theorem 1.5. (M. Levin (2003) [15]) Let G be an abelian group and let n € Nx;. Then for every compact metrizable space X with
dimg X < n, there exists a compact metrizable space Z and a surjective map i : Z — X such that:

(a) m is G-acyclic,
(b) dimZ <n+1,and
(c) dimg Z <n.

The requirement of n € N> in Levin's Theorem cannot be improved because there is a counterexample for n =1
(G =Q [15]). The requirement that dimZ < n + 1 cannot be improved either - there is a counterexample for dimZ <n
(G =7Z/p® [14]). The part that may be improved is dim¢g X < n, using the characterization of cohomological dimension by
extension of maps. Namely, for any paracompact Hausdorff space X, any abelian group G and n € N, dimg X < n if and only
if every map of a closed subspace of X to K(G,n) can be extended to a map of X to K(G,n). By K(G,n) we will always
mean an Eilenberg-MacLane CW-complex of type (G, n), and such is characterized (up to homotopy equivalence) by having
Ty, = G and my trivial for all other k.

This fact about extending maps from any closed subspace of X to a K(G,n) can be written as K(G,n) € AE(X) (K(G,n)
is an absolute extensor for X). Another notation, and the one we will be using, is Xt K (G, n). In fact, for any two topological
spaces X and Y, XtY will mean that every map from a closed subspace of X to Y can be extended continuously over X.

So, in order to generalize the requirement dimg X < n from Theorem 1.5, note that dimg X <n < XtK (G, n), and replace
a K(G,n) with a CW-complex upon which the demands will be less strict. Here is a theorem generalizing Theorem 1.5 for
some abelian groups.
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Theorem 1.6. (L. Rubin and P. Schapiro (2005) [21]) Let G be an abelian group with Pc # P, where Pc = {p € P: Zp) €
Bockstein basis o (G)}. Let n € N, and let K be a connected CW-complex with 7, (K) = G, m(K) =0 for 0 < k < n. Then for
every compact metrizable space X with Xt K, there exists a compact metrizable space Z and a surjective map  : Z — X such that:

(a) m is G-acyclic,
(b) dimZ <n+1,and
(c) ZTK.

Note that the statement of Theorem 1.6 does not cover the case when P; = P. In fact, the statement of this theorem will
be true when Pg =P, but in this case the statement can be improved, as shown in Theorem 1.1.

The author wishes to thank Dr. Leonard Rubin and the referee of this paper, for their wise suggestions for improvements
in all upcoming sections.

Before we proceed, let us review some basic facts from Bockstein theory.

2. Bockstein theory

The cohomological dimension of a given compact metrizable space depends on the coefficient group, which can be any
abelian group and there are uncountably many of them. It turns out that in the case of compact metrizable spaces, it
suffices to consider only countably many groups. M.F. Bockstein found an algorithm for computation of the cohomological
dimension with respect to a given abelian group G by means of cohomological dimensions with coefficients taken from a
countable family of abelian groups o (G). His definition of o (G) was also used by V.I. Kuz’'minov [12], and later adapted by
E. Dyer [7], and then by A. Dranishnikov [3].

Thus there are three different definitions of a Bockstein basis o (G), which are not equivalent in general, but which
are equivalent from the point of view of cohomological dimension. This can be shown using the Bockstein Theorem and
Bockstein Inequalities, which will be stated in this section.

Notation.

(1) P stands for the set of all prime numbers,

(2) Zpy = {% € Q: n is not divisible by p} is called the p-localization of the integers, and
_ . _ k . . .

(3) Z/p>® = {% € Q/Z: n=p* for some k > 0} is called the quasi-cyclic p-group.

For an abelian group G, we say that an element g € G is divisible by n € Z \ {0} if the equation nx = g has a solution in G,
G is divisible by n if all of its elements are divisible by n, and G is a divisible group if G is divisible by all n € Z \ {0}.

For an abelian group G, Tor G is the subgroup of all elements of G of finite order, and p-TorG is the subgroup of all
elements whose order is a power of p, that is, p-TorG = {g € G: p¥g =0 for some k > 1}.

Here is the definition of a Bockstein basis o (G) that we will use, adapted from the original one by E. Dyer [7].

Definition 2.1. Let G be an abelian group, G # 0. Then o (G) is the subset of {Q} U{Z/p,Z/p°, Z): p €P} defined by:

G contains an element of infinite order
G/TorG #0,
G satisfies the following: 3g € G such that Vk € Zxo, pkg is not divisible by p**!

M Qea(6)

(I ZLpy € 0(G)
G/ Tor G is not divisible by p,
(m) Z/peoa(G) G contains an element of order p¥, for some k € N, which is not divisible by p
p-Tor G is not divisible by p,

p-Tor G # 0 and p-Tor G is divisible by p.

AR A A

(V) Z/p* eo(G)
Theorem 2.2 (Bockstein Inequalities). ([3]) For any compact metrizable space X the following inequalities hold:

(BI1) dimgz,p X < dimgp X,
(BI2) dimgz,p X < dimgz;po X +1,
(BI3) dimgz,p X < dimz(p) X,

(Bl4 dlmQ X< dlITlZ(p) X,

(BI5
(

BI6) dimgz,p X < max{dimg X, dimz, X —1}.

)
)
) dimz, X < max{dimg X, dimz,p>~ X + 1},
)
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Theorem 2.3 (Bockstein Theorem). ([7]) If G is an abelian group and X is a locally compact space, then

dimg X = sup dimpy X.
Heo (G)

Now let Pg :={p e P: Zy) €0 (G)}.
Lemma 2.4. If G is an abelian group such that Pg = IP, then for any compact metrizable space X, dimg X = dimz X.

Proof. P¢ =P means that for each p € P, Z) € 0(G). By the Bockstein Inequalities (BI4), (BI3) and (BI1), the supre-
Mum SUPyes ) dimpy X has to be achieved at suppcpdimg, X. Since 0(Z) = {Q} U {Zp): p € P}, supyeq gy dimy X =
SUPHeo(z) dimp X. O

3. Walsh technical lemma and Edwards type theorem

This will be a statement needed to produce a resolution 7 : Z — X, based on [22].
Notation. B, (x) stands for the closed ball with radius r, centered at x.

Lemma 3.1 (Generalized Walsh Lemma). Let X = (P;, f,.i“) be an inverse sequence of compact metric spaces (P;, d;) of diameter
less than 1, Z = (M;, g;“) an inverse sequence of Hausdorff compacta, X = limX and Z = limZ. Assume also that we have maps

i © Mj — Pj, and, for each i € N we have numbers 0 < (i) < 8D 1, satis ing:
3

(M fori>2, ¢i_10 g,'.;] and f,.';l o ¢ are @—dose,
(I) fori>2and forany y € P;, diam(fi"_1 (Bsiy(¥))) < ‘“’3;]) and
(1) fori> jand forany y € P;, diam(f}(Bs(i)(y))) < %

Then there is a map 7t : Z — X such that for all x = (x;) € X:

(IV) 71 (x) = lim(g; " (Bsqiy (%)), g ™") = lim(@; " (Beqiy (xi)). &)

(here gf“ stands for the appropriate restriction).

If, in addition, we have that:
(V) forall x = (x;) € X and for all i, ¢i_l(35(;‘) i) #0,

then 7t ~1(x) # @, so the map 7 will be surjective.

Proof. The following diagram will help in visualizing the steps of this proof.

gitl
M; <=— M1 Z‘
¢il lrbm |
\
i=—7Pin1 . X
fi1+1

Let z=(z;) be an element of Z C ]_[;’21 M;i; so g?“ (zi+1) = z; and ¢;(z;) € P;, for all i € N. Define a sequence in I—[;’il P;
as follows:
X' = (¢1(21), $2(22). $3(23). Pa(2a). ...)
X = (f2(2(22), 2(22), ¢3(23), da(za), ...)
(F2(63(23)), f3(¢3(23)). $3(23). Pa(za), ...)

X3
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= (F(6i@). 56 @D). . 1 (9(z)). 6j (). bj11Zj11). ..)
W = (7 (b1 @ien). [ G501 @ia0) - T (0541(2140)) . 6551 (Zj41). bj2(2j42). )

Letwj:Z — ]_[;’il P; be defined by 7(2) := xJ. Note that 7; are continuous because coordinate maps x/ are continuous.
We shall employ the metric d on [[{2; P; given by

N di(si, T
d((sp), () ==Y —(52,. W,
i=1

We would like to show that (77(2)),

jex is @ Cauchy sequence in [];Z; P;. Properties we will need are:

(1) for j>2, f] 1(9j(zj)) and ¢j_1(zj—1) = pj- 1(g1 1(z;)) are &(j — 1)-close, and
(2) fori> j, f}+ ($i+1(zi41)) and f,-(¢,~(zi)) are %-close.

Property (1) follows from (I). Property (2) is true because: by (1)i+1, fii+1(¢i+1(zi+1)) and ¢;i(z;) are &(i)-close, so
f{71($i41(2i41)) € Beqiy (¢1(21)). Therefore

f]l:H (¢i+1(zig1)) = f':(f,»i+1(¢i+1(2i+1))) € f}(Bs(i) (¢i(z))).

and diam fi(Beq (¢i(2)) < &2, by (Il1). So fI*!(gi41(zi41)) and fi(gi(z)) are L -close,

Note that by (2)j>q and (1)j41,

j-1 Joa ooy pil Az, FIT (i (2
a2, (Z)):(qu(fq(@(zn),fq (¢1+1<z1+l)>)) L 4@ i @in @)

= 24 2]
j—1 j—1 o0
e 1 s(]) 1 1 1 1
<< a7 <w(x)rrwl((Xa)
q=1 q=1 q=1
1
2i-1"

Therefore, for the indexes j and j+ k we get:

d(7j(2), T4 (2)) <d(7}(2), Tj11(2) + d(7j31(2). Tj42(2) + - -+ + d(Tj4i-1(2). T (2))

1 1 1 _
Syttt cyE Lyt
i=

Thus (77(2)),.y is @ Cauchy sequence in the compact metric space [T, P;, and therefore it is convergent. Define 7 (z) :=
lim;_, 507 (2).
Notice that for any k € N, and for any z € Z,

d(me@, @) <D_d(m@. 71 @) <D 555 = 55
j=k j=k

So the sequence (7j);jen converges uniformly to 7. Therefore 7w : Z — 12, P;i is a continuous function.
We would like to see that 77 (Z) C X.If y; is j-th coordinate of 77 (z) for some z € Z, then y; = limi>jf]':(¢i(zi)). Therefore
if j>1,

£ap = £ (lim 1 9icz0) ) =tim( L (£ (91620)) = im(7]_ (61620)) = tim (7] (8:@0)) = v+
Som(z)e X, ie., m(Z) C X.

Now that we have a map 7 : Z — X, we need to see what its fibers are. Take any x = (x;) € X. From (Il); and (I);, we
will get that

(3) gl @ (Bsciy (%)) C ¢ (Beiiz1) (xi—1))-
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Here is why: take any y € ¢i’l(35(i)(x,-)), ie, ¢i(y) € Bsgp(x;). Note that (II);: diam(fi';1 (Bsqiy(xi))) < S“T_U Hence

dict(fL (@), fl i) < B0 e, disi (FL (@), xie1) < 2520 By (it dim1(@i1(gl_, (), fi (@) < 252,
and therefore

di1(xi—1, di—1(g_ 1)) <diz1(Xiz1, fL1 (i) +dic1 (f1 (i (0)), pi1 (811 (1))

<w<s(i—1).

S0 ¢i—1(8_; (¥)) € Be(i—1)(xi—1), and therefore gl (y) € ¢ (Be(i—1)(xi—1)), 50 (3) is true.
As a consequence of (3) and the fact that (i) < (i), both (‘7’1‘_1(33(")(""))’g§71|¢71(35(i)(xi))) and (¢i_1(B£(,~)(x,~)),

g,’f_l ‘¢-’1(Bg<i>(xn)) are inverse sequences with the same limit. Now we would like to show that this limit is 7~ (x).
1

Let us show that lim(¢; ' (Beqi)(xi)), 8_;) C 7~ (x), where g|_, stands for the appropriate restriction. Take any z = (z;) €
1im(¢i_1 (Beiy(%1)), g::_1). Note that

(4) the j-th coordinate of 7 (z) is limi>jf}(¢i(zi)).

Since z; € ¢i’1(38(,-)(x,-)), we have that ¢;(z;) € Bg(j)(x;). Condition (IIl);, which says that diam(f}(Bg(i) x))) < % implies

that f}((b,-(zi)) and xj = f}(x,-) are %{')—close. Therefore limi>jf}(¢i(zi)) =Xj, S0 T(z) =x, ie, z€ a1(x).

Let us demonstrate that 771 (x) C lim(¢; ' (Bsqi)(xi)), g._,). Suppose that z = (z;) € Z, and z ¢ lim(¢; ' (Bsci)(xi)), 8!_;).
We will show that 7 (z) #x. A

Now z ¢ lim(qﬁi’](Bg(i)(x,-)),g;_]) means that there is an index j e N such that z; ¢ ¢]71(B,;(j)(xj)). So dj(¢j(z)), xj) >
8(j). The inequality £(j) < ‘3(3—’) assures that Bog(j)(¢(z)) N Be(jy(xj) = 9. If we look at the distance between ¢;(z;) and the
j-th coordinate of 7 (2) (see (4)), from (1)j41 and (2)-; we get:

dj(¢j(zj),lii>n} f}(¢i(2i))) <dj(<15j(zj),fjj+1 (@j+1@0) + Y di(ff (¢ @), I (Br1(241))

k=j+1
) . . %)

. e(Jj) ., &) 1 .
k=j+1 k=1

That is, the j-th coordinate of 7t (z) is contained in By.j)(¢j(z))), implying 7 (z) #x, ie, z ¢ T 1(x).
So we get that

lim(¢; " (Be(iy(x)), 81_1) € ' (x) C lim(¢; " (Bsciy(x0)). 81_7)

and since the left and right side of this statement are equal, then (IV) is true.
If (V) is also true, i.e., w~1(x) is the inverse limit of an inverse sequence of compact nonempty spaces, then, according
to Theorem 2.4 from Appendix II of [5], 7 ~1(x) # @. Thus, the map 7 : Z — X is surjective. O

Remark 3.2. In some of the proofs that follow we will use stability theory, about which more details can be found in §VI.1
of [10]. Namely, we will use the consequences of the Theorem VI.1. from [10]: if X is a separable metrizable space with
dim X < n, then for any map f: X — I"*1 all values of f are unstable. A point y € f(X) is called an unstable value of f if
for every § > 0 there exists a map g: X — I"™t! such that:

(1) d(f(x), g(x)) < & for every x € X, and
(2) g(X) 1™\ {y}.

Moreover, this map g can be chosen so that g = f on the complement of an arbitrary open neighborhood of y, and so that
g is homotopic to f (see Corollary 1.3.2.1 of [18]).

Lemma 3.3 (Special version of Walsh Lemma). Let X = (P;, fl-i“) be an inverse sequence of compact metric polyhedra (P;, d;) with

diameter less than 1, and let L; be triangulations of P;. Suppose that we have maps g,':+] : |L§ﬂ1)| — |L§"+l)| such that g,':+] (|L§i)] hc
|L§")\, and let Z = (|L§")|, g:f*'l) be the inverse sequence of subpolyhedra |L§")| C P;, where each glf“ stands for the appropriate

restriction. Let X =1im X, Z = lim Z. Assume that for each i € N we have numbers 0 < (i) < MT” < 1, satisfying:
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( D _close,

() fori>2, g::*ll\ﬂ”)l and fi 1|‘L(n)| are

and conditions (1) and (Ill) from Lemma 3.1.
Then there is a map it : Z — X such that for all x = (x;) € X:

1) =lim(Bs) (x) N 1L, gT) = lim By (xi) N L], g1™)

(here g'“ stands for the appropriate restriction).

If, in addition, we have that:
(IV) meshL; < (i), for all i,

then for all x € X we have 7t ~1(x) # @, so the map 7 will be surjective.
If we also have

(V) fori>1and forany y € P;, Be(ijy(¥) C Py.i C Bsiy(y), where P, ; is a contractible subpolyhedron of |L;|, and
(VI) fori>2 gi_ (L™ L™,

then the map r is cell-like.
Proof. The following diagram will be useful.

+)
n Bl (n)
L™ IL

!+1|<—... VA
\
v

-<—— Pi=|Lil I Piy1=ILit1] =— -+~ X

The existence of 7w : Z — X with the required properties of fibers follows from Lemma 3.1, when P; = |L;|, M; = |L§")|
and ¢; is the inclusion i : |L§”)| — |L;].
Note that ¢i_](85(,-) (%i)) = By (x)) N |L§")|, so (IV) of Lemma 3.1 becomes:

(V) 71 (%) = (%) = lim(Bjsiy (%) N L], g*1) = lim(Biy (%) N L™, g ).

Property (IV) will guarantee that, for any x € X, 7 =1 (x) # . This is true because, if we take any x = (x;) € X, x; € P; = |L;|
implies that there is a simplex o € L; such that x; € 0. Since meshL; < (i), we get that diamo < &(i), S0 0 C Bg)(x;).

Therefore o™ C B (x;) N ILSn)I. S0

B % Beqiy(xi) N L] € By (x) N L™ | = o7 (Bscoy (1)

By (V) of Lemma 3.1, 7 : Z — X is surjective.
It remains to show that properties (V) and (VI) imply that 7 is cell-like. Note that from (V) and (IV*) we get that
T l(x) = 11m(PX1 in |L(”)| g'“) where g’+l stands for the appropriate restriction. It will be sufficient to show that the
maps gi i Py v N |Li+1| — PyiN |L§")| are null-homotopic.
First note that Py, i+1 being contractible implies that the inclusion map i: Py, i+1 N |L§")1| — Py ,i+1 is null-

homotopic. Since dim Py, j+1 N |L1+1‘ n, i is null-homotopic as a map into Py, i+1N |L("‘H>| that is, this homotopy hap-

pens within the (n+1)-skeleton of L; 1. This is because dim((Py,,,,i+1N |L,Jr1 DxD<n+1,s0if H: (Py,,iv1N |L,Jr1 DxI—
Py, ,,i+1 is our homotopy, then, by Remark 3.2, in each cell of Py, , j+1 =|Liy1| with dimension > n + 2, the map H will
have unstable values. N

Using the last part of Remark 3.2, as well as properties of deformation retracts, we can find a map H : (le+1 it1 N

(n) () @ +1)

L4 1) x I — Py,.ip1 such that HlH Ly = H|,_ LD H((Py,y.i01 N ILih D x D) c |LL7 7], and so that His a
| > Pyppis1 N IL?ZT”
(n+1)
i+1 |

homotopy between i: Py, it+1 N |L1(+)1

Composing such a homotopy with gl |‘L ) L

i+1
&

| and a constant map.
— |L§”)| yields the sought after null-homotopy for the restriction

. O
Py it DL
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We will now prepare for Lemma 3.7, which will be useful in the proof of the new version of Edwards’ Theorem. First
note the following:

Remark 3.4. Each k-dimensional simplex is homeomorphic to I¥, so it is an absolute extensor for normal spaces, hence also for
CW-complexes. In particular, for a simplex o we have |o|T|0|.

Lemma 3.5. Let o be a k-dimensional simplex. Then there exists an open neighborhood N of |do| in |o|, and a surjective map
s:|o| — |o| such that s(N) C |do|, and ||| = id.

Proof. It suffices to prove the lemma in the case when o = A C R¥*1 s the standard k-dimensional simplex. Consider the

homothety h; 1 : A — A, centered at the barycenter B of A with scale %, that is, every point P € A is mapped to h, 1 (P)
02 ' 2

so that B —hy 1(P) = %(B — P). Since hg 1(A) is contained in the interior of A, we see that N:= A\ h; ;1 (A) is an open
'3 ) 02
neighborhood of 9A. Let s: A — A be the map which on hy ; (A) coincides with (hy 1)~1, and on N coincides with the
' 2 02
restriction to N of the central projection A\ B— dA. O

Using the previous lemma we get the following technical result helpful in the proof of Lemma 3.7:

Lemma 3.6. Let C be a finite simplicial complex with dim C = q. Then for each 0 < k < q there is an open neighborhood U of |C%®| in
|C|, and a surjective map r : |C| — |C| so that

(1) r|\c(k)| = id\c(k)p
(2) r preserves simplexes, i.e., forany t € C,r(t) C 7, and
(3) r) clc®.

Proof. The statement of this lemma is true when ¢ =0. If ¢ > 1 and k =q — 1, the statement can be easily proven using
Lemma 3.5.

Assume that q > 1, and assume inductively that the statement of this lemma is true when q is replaced by n, and
0<n<gq.

Choose an open neighborhood M of |C@~D| in |C|, and a surjective map p : |C| — |C| so that

(1)g-1 p|\c(q71)| = id|c(q—1)|.
(2)g—1 p(r) C7 forany 7 €C, and
(3)g-1 P(M) C |C4~D].

Ifk=q—1, put U:=M and r:=p and we are done. If k < q — 1, proceed as follows. By the inductive assumption, we
may select an open neighborhood N of |C®| in |[C@~D|, and a surjective map s:|C~D| — |C@~V| such that

(a) 5||c<k)| = id|c(k)\v
(b) s(z) c T for any T € C4~V, and
(c) s(N) c [c®).

For each g-simplex o of C, s(|0o|) =|90| and s|jps|: 00| — |do| is homotopic to identity. Hence there is a map
So:|o| — |o| such that S;ljso| = Slj3o|, and s, must be surjective. Put §:=s U ((J{ss|ois a g—simplex of C}). Then
§:|C| — |C| is surjective, 3(r) C T for any T € C, and §||cq-n| =Ss.

Note that p|y : M — |C9~ V| is continuous, and N is open in |[CY4~D|, so (p|y) ' (N) is open in M and therefore open
in |C|.

Define U := (p|y) '"(N) =M N p~'(N) and r:==50 p :|C| — |C|. Observe that U is a neighborhood of |C®| in |C| and
that r is surjective. It is routine to check that (1)-(3) are true. O

Lemma 3.7. For any finite simplicial complex C, there isa map r : |C| — |C| and an open cover V = {V4: o € C} of |C| such that for
alo, T eC:

(i) ¢ C Vo,
(ii) if o # t and dimo =dimt, V4 and V. are disjoint,
(iii) ify € ?, dimo >dimt ando #1,theny ¢ Vg,
(iv) ify e ?ﬂvg, where dimo < dim 7, then o is a face of T, and
(v) 1(Vg) Co.
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Proof. Since C is finite, let us suppose that dimC =gq. For k=0,...,q — 1, let Uy correspond to U and r; correspond to r

from Lemma 3.6. Note that for vertices v € C® we have that v = v.
Here is how we will define the open cover V ={V,: o € C} for |C|:

(a) for each k-simplex o of C, where k=0,...,q—1, put Vg :=(rgorgrqo--- orq_l)—l(g) into V, and
(b) for each g-simplex o of C, put V4 =0 into V.

Note that all elements of V are open sets: in (b) that is clear, and in (a):
(korepro--orgn) (@) =1 (.. (4 (i1 @)))),

and rk’l(c?) is open because ri|y, : Uy — [C®| is continuous, and o is open in |C®)|.

Let us check that (i) is true: ocC Vs is clear for case (b), and, for case (a), since ry, i1, ...,rq—1 are all the identity on
IC®| and ¢ ¢ |C®|, then & C V. Hence V is a cover for |C| because of (i).

If o and t are two different simplexes of the same dimension, then o and T are disjoint. If dimo =dimt =g, (ii) is
clear. If dimo =dimt < g, then (a) implies that V, and V. are disjoint, i.e., (ii) is true.

Let us prove property (iii). We know that y € TC V.. If T and o are of the same dimension, then (ii) implies y ¢ V.
If dim7t <dimo <q—1, then Vs := ('qimo o--~orq_1)_1(ao), so if y would be in V,, then rgimg o ---org—1(¥) € o. But
I'dimo - - - »Tq—1 are the identity on |CAMD)| 5 7,50 rgimg 0+ -+ 0 r-1(y)=ye &, which is in contradiction with ye 7. Thus
y¢ Vs If dimt <dimo =gq, then V, :c?, soy eTand T # o imply that y ¢ V.

To prove (iv), suppose that y € V, for some o € C with dimo < dimt. Then V4 := (rgimg 0+ o rq,1)_l((§), SO T'dimo ©
~eorg1(y) € . Notice that Tdimz»>Tdimt+1s - - -» Tq—1 are the identity on 7, S0 r'4jmg 0+ - 07g—1(¥) =Tdimo ©- - o Tdimz—1(¥) €
o. The maps T'dimo,---»dimz—1 preserve simplexes, by (2) of Lemma 3.6, so y € T implies that rgimg o -+ o F'dimr—1(¥) € T.
Thus T N & # (), so o must be a face of 7.

It remains to define the map r and prove the property (v). Define r:=rgorjo---orqg_1:|C| — |C|. For any k-simplex o
of C where k=1,...,q—1, by (a) we get that

_1 o o
r(Vo)=rgorio---org1((rgorks10---0rg_1)" ' (0))=rgorio---or_1(0),

since all r; are surjective. Also, by (2) of Lemma 3.6, (V) =rgorjo---org_q ((?) co.

Likewise, for any g-simplex o of C, we get r(Vy) =r(d) C o for the same reason. For vertices v € C©, r(V,) =ro
r~1(v) = v. So we conclude that (v) is true. O

Next we will see a version of Theorem 4.2 from [22], adapted for our situation. In order to proceed, however, we will
need to be reminded of two definitions.

Let K be a simplicial complex, X a space, and f : X — |K| a map. Recall that a map g: X — |K]| is called a K-modification
of f if whenever x € X and f(x) € o, for some o € K, then g(x) € o. This is equivalent to the following: whenever x € X
and f(x) ao, for some o € K, then g(x) €o.

In the course of the proof of the following theorem, we will need the notion of resolution in the sense of inverse sequences.
This usage of the word resolution is completely different from the notion from the title of this paper. The definition can be
found in [18] for the more general case of inverse systems. Here, however, we will give the definition for inverse sequences.

Definition 3.8. Let X be a topological space. A resolution of X in the sense of inverse sequences consists of an inverse sequence

of topological spaces X = (X, p:.‘H) and a family of maps (p; : X — X;) with the following two properties:

(R1) Let P be an ANR, V an open cover of P and h: X — P a map. Then there is an index se N and a map f:X; — P
such that the maps f o ps and h are V-close.

(R2) Let P be an ANR and V an open cover of P. There exists an open cover V' of P with the following property: if s € N
and f, f': X — P are maps such that the maps f o ps and f’ o ps are V'-close, then there exists an s’ > s such that
the maps f o pg/ and f'o pg/ are V-close.

By Theorem 1.6.1.1 from [18], if all X; in X are compact Hausdorff spaces, then X = (X, p§+1
maps (p; : lim X — X;) is a resolution of lim X in the sense of inverse sequences.
Moreover, since every compact metrizable space X is the inverse limit of an inverse sequence of compact polyhedra

X = (P, pé“) (see Corollary 1.5.2.4 of [18]), this inverse sequence X will have the property (R1) mentioned above, and we

will refer to this property as the resolution property (R1) in the sense of inverse sequences.

) with its usual projection
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Theorem 3.9 (New statement of Edwards Theorem). Let n € N and let Y be a compact metrizable space such that Y = lim(|L;|, f"Jrl
where |L;| are compact polyhedra with dimL; <n + 1, and f'+1 are surjections. Then dimz Y < n implies that there exists an s € N,
s > 1, and there exists amap g3 : |Ls| — |L§")| which is an L1-modification of f3.

1L

|L1] |Ls| Y

f

Proof. There will be two separate parts of this proof, for n > 2 and for n =1.

Let us start with n > 2. We will build an Edwards-Walsh complex L1 above L(") Since dimL; <n+1 and L; is finite,
L1 has to have finitely many (n + 1)-simplexes, say, o1, ..., on. Focus on Lg ), and above each of al.( ) = do; ~ S", build a
K(Z,n) by attaching cells of dimension (n 4+ 2) and higher. Name the CW-complex that we get in this fashion L;. Notice
that we can write E = Lﬁ") UK(o1) UK(02)U---U K(0om), where each K(oj) is a K(Z,n) attached to doj. Also notice that
we can mike the attaching maps piecewise linear, so that we will be able to triangulate T: keeping L§"> as a subcomplex.
Let 6 : L1 — |L1| be a map such that 0||L(1n)| = idngn)‘ and 6 (K (o;)) C o;. This 6 can be constructed as follows: first, define

GIIL(")I = id\L(”)r By Remark 3.4, each oj is an absolute extensor for CW-complexes, so the inclusion map j:oi(”) — 0 can

1 1

be extended over K(oj). Call this extension 6|k ;). Gluing together all of the extensions 6|k for i=1,...,m with 9||L(,,)|
1

will produce the map 6. )

Let f1:Y — |L1| be the projection map from the inverse sequence. The map fi is surjective since all f,.’+l are surjective.
Extend f1],-1,, m :ff1(|L§”)\) — |L(1")| to amap h:Y — Ly such that
fr ALy h
@) h(f; o)) co (o) =K(oy), fori=1,....m

This can be done using dimzY <n < YTK(Z,n): for any (n 4+ 1)-dimensional oj, take f1|f,1(0(n)) . f1_1(o'i(n)) —
1 i

o,.(") and compose it with the inclusion i : o,.(") — K(0j) = K(Z,n). Now YTK(Z,n) implies ffl(o,')rK(Z, n), so the map

iof1 |f]—1(av(n)) : f{l(oi(")) — K(oj) can be extended over fl’l(ai). Call this extension h|f;‘(a,-)' So we get the map h that we

need by gluing together all of the extensions h|f_ fori=1,...,m, with h'f’I(\L(”’I) =f1 |f,1(‘L(n>|).
1 1 1 1 1

Y(oi)’
Note that our inverse sequence (|L;|, fi“) is a compact resolution for Y in the sense of inverse sequences (see Defi-

nition 3.8), so, in particular, it has the resolutlon property (R1) (in the sense of inverse sequences): if we choose an open

cover % for the minimal and hence finite subcomplex Cin Ll such that h(Y) C C, then we can find an s > 1 and a map
:|Ls] — C such that h and hj o fs are V-close.

f] ~—C

IL1| . Ll ==~y
d fs
Let us make a wise choice for V. Start by triangulating C: let C denote a finite simplicial complex which is a triangulation
of C whose restriction to |L§")| is a subcomplex. So |C| =C. Since C is finite, let us suppose that dimC =q.
Define an open cover V for |C|, and a map r: |C| — |C| as in Lemma 3.7. For this cover V for |C|, we may apply
resolution property (R1) (in the sense of inverse sequences): we can find an s > 1 and a map hj : |Ls| — |C| such that h and
h3 o fs are V-close. Define hs :=r o hj : |Ls| — |C|. Because of our choices, we get that

(b) whenever h(y) € T for some T € C, then (hso f5)(y) € T.

This is true because, by (i)-(iv) of Lemma 3.7, h(y) € T implies that h(y) € V, and possibly also h(y) € V, for some o
which is a face of z, but h(y) is in no other elements of V. Since hj o fs is V-close to h, we have that either hj o fs(y) € V¢,
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or hj o fs(y) € Vo, for some face o of 7. But by (v) of Lemma 3.7, r(V;) C T and r(Vs) C o C 1. Thus hs o fs(y) =
rohjo fs(y)er.

If f1(y) € o; for some (n+ 1)-simplex o; of L1, then, by (a), h(y) € K(oi), so h(y) €7 for some T € C and T C K (o).
By (b), hs(fs(y)) € T. So we can conclude that

(c) if f1(y) € oj, for some (n + 1)-simplex o; of Ly, then both h(y) and hs o fs(y) land in K(oj).
Now we will construct a map gj : |Ls| — |L§")| such that:

(d) &ily-1g o)) = hsly-1 o)), and
s 1 S 1
(e) whenever hs(z) € K(o;) for some (n+ 1)-simplex o; of Ly, then g§(2) € o;.

Z] <—>/C\
0 Cty  \[s
~ N
g
L1 7 |Ls|

We know that hs : |Ls| — |C| = C, where C is a triangulation of the finite CW-subcomplex C of /L\L Since C is finite, we can
pick a cell ¥ of maximal possible dimension dimy = q (we have assumed that dimC = ¢, so dimC =q). It is safe to assume
that g >n+2.

Pick a point w in )/ with an open neighborhood W C )/ Since dim|Ls| <n+1 and dimy >n+ 1, the point w we
picked is an unstable value for hs, so we can construct a new map g3 o t|Ls| — C \ {w} that agrees with hs on h; 1(C \ W),

and g3 y(hs (v)) C ¥ \ {w} (see Remark 3.2). Retract y \ {w} to dy by a retraction 7 : C \{w}— c \ )/, such that r|E\; =id.
Replace hs with Fogiqy D Ls| — E\ Jj

We will repeat this process, starting with /C\\)j and the map 7o giqy instead of C and hs: pick a cell of maximal
dimension in ?\ )3 etc. This is done one cell at a time, until we get rid of all cells in C with dimension > n + 2. The map
we end up with will be g : [Ls| - C™*D), where C"*1 stands for the CW-skeleton of dimension n+ 1 for C. Notice that
Ccm+D Cﬁ“” but the CW-skeleton of dimension n+ 1 for ﬂ is equal to the CW-skeleton of dimension n for fl, since we
have built L by attaching cells of dimension n+ 2 and higher to L{". Thus T"*" =T\"
n-skeleton of Ly. So in fact, g5 : |Ls| — |L§”)|.

By our construction, g agrees with hs on h;](|L§")|), so (d) is true. To prove property (e), let hs(z) € K(o7). Then
hs(z) € y, for some cell y of K(oj). So 7o g.sl’y(z) € dy C K(o7). As we go on with our construction, we get gj(z) €

(K (o)™ = do; C 0y
Finally, for any z € |Ls| we have that either f(z) e é" for some 1 € L("), or fi(2) € (;. for some (n + 1)-simplex o; of L.
1

|L(")| where L(”) is the simplicial

Since f; is surjective, there is a y € Y such that fs(y) =z.

So, if f5(2) €T for some 7 € Lﬂ"), then f1(y) = f{(fs(y) = f{(2) € TC |L§")|. Recall that on ff1(|L§")|), f1 and h
coincide. Thus fi(y) =h(y) € T. There is a simplex T’ e CN |L§")| such that 7/ C 7, and f1(y) =h(y) € %)/. By (b) we get
that hso fs(y) e T/ C T, ie, hs(2) € T € LI, s0 by (d), g5(2) =hs(2) € 7.

On the other hand, if f§(2) € (l;, for some (n+1)-simplex o; of Ly, then fi(y) = f{(fs(¥)) = f{(2) € (?. By (c), hso fs(y) €
K (o), i.e., hs(z) € K(o7). Property (e) implies that g3 (2) € 0.

So g} is an Li-modification of f7.

It remains to prove this theorem for n = 1. First note that dimz Y < 1 implies that dimY < 1, because S! is a K(Z, 1)-
complex. We will not need to construct an Edwards-Walsh complex L1 here. Instead, look at the map f;:Y — |Lq|. Let

g1:Y—> |L§1)| be a stability theory version of fi;. We construct g as before: since we know that dimL; < 2, pick any

2-simplex o of L. We can pick a point w € o with an open neighborhood W C (;, and since dimo = 2, the point w is an
unstable value for fq. So there exists a map g1, : Y — |L1| \ {w} which agrees with f; on f{1(|L1| \ W), and such that

gm(fl_l(o)) c o \ {w}. Now retract o \ {w} to do by a retraction ¥ which is the identity on |L1| \5. Finally, replace fi by
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fogie:Y—|L1] \c?. Continue the process with one 2-simplex at a time. Since L, is finite, in finitely many steps we will
reach the needed map g1:Y — |L§1)|. Note that from the construction of g1, we get

(f) g1 Iff](\L(l”\) =fi |f171(|L<]1>‘), and for every 2-simplex o of Ly, g1 (f]_1 (o)) Cdo.

[L1]

)
Ll

Let us choose an open cover V of as before: apply Lemma 3.7 to C = Lgl). Note that q=1, so the map r=ry : \Lgl)| —
15"

11

Now we can use resolution property (R1) (in the sense of inverse sequences): there is an index s > 1 and a map
& |Ls| — |L§1)| such that g5 o fs and g1 are V-close. Define g} :=rgo & : [Ls| —> |L§1)\.

Notice that for any y € Y, if g1(y) €T for some T € LP (vertices included), then gi(y) € V¢, and possibly also
g1(y) € Vy, where v is a vertex of 7. Then either &5 o fs(y) € V¢, or &f o fs(y) € Vy. In any case, rg o &} o fs(y) € 7.
Hence,

(g) forany y eV, g1(y) € T for some T € v, implies that g5(fs(y)) e T.

Finally, for any z € |Ls|, fs is surjective implies that there is a y € Y such that fs(y) =z. Then f§(2) = f; (fs(¥)) = f1(¥).

. . . o . . . o
Now f7(z) is either in o for some 2-simplex o in Ly, or in T for some 7 € Lgl).

If f{(2) € c;, that is f1(y) € o for some 2-simplex o, by (f) we get that g;(y) € do. Then by (g), g} (fs(¥)) € 80, ie,
gi@eo.

If f3(2) = f1 y) € T for some T € L( ), then (f) implies that g1(y) = f1(y) € T, 50 by (g), gi(fs(y)) e, ie, gj(2) eT.
Therefore, g7 is indeed an L;- modlﬁcatlon of f{. O

Lemma 3.10. Let n € N, G be an abelian group and K be a connected CW-complex with m,(K) = G, mp(K) =0 for0<k <n.IfY is
a compact metrizable space with dimY <n+1,then YTK < dimgY <n.

Proof. Build a K(G,n) by attaching cells of dimension n + 2 and higher to our CW-complex K.

First assume that YtK, and let us show that dimgY < n. If we look at any closed set AC Y and any map f:A —
K(G,n), we have that dimA < dimY <n+1, so we can homotope f into K(G,n)™*V = K@D c K, ie., there is a map
f: A— K which is homotopic to f. Now YTK implies the existence of a map g:Y — K which extends f. Therefore, by the
homotopy extension theorem, f can be extended continuously over Y, so we get that YTK = YtK(G,n) = dimgY <n.

Second, assume that dimgY < n, and let us show YtK. Look at any closed set A CY and any map f:A — K. Let
i:K<— K(G,Nn) be the inclusion map. Then Y7 K(G,n) implies that there is a map f:Y — K(G,n) extending io f : A —
K(G,n), i.e., fla=io f.

Since Y is compact, f(Y) is contained in a finite subcomplex C of K(G,n). There are finitely many cells in C \ K,
and all of them have dimension > n + 2. Pick a cell of maximal dimension y € c \ K, and a point w € V with an open

neighborhood W cC Y. Since dimY <n+1 and dimy >n+ 2, the point w is an unstable value of the map f. so there is
amap gy :Y — C \ {w} which agrees with f on f 1(C \ W), and such that gy(f”(y)) C v \ {w}. Retract y \ {w} to oy
by a retraction F:E\ {w} — E\ 73 such that Flf\; =id. Replace ]‘ withfog, Y — f\ 7; Repeat this process one cell at a
time until all cells off\ K are exhausted. The map we end up with will be g:Y — K such that glf,l(K) = f|f71(1<)- Since

f(A) = f(A) CK, thatis, AC f~1(K), we get g|a = fl,q. So g:Y — K is an extension of f: A — K. Therefore YTK. O
4. Lemmas for inverse sequences

The proof of the main result will require certain manipulations of inverse sequences of metric compacta. This section
will contain the needed results, mostly taken from Section 3 of [21]. The next lemma follows from Corollary 1 of [19], or
from [1].
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Lemma 4.1. Let X = (X, Hrl) be an inverse sequence of metric compacta (X;, d;). Then there exists a sequence (y;) of positive

numbers such that if Y = (X;, '.+1) is an inverse sequence and d; (p’“ , qi“) < y; foreach i, then limY =limX.

We shall call such (y;) a sequence of stability for X.

Let K be a simplicial complex, X a space, and f : X — |K| a map. One calls f a K-irreducible map if each K-modification
g of f is surjective. Note that f being K-irreducible implies that f is surjective, and for any subdivision M of K, f is
M-irreducible.

Lemma4.2.If f : X — |K| is a K-irreducible map, and g : X — |K| is a K-modification of f, then g is K-irreducible.
The following fact may be deduced from Theorem 3.11 of [11], or found in [9] (Hauptsatz I, p. 191).

Lemma 4.3. Let X be a compact metrizable space. Then we may write X as the inverse limit of an inverse sequence Q = (|Q;], q’“) of
compact metric polyhedra, where each bonding map q::“ is Q;-irreducible.

Lemma 4.4. Let X be a compact metrizable space. Then there exists an inverse sequence K = (|K;|, p'“) of compact metric polyhedra

(IKil, d;) along with a sequence of stability (y;) for K such that limK = X, and for each i € N, mesh K; < y;. We may also specify that
for some m € N, whenever i > m, then p'*1 |Ki+1] — |Ki| is a K;-irreducible simplicial map.

Proof. Write X = limQ, where Q = (|Q;l, qj“) is an inverse sequence of compact metric polyhedra (]Q;|,d;) as in
Lemma 4.3. By Lemma 4.1, we know that there is a sequence of stability (p;) for Q. For each i, put y; = p;/2. Note that (¥;)
is also a sequence of stability for Q.

Let K1 be a subdivision of Q; with mesh Ky < y1. Suppose that i e N and for each 1 < j <i, we have chosen a sub-

division K; of Q; with meshK; < y; and, when 1 < j, a map p]_1 K| — K- Wthh is a simplicial approximation

to qj . Then select a subdivision Kj;; of Q;y; with meshK;; < ¥;4+1, and which supports a simplicial approximation
:|Kiz1] = |Ki| of gi*'. Note that di(g'™", pi™") < y;.

Let us check that K:= (|Kj|, p’“) and m =1 satisfy all of the requirements. Clearly X = limK, since (y;) is a sequence

of stability for Q. It remains to show that the new bonding maps p’+l are Kj-irreducible. First, note that q::“ being Q;-

irreducible implies that q’“ is also K;j-irreducible. Since p’+l is a simplicial approximation of ql“ pé“ is a K;-modification

of g™, By Lemma 4.2, p'*1 is K;-irreducible too. O

Definition 4.5. Whenever X is a compact metrizable space, then we shall refer to an inverse sequence K of metric polyhedra
(|K;], d;) which admits a sequence (y;) of positive numbers and m € N so that the properties of Lemma 4.4 are satisfied as
a representation of X which is stable and simplicially irreducible from index m with associated sequence of stability (y;).

Of course, Lemma 4.4 and its proof show that every compact metrizable space X has a representation K which is stable
and simplicially irreducible from index m = 1.

Next, we want to define a certain procedure which when applied to such K=Ky as in Definition 4.5 results in a Kj
which is also a stable and simplicially irreducible (from some index m) representation of X. We will then show that if
this procedure is repeated recursively in a controlled manner, resulting in a sequence Ky, K3, ..., then there will be a limit
Koo = lim;_, o (Kj) which also will be a representation of X.

Lemma 4.6. Let (&;) be a sequence of positive numbers. Let X be a compact metrizable space, let K = (|Kj]|, p'“) be a representation
fX which is stable and szmplzctally irreducible from index my with an associated sequence of stability (y;), and letm € Ny, . Define
=y ifl<i<my,=5 L[ — mesh Ky ], and v{ =vi/2ifi >m. Let X be a subdivision of K;, with mesh ¥ < min{em, y,}.

Then there exists an inverse sequence L = (|L;|, l;‘”) as follows:

(a) in case 1 i <m, then L; = K; and [[! = p*1,

(b) Ln =
(c) for each i >m+1, L; is a subdivision of K; with mesh L; < min{;, y/}, and
(d)ifizm+1, I _ 4 :|Lil = |Li—1] is a simplicial approximation to the map p,_1.

Definition 4.7. We shall call a pair (L, (ylf)) as in Lemma 4.6 an m-shift of (K, (y;)) from X.
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Observe that dp (pT+!, IM1) < mesh ¥ < %[ym — mesh K] = y,,. Hence if g : |Lipt1| — |Lm| is @ map and dp (g, M) <
¥, we may conclude that dp (g, pm“) < ¥Ym. Indeed, the following is true:

(e) for each i, if g: |Lit1| — |L;| is a map and di(g,[["") < y/, then di(g, pi™!) < 1.

Therefore we conclude:

Lemma 4.8. Whenever (L, (y/)) is an m-shift of (K, (y;)) from X, then Lis a stable and simplicially irreducible representation of X
from index m with associated sequence of stability (/).

By exercising some additional care in the construction of L, we may guarantee that for all i, d,-(pﬁ“ , lf“
pitt =1 if i <m).

It is routine to check that the next lemma holds true.

) < &; (of course,

Lemma 4.9. Let X be a compact metrizable space, and let Kq be a representation of X which is stable and simplicially irreducible from
index m1, with (y(0),i) a sequence of stability. For every m1-shift (K1, (¥).i)) of (Ko, (Y(0),i)) from X1 (an appropriate subdivision
of the triangulation of the mi-term of Ko), Ky is a representation of X which is stable and simplicially irreducible from index my,
with (y(1,i) an associated sequence of stability. It satisfies property (e) with (y/) = (yq).i) and (¥;) = (¥(0),))- The terms (as metric
spaces) in Ko and Ky are equal. For i <my, y1,i = Y(0),i, the terms with index i have the same triangulations in Ko and Ky, and the
bonding maps in Ko and Ky with subscript i are equal. For i > m1, y(1),; need not equal /) ;, the triangulation of the term in K with
index i is a subdivision of that in Ky with the same index, and the bonding map with subscript i in K1 may differ from that in Ko with
subscript i.

Ifip e N,mqy < --- <my, is a finite sequence in N, and successively we have chosen (K;, (yj),i)) an mj-shift of (K;_1, (¥(j-1),i))
from X; (an appropriate subdivision of the mj-term of K;_1), 1 < j < ip, then we may conclude that K;, is a representation of
X which is stable and simplicially irreducible from index m;,, with (y(y,),;) an associated sequence of stability; it satisfies prop-
erty (e) with (yl/) = (Vo)1) and (¥;) = (V(io—1).i)- The terms (as metric spaces) in Ko and K, are equal. For i < mj,, V(ig),i =
V(io—1),i» the terms with index i have the same triangulations in Ki,—1 and K;,, and the bonding maps in K;,_1 and K;, with sub-
script i are equal. For i > mj,, V,),i need not equal y,—1),i the triangulation of the term in K;, with index i is a subdivision
of that in K;,_1 with the same index, and the bonding map with subscript i in K;, may differ from that in K;,_q with sub-
script i.

Henceforth we typically shall write (|Kj)l, p‘J)li) to denote such a representation Kj, 0 < j <ip. One should note that,
whenever ig > jo > j > 1, then K(j) m; = K(j),m; = ¥j when this occurs from the procedure in Lemma 4.9.

Definition 4.10. Let X be a compact metrizable space and let r : N — N be an increasing function. Let Ko be a represen-
tation of X which is stable and simplicially irreducible from index r(1), with (y(g),;) a sequence of stability. Suppose that
(Kj, (v(j.i), j €N, is a sequence such that for each j, (Kj, (¥y.i)) is an r(j)-shift of (Kj_1, (y(j—1),i)) from X;.

Then for each k e N, if m, I, and i are chosen so that m > 1> r(k) > i, one sees that pl(m = pl(;}l and y(,i = Ym),i-
So for each i, the sequences (¥(j).i)jen and (p'“,)gN are eventually constant. Hence we may define an inverse se-
Yi)i)j (),i’1
i+1

quence Ky = (|K(oo),,-|,p( ) =limj_,K; and a sequence (V(x),i) = limj_()(j),i) of positive numbers by putting

00),i
. it1 . i+1
K(ooy,i = llm]‘_)OOK(j)J and pl(:o),i = llmj_,oopl(}')’,-.

From our construction and this definition, we can deduce the following:

Lemma 4.11. Assume the notation of Definition 4.10. Then K, is a representation of X. If i € N, g : |K(o0),i+1| = |K(c0),i| is a map,
and di(g, p‘<;1)’,.) < Y(c0).i» then d;(g, p;g;j) < Y(0),i and hence (Y(x0),i) is a sequence of stability for K.

Proof. To show that K., is a representation of X, it is enough to check that for all i € N, di(pi;rol)ji, pl@*)lj) < Y(0).i-

Take an i e N. If i <r(1), then p“(:c})’i = piar)l.,.
di(g, ) < vo.i-

If i > r(1), then we know that r(k — 1) <i <r(k) for some k € N>;. The fact that i <r(k) implies that pi;l)j = pi;f_lui.
On the other hand, r(k — 1) <i implies that y(;); has changed in every step of the construction from step 0 to (k —1). That

is, ¥().i < 31, for all 1< j<k—1, 50 ¥j),i < %y(o),,-. Therefore

and Y(x0),i = Y(0),i- Hence the statement d;(g, pl(;}) i) < Y(c0),i implies that
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F1 it +1 i+1 i+1 i1 i1 it
d; (pl(oo)zvpl(om) di (p,(k i Poy) <di(pg” i Pl o) oot di (pla)wpl(on)
V(O)z
2k=

oo

Y(0) 1
+o = 2 <)/(0)1 Z?=V(0),i-

k=1

<Vk-1),i T+ Y1),i <

By Lemma 4.1, imK., = X.
It remains to show that d;(g, p(oo) i) < Y(c0),i implies d;(g, p(o) i) < Y),i- The fact that i <r(k) implies that Y(c0),i =

Yk—1).i- S0 di(g, p(oo)l) di(g, p(k 1)1) < Yk-1y,i- Therefore
11 i+l it 1 it +1 i+1 i+1
di (pI(O) i+ 8) <di(pg).» P(1).) +di (p'(1) i Py) +oo i (pl(k i Plie 1),i) +d"(pl(k—1),i’g)
<.t Ye.it o+ Ve-1.0) + Yr-1.i

< 1 1 1 1
S Y. 2+22+ +2k1 +2kj

= Y(0),i- O
5. Proof of the main theorem
Let us now prove Theorem 1.1.
Proof. We will construct, using induction:

¢ an increasing function r: N — N,

¢ sequences of numbers (8(i));eny and (€(i))ien such that 0 < g(i) <

o a sequence of inverse sequences K; = (|K(j),,-|,p(]) ), for je Z>0, as described in Lemma 4.9, with terms that are
compact polyhedra and with surjective bonding maps, and with limK; = X (in fact, these sequences are representations
for X that are stable and simplicially irreducible from index r(j), with stability sequences (y(j),i), and [Kj).il = |K0),il.
for all i and j in N),

¢ a sequence of subdivisions %; of Ki_1 g, for i € N, and

5D <1, for all i,

o a sequence of maps g:E:) ~ |2("+1)| |2<"1| for i > 2,

such that for each i for which the statement makes sense, we have:

(i &) and p{y) iyl ponen are S0 close,
1

(I0); for any y € [Ki—1).r| = | Zil, diam(p{{";) .1, Bsy 1)) < 2452,

() for i > j and for any y e lKi—1y.ri) =121l dlam(p(j) vy Beiy (1)) < 85{),
(IV); mesh X; < mm{ ,y(, 1),r())}» SO mesh X < &(i), and

(V); for any y € |K(,,1),r(,)| =|Xj|, Beiy(¥) C Py,i C Bsgy(y), where Py ; is a contractible subpolyhedron of | Xj].

In fact, this will prepare us to use Walsh’s Lemma 3.3 with
_ ()| r+1)
= (IK©).r(!- p(l) r(l)) z=(|z |’gr(1) ||2(”) )-

Let us start the construction by taking a representation for X which is stable and simplicially irreducible from index 1:
Ko = (IK(0),il, p’%&h), limKo = X, with stability sequence (yq),i).

Define r(1) :=1.

We will choose 0 <4§(1) <1 any way we want. Next, we pick an intermediate subdivision 21 of K(0),1 so that for any
¥ € |K0),11, any closed 5, -vertex star contammg y is contained in the closed §(1)-ball Bs1)(y). (A closed 21 -vertex star
is a closed star st(w, 1) in the complex 5, whose center w is a vertex of . ) It is enough to make mesh < 5(1) , SO
diam(st(w, 21)) < 2mesh 21 < 8(1)).

Now choose an &(1) so that 0 <e(1) < @ and for any y € |K(g),1/, the closed &(1)-ball B¢1)(y) sits inside an open
vertex star with respect to 5. (This can be done as follows: form the open cover for [K(), 1| consisting of the open stars
st(w, 51). There is a Lebesgue number A for this cover, so make your (1) < ’21 Then for any y € [K(),1], diam Bg(1)(y) <
A = Bga)(y) Cst(wo, 1), for some wg € fl(o). Fix such wq for each y.)

Note that for any y € |K().1], Bea1y(y) C Ist(wo, )l c Bs(1y(¥). Define Py q := |st(wo, S|, which is a contractible
subpolyhedron of |K gy 1], so (V)1 is satisfied.

Choose a subdivision X7 of fl with mesh ¥; < min{@, ¥©0),1}, which implies (IV);.
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Let (K1, (y(1),i)) be a 1-shift of (Ko, (y(0),i)) from X, ie., Ki = (|Kq),il, pilﬁlj) is an inverse sequence with K1 = X1,
limit equal X, and stability sequence (y(1),;). Note that at this point, all bonding maps in K; are simplicial because Ky is
simplicially irreducible from index 1. This concludes the basis of induction.

Step of induction. Let k € N>. Suppose that we have chosen, as required above,

o for j=1,...,k—1, the numbers r(j), 3(j), €(j),

o for j=0,...,k—1, the inverse sequences K; = (|K(j) il, p(]) 1) which are stable and simplicially irreducible from index
r(j), with stability sequences (y(jy,i),

o for j=1,...,k—1, subdivisions X; of K(;_1)r(j), and

o for j=2,...,k—1, maps gr(]) |E("+l)| — |2(") I,

=1
so that the properties (I);j—(V); are satisfied for each j_ 1 .,k —1 for which they make sense.
Focus on the inverse sequence Ky_q = (|[K—1),il, p(k 1. l) For i > r(k — 1), the bonding maps p'(;f]l),i are simplicial.

Recall that limKy_; = X, and notice that K_1) rk—1) = Zk—1. Let

Yi_1:= (’I(g;i_l]))’l’v pi;:—ll),ihl(((rr” " \)1>r(k H

be the inverse sequence of the (n + 1)-skeleta of the polyhedra in Kj_4, starting with the (r(k — 1))-th polyhedron onward,

where the bonding maps are the restrictions of the original bonding maps. Notice that every p! (k 1) '|I P K((;:Jr]l)) i

(k—=1).i +1‘
is simplicial and surjective, for every simplex o € K ((Zfll)) i

1),i
dimo =k, there exists a simplex T € K(_1),i+1 such that dimt >k and pl(ktl]) ;(t) =0. So there must be a k-face of 7

'Jf_ll)’i onto o. In particular, for every (n+ 1)-dimensional o € K((,'::l)),
i+1

in K—1),i+1 that is mapped onto o by Pty

| —

K+ with

k—1).i | is still simplicial and surjective: since p(k

which is mapped by p there exists an (n+ 1)-simplex

Now let Yy,_q =1limYg_q. Then dimY,_y <n 4+ 1, because dim|1<((,':+]]))l| n+1, and XtK implies Yy_17K, because

Yr_1 C X. So by Lemma 3.10, we get dimg Yy_1 < n. Since P¢ =P, Lemma 2.4 implies dimyz, Y,_1 = dimg Y,_1 <n, so we
can apply Edwards’ Theorem 3.9 to Y,_1, noticing that the first entry in Yy_¢ has index r(k — 1).
. A 1 . 1
So there exists an s € N, s >r(k — 1) and a map &, |K((}:+1>)S| — |K((,':)_1)’r(k_1)| so that if z € |K((,':+U)S| and
pfkil)’r(kq)(z) lands in the combinatorial interior & of a simplex o of K((l':+]1)) rk—1) then Qﬁ(kil)(z) lands in o. This will

help us get the property (I).

(n)
|K(k 1),r(k— 1)|
~ 51k
=~ < &rk-n
(n+1) (n+1)
|K(k 1),r(k— 1)| 0 |K(k 1), r(k)| < Yi-1

P—1).rk—1)!
Define r(k) :=s. Using the uniform continuity of the map pzl(ckf)l)_r(kq), choose 0 < §(k) <1 so that (II) is true:

etk—1)

. k
vy € 1K1y, d‘am(lei—)U,r(k—])(BS(k)(Y))) <73

Pick an intermediate subdivision Sk of K—1y,r so that for any y € [Kg—1),rql, any closed fk-vertex star containing y is
contained in B (y).

Now choose an (k) so that 0 < (k) < w and so that (Ill), and (V);< will hold, namely: first make sure that for all
¥ € IK@—1,r@ol, the closed ¢ (k)-ball centered at y sits inside an open Ek -vertex star, i.e., Bgg)(y) C st(wo, Z‘k) for some
Wo € Z‘If ). Therefore B (¥) C Ist(wo, S0l C Bs(k) (). Define P\ := |st(wp, )1, which is a contractible subpolyhedron

of [Kk—1).rgyl, s0 (V)i is satisfied. Next, we know that for all j <k, the maps p:;’;)r(ﬁ are uniformly continuous. We also

know that, in our notation, j < k implies that p(]) ) = pzlik D) So we can make a choice of (k) so that we have: for

any y € [Kg—1),rgol,

e(1)
2k
£2)
2k

)

diam(pﬁl;?r(l)(Bg(k) W) <

diam(p(3}’, 5 (Beo () <

)
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. r(k) etk—1)
dlam(P(k—n,r(k—n(36<k)(3’))) < T ok

So (Il is true.
Choose a subdivision X of Xj with mesh Xy < yx—1),rk), Where Y—1)r@) is from the stability sequence (y(-1),;) for

Ki_1. Also make sure that mesh X} < S(k) , which implies (IV),. Note that X is a subdivision of Kg—_1) r@)-
pr,(k)+1 .
k—1),r
K1 coo =—— |Kg—1),r (o)l D
N
41
r(k)+1
k),r(k
Ky: oo =—— Xkl = Kg,rol .0 K@y, rdy+1] =<—— -+ X
()+1 ﬂ
Y- 2(n+1) KD | Pl KD Yy
k: | = Krao! = ky.rto+1] = k

Now we can build Ky = (|K).il, p(k) 1) as an r(k)-shift of (Kx_1, (Yk-1),i)) from X, i.e, Ky = (|K,il, p(k) l) is an inverse

sequence with K ) = 2, and limit X, and stability sequence (¥(),). For index i > r(k), the bonding maps p%?i are

simplicial.
Let j :|Xk| = [Kg-1),r@| be a simplicial approximation to the identity map. Since j is simplicial, j(|E,f"+1)|) C
(n+1) (n+1) (n+1)

1K g 12 1= 1K1y i -
(n+1) (] _

12 | IK(k—l),r(k—l)‘ =

1), r(k)l so treat ]||2(n+1)‘

r(k) (9]

1 .
Define &rk—1) = Er(k-1) O]|‘Zl£n+])‘ : |Z‘,fri)1|. For any y € IEI?H )|, y and j(y) have to be

. I e k
contained in the same simplex of K_1) ). Since pzl(ﬁl)’r(k_]) K g=1y,r0| = 1K @=1),rk—1)| is simplicial, le((—)l),r(k—l)(y)

and pzlgk)l) r(k ])(j(y)) land in the same simplex T of K—_1)rk-1) = Zk—1. On the other hand, because of our choice of

Ar(k Lo ~r(k .
gigkll), if p(k Dar(k— ])(](y)) lands in O' for some simplex o of K(k l))r(k H which is a face of 7, then g:Ek) 1)(](y)) lands in

o, too. Therefore
gtk —1)
di— 1(p(k Dty P gr(k 1)(](}’))) mesh K y_1y r(—1) = mesh Z_; < ————.

Hence g’ (k 1 and p;lili)l),r(l(_1)|‘zl§n+l)l are @—close, so (), is true. This concludes the inductive step. The following

diagram summarizes the preceding construction.

(n) ()
12211 = 1K) re—)|
)

w
(n+1) (n+1) (n+1)
|2k 1 |_ |K(k—l),r(k—])| r(k) |K(I<—]),r(k)|
A Pty k1)
1
121l = IKge—1).rte-1)| <=5 IKk-1).r | K((,':)t(?o = |2,5"+1)|
P k=1).r(k—1) \ 1
[Kky,rii) |

Notice that the inverse sequence
_ . r(i+1)y _ o r(i+1)y\ _ 1 A
= (IK©).ra)]- P, r(i)) = (1Kol p(i),r(i)) =(1Zil, p(i),r(i))
is a subsequence of Ky = (|K(o0),ils p(oo) ) = (K@).il, p'&}) ;)- By Lemma 4.11, limKy = X, so limX is homeomorphic to X.
Without loss of generality, assume that limX = X.
Let Z := (|2i(")|,g:(1+1)|‘2<n) ). Since |=™| are metrizable, compact and nonempty, limZ = Z is a nonempty compact
i+1

()
metrizable space. Clearly, dim Z < n, which also implies that dimg Z <n. Now ZtK follows from Lemma 3.10.
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Apply Walsh’s Lemma 3.3 to these X and Z: since the requirements (I)-(VI) of Lemma 3.3 are satisfied, there is a cell-like
surjective map 7 : Z —> X. O

Corollary 5.1. Let G be an abelian group with Pc = P. Let K be a connected CW-complex with 1 (K) = G. Then every compact
metrizable space X with Xt K has to have dim X < 1.

Proof. Theorem 1.1 is true for n =1, so for any compact metrizable space X with Xt K, we can find a compact metrizable
space Z with dimZ <1, ZtK and a cell-like map 7 : Z — X. Note that cell-like maps are always surjective. Also, cell-like
maps are G-acyclic, so in particular, 7 is a Z-acyclic map.

The Vietoris-Begle Theorem implies that a G-acyclic map cannot raise dimg-dimension. Since dimZ < 1 implies that
dimy Z < 1, and since 7 is a Z-acyclic map, we have that dimz X < 1, too. Recall that dimz X <1 <& dimX<1. O
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