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ENUMERATION OF RISES AND FALLS BY POSIThON” 

L. CARLITZ 2nd Richard SCOJILLE 
Duke University, Durham, N.C., USA 

Received 22 dune 1972** 

Abstract. Let w = (rrr , ~2, . . . . 
. 
1S a ?*ise if ?ti < lri+r 

nn) denote a permutation of 2 
orafallifni>Iri+r. Also a convention 3 = {ly 2, *-*) 

n }. The pai;, (7ti, ni+r) 
rise is counted at the beginning of 

?r and a conventional fall at the end. Let k be a fixed integer ? 1. I%B rise 7ri, ni+r is said to be in a 
in a j (mod k) position if i = j (mod k); similarly for a fall. The conkcntional rise at the beginning 
is in a 0 (mod k) position, while the conventional fall at the end is in art n (mod k) position. 

Let,P, =Pp;t(re, . . ..rk_r. fop . . . . fk_1) denote the number of permutations having ri rises in 
i (mod R) positions and fi falls in i (mod k) positions. A generating function for Pn is obtained. 
In particular, for k = 2 the generating function is quite explicit and also, for certain special 
cases when k = 4. 

1. Introduction 

We consider all permutations n = (n, , r2, . . . . IT,) of Zn = { 1,2, . . . . n) . 
The pair (ZTi, 7ri+ 1 ) from the permutation n is called a rise if Jri <: ni+ 1 or 
a fall if ni :> Ri+ 1 . We also agree to count a conventional rise at the be- 
ginning of ?T and a conventional fall at the end. M’e will sav that r con- 
tains a maximum whenever a rise immediateIy pIrecedes a fzG. anJ that 
n contains a minimum whenever a fall immediately precedeIs a rise. We 
remark that the words peak and trough are sometimes use& in place! 
of maximum and minimum. 

Let A@, s) be the number of permutations off Zy+sb 1 with Y-F 1 rises 
and s + 1 falls. Then it is known [ 3; 6, Chapter 81 that 

I 

(1.1) $,JiO A(P, s) _JE_ = ex -eY 
= (r+s+i)! xeJ-yeX ’ 
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If we let P(r, s, m) be the number of permutations of Zn having Y riseq, 
s falls and m maxima, then we have [3] 

u t( = x-+.v+s(x+y)*-4xyu ) ( ,v=a x+y -&-i-y)*-4xyu . 
1 

For a further refinement see 121. 
Let R, be the number of up-dowr: permutations of Zn. An up-down 

permutation is one in which rises am1 falls occur alternately It is well 
known 14, pp. 105-l 121 that . 

(1.3) 
00 

n2I A 
xn = tan x + set x n n! 

” 
= 

(Mote that in enumerating up-down permutations, the conventional rise 
and fall are not counted.) Along this line, one of the authors [ 11 has 
found the generating functions for the number of permutations having 
k initial rises followed by one &li, this pattern continuing for as long 
as possible. 

In this paper, we will discuss another variation. Let k be a fixed in- 
teger? 1. If7T=(7r1,R2 ,..., 1T, ) is a permutation of Zn , we will say that 
the rise (or fall) (ni, Ti+l j is in a j (mod k) position if i z j (mod k). We 
will say that the conventional rise at the beginning is in a 0 (mod k) po- 

sition and that the conventional fall at the end is in an n (mod k) po- 
si tion. We may say more briefly that a rise in a j (mod kj position is a 
j (mod k) rise, and similarly for falls. ? 

Let 

be the number of permutations having ri rises in i (mod k) positions 
and .,$ falls in i (mod k) plositions, i = 0, 1, . . . . k-l. 

For fixed & we obtain the generating function 

in terms of certain k X k matrices. 
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For k = 2, we give the generating function quite explicitly, verifying 
certain special cases obtained previously. For instance, the number 
A zn _ 1 of up-down permutations of Z,,._ 1 having the form 

is obtained in agreement with (1.3). 
For k = 4, we consider the special case of the number B4n_1 of per- 

mutations of Z4n_1 havkg the form 

We show that 

where 

t4n+i 

(1.9 @At) = neO C4n +i,r (i = 0, 1,2,3) = . 

are the Olivier functions [ 5 ] . 

Finally we estimate B4,_ 1 for large n by finckg all zeros of 
cos z cash z + 1. The result is 

(1.6) B4n_1 - 4(4n - l)! (2/~)~“, 

where 7 = 3.7502 . . . . This may be compared with the fact that 

A4?2-1 - 2(4n-I)! (21~)~” . 

The actual values and the estimates are given in Table 1. We can offer 
no intuively plausible argument implying that A,,._ 1 2 B,,__ 1 . 
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Table 1. 

n-Ii 
__ 
1 
f 
L. 
s t 

n -2gL$ (2/*)4n . 42 4(4n-l)! (21~)~~ 
-_ 

2 I .97 . . . 2 1.94 
272 27.I.76 . . . 132 131.91 
353792 353791 . . . 84512 84460 . . . 

MB. -- 

2. Cdculation of the generating function 

suppose n =,(7r1, n2, . . . , n,) is a permutation of 2,. We will say 
that the rise (or fall) (7Tir Ti+l) is in a j (mod k) pdsition whenever 
i = j (mod k). We define the position of the conventional tise at the be- 
ginning to be 0 (mod k) and the position of the conventional fall at the 
end to be n (mod k‘). 

Let k 2 1 ‘be fixed. Let Pn(yo, . . . . rk_+ fo, ...,fk_l) be the number 
of permutations of Z* having Pi rises in i (mod k) positions and fi 
falls in i (mod k) positions, i = 0, 1, . . . . k+- 1. 

Let Mfxo. Xl , .‘.) xk _ 1 ) denote the k X k matrix 

(2.1) ~(x~~~l,.-,-.,xk_l)=~~_~ ; i ; ;k_] . 

We sel 

RO =~~(xO,+...,Xk-l), 
(2.2) I 

Fe =M&),y,, .**,yk-l) l 

To each permutation n = (IQ, 7r2, . . . . rR) of Zfl we assign the matrix 

(2.3) 

WhXB Ai 

meorem 

@(a~) = R, m A, . . . A, __ 1 l F. , 

=lii’e if (Rj, Tj+r) is a rise and/Ii “Fe if (rj, Ti+l) is a fall. 

1 2.1. The sum of the entries of the first row of #(n) is 
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x’$.$l . . . xk_1 rk-1 fo fk-1 ’ y() . . . yk_1 7 

where ri U;:) is the number ofrises (j7alls) of T in position i (mod k). 

Proof. It is clear that any product of PZ Ro’s and AF~‘:s is a matrix having 
only one non-zero entry in each row. Furthermore, the non-zero entry 
in the first row is in column m (mod k), assuming the columns are num- 
bered 0, 1,2, ._., k-l. 

For n fixed, suppose #(n) is defined by (2.3). Assume that the sum 
of the entries of the Grst row of R,A 1, . . . ,Ai is 

where r; (&!> is the number of rises (falls) in i (mod k) positions up to 
the jth interval. This sum lies in the column numbs I-ed j + 1 (mod k): 
Hence the only non-zero entry in the first row of R. A 1 . . . Ai Ai+l is 

xt;” . . . y(X-1 0 aj+l , 

where ai+l = xk+l if Ai+l = R. and,i = h (mod k) or at+1 “yh+l if 
A i+l = F. and j 3 h (mod k). Since the assumption is true for j = 0, we 
see by induction that the theorem is true 

Now suppose we have two k X k matrix-valued functions R(t) and 
F(t) satisfying 

R’(t) = F’(t) = R(t) F(t) 
(2.4) 

R(0) = R,, F(0) = Fo. 

Theorem 2.2. Let Pn (ro, q , . . . . rk_1 7 foJ . . . . fk_l ) be the number of per- 
mutations of Zn having ri rises and fi falls in positions i (mod k) 
(i = 0, ...5 k-l ). Then 

5 
n = 1 

:g Pn(ro,rl. . . . . ~~_+~~px~~ . ..yfoo . ..yik~-t t’/W) 
r,i, fi 

3 the sum of the entries of the fTirst row of the matrix R(t)--R,. 

Proof. From Taylor’s Theorem and the previous theorem it is enough 
to show that 
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R’“)(O) = c (b(K) , 

where the sum is extended over all permutations of 2,. But this is clear 
by induction since R’(b) = F’(t) = R(t)F(t): the (n + l)! permutations 

of&Z+1 can be obtainedi by inserting n + 1 in any interval of any permu- 
tation n of Zn. 

We now find a solution of the equations (2.4). Since R’ = F’, we have 
F=R+UwithU=Fo-Ro.Weget 

(23 R’=RtR+U). 

Assume a solution of the form 

(2.6) R = -Q-l Q’. 

Since Q l Q-•’ = 1, we have 

Q’ l Q-b-Q* [&-‘I’=& 

so that 

[Q-“1% -Q-l Q'Q-' . 

Hence (2.5) becnmcs 

Q-1 Q’ (j-1 Q'__Q-' Q" = (Q-1 Q') (Q-1 Q')-Q-lQ'u, 

that is, 

(2.7) Q” = Q' U . 

Mew: we may take Q’ = erU and 

(2&l Q = u-1 et[J + K . 

Hence we have 

(2.9)’ R = -(U--1 etu + Q-1 etu 
9 

where 4.: is given by 



3. Specid cm3 

(2.10) R, = -(U-l +K)-1 . 

From (2.9), we see that 

Since Ri l = -(U-l + AK) and FO -R, = U, we get 

URol =F,R,‘-l=-(l+UK), 

so that 

(2.11) UK=-FOR,’ . 

Hence we ha>? 

Ri’R = -(R. -_e-“/ F,)-” U, 

so that 

Ril (R-R,) = (e-fu&, - R,)-’ (U-(em”’ Fo--R,)), 

that is, 

(2.12) Ro’ (R-R,)F,-’ = -(Ro-e -fulVo)-l (l-evfu), 

or 

(2.13) R-R0 =Ro (e-“rFo-R,)-l (I -e-ter)Fo . 

3. Special cases 

If the matrices> are one-dimensional, (2.13) becomes, setting & = Y 

and R, =x, 

ety _ &:c 
(3.1) T--x=- 

xy yet3 --J&Y ’ 
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the symmetric generating function [ 31 for the Euierian polynomials 

A&Y) = c A(r, s) x’ ys . 
r+s=?l 

If k = 2, formula (2.13) can be given more explicitly if we invert 
the matrix e -4 FO-RO. We have 

Since 

e-” = cash = cash T -(U/&j sinh T , 

where we have put 

we have 

Y1(X,--Y,)~ -1 sinh T y. cash +--x0 
eBtUF o-R, = 

! 
Y 

y1 cash 7--x1 Y~(~~-Y~-IQ 4 

1 
fi!o(e~‘uFo-Ro)-l = D 

i 

x0(x 1 -y 1 cash T) 
. 

xlyo(q-yl)a- sigh7 4 

AlSO 

("o--Y(+ -4 
(e-‘*- I)Fo . . 

cash T--Y1 
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Hence for the sum of the entries of the first row of&-R0 we get 

53 

We state the result as a theorem. 

Theorem 3.1. The generating fwxtion for the number Ppf (Q, ri , fO, fi ) 
of permutations of Zn having rO even rises, r1 cdd rises, &, even falls 
and fi odd falls is given by 

(3.3) C 
n>l 

P,(q), q, fO, fI) xpoOxI;l vfoo y{l t”i-r. 

wherero +q +fo +fI =n+ 1 alzd 

s= A+$ 3+- a2 t5 t2 4 ;+i 
.-- y + . ..) c=z+a$ -I” .[_‘! + .“.) 

(3.4) 
E= 1-(q)Y, +qYo)C, Ck= o/(-j+))C_?< -x1) * 

The first few terms are 

t2 
(3.5) ~~xGY1)+~~~o~oYo+~oY1Yo) . 

+ 16xfy~+13xoyoy~+13x,y~yl+y;y~) + . . . . 

It is evident from (3.3) arxl (l3.5) that the numbers P;,(r,, rl, fo,fl) 
furnish a refinement of the Eulerian numbers A(r, s). This is somewhat 
clearer in the following tabular form: 
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1 

1 1 

1 2+2 1 

1 6+5 5 + 6 1 

1 13+ 13 16 f 34 + 16 l3+13 1 

We observe that if we interchange the Xi and yi, (3.3) becomes 

=x1y(-J/~+qJy&1 -+Y,)cIE. 

It follows that 

(n even), 

(3.71 Pn (rQ+1ya,,,tb9fl+~) =b’,~O+l,fl,rO,rl+l) (n odd). 

If we put 

pn (L,, ‘1 IfI = C 
fe+f 1 =f 

P,(q), q If0,fl) 9 

pn (rlfo,fl) = IS 
t’osr1=?- 

P,@o, q Ifo,fl) y 

we get 

(n even) ) 

(3.8 j 
~,& + kqlf 1 =P,(f lrO, rl + 1) (:n odd) . 

The formulas (3.6), (3,7) can also be proved by a simple combinatorial 
argument, namely with eaich permutation n =: (ala2 . . . arr ) associate the 
complementary permutat:ion z’ = (b, b2 . . . b, ), where 
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bi =n-ai + 1 (i= 1, . . ..n) . 

55 

As another special case we enumerate those permutations of Z& _ 1 of 
the form 

(3.9) e-./A . 
We have 

We get 

where the @i are the Olivier functions defined by 

*4n+i 

(3.12) #i(X) = 5 - 
n = 0 (4irl+i)! 

(i=O, 1, 2,3). 

Then we get 

-@3 -1 0 

(3.13) e-uFO_Ro zx -@Z 0 0 
-q+ 0 0 

@O 0 0 

(3.14) D=det(e~“F’o-RO)=x4(@1t$3-@~). 
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NOW we can find (Mij) SO that 

(3.19 (e-uFO-R,)-1 =- 
x3 

x4t#1 434) 
&j) ’ 

Note that 

(3.16) M21(-~3)+M22(-~~)+M23(-“91)+M24(~0) = 0. 

Furthermore, we have 

t 

-4~ 0 0 $9 

(3.17) (etiWU-l)FO =x -@z 
-@1 

i “0 $1 
$0 - 1 

fl+j-l 0 0 -#3 J 

. 

Hence from (2.13), (3.15) and (3.17) we get 

SO by (3.14) the entry in the fi,& row and fIirst column of R-R, is 

Altogether, then, we get 

Theorem 3.2. The number B 4n _ I of up-up-down-down permutations of 
2 &l-l sa tisjies 

& 
X4n-- 1 

~10~,0-~&0~3 (x) 
il B4n_l-- = -- .- 
n=l (4n--l)! 9;(x)-@, (M, (x) 

2 
= -..g3 +. 

132 
----x7 + 

t;4512 
-xl1 + . . . . 

3! 71 ll! 
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Next we estimate BJtl _ I for large ?z. We note that @e, $Q, & and $3 
are four linearly independent solutions of f(4) = f. Let w = ( 1 +i j/&!. 
Then &(wfix) (i = 8, 1,2,3) are four linearly independent solutions 
of 

(3.19) f(4) = -4f. 

Since @o@3 --4Qb2 = (@~-$1#3)lis also a solution of (3.19), and since 

&(O) = 1, we see that 

(3.20) @)-$1 mb,(z) = 4 kl+-)(w~m + 1 I * 

Let 

Q= ( 

0 1 0 0 

0 0 
0 0 

10. 1 
0 1 

1OCO 

It is easily verified that 

so from eta + b)Q = eaQ ebQ we get 

Setting a + b = 0 we have 

(3.23) #i -2#, e3 + @i = 1. 

Mence from (3.20) we get 

(3.24) coshz cosz =~~(z)-~~~(z)=~~(w~z~. 

Theo:rem 3.3. Let 0 < q < x2 < x3 < . . . denote the positive solutions 

0fco:ix coshx + 1 = 0. Then any solution of 

(3.25) cos z cash z + 1 = 0 

is of one of the foams x,, -xh, ix,, -5,. Furthermore, if 
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(3.26) 

then 

(3.27) 
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B4n_1 = 4(4n-l)! 2 x:4n . 
j=l 1 

Proof. First it is clear that x,, -x,, ix,, --ix, are solutions of (3.22) 
and that xn - 4 (2n + 1) 7t -B 0. On the square determined by the lines 
X = A 2ffgr, y = + 2nn, we see that 

lcos 212 = cash* y - sin* x 2 1 . 

(As a matter of fact, fcosz] > 1 for ]z] = 2v2n, but this is not needed - 
here.) Thus we have 

l=~coszcoshz+l -cosz :oshzl>_ lcosz coshz] . 

By Rouch 9 theorem [ 7, p. 116 1, cos z cash z + 1 has the same number 
of zeros in the square as cos z cash z, namely 8n. Hence we have ac- 
counted for all of them. 

As for the second part of the theorem, we note that the denominator 
off is entire of order 1 and that -f is a logarithmic derivative. Hence 
from Hadamard’s factorization theorem [ 7, p. 2501 we obtain the re- 
sult * 

If we take only the first term in the sum (3.27), we get 

(3.28) l&_, - 4(&--l)! x;4g . 

. - As pointed out by the referee, it follows from (3.26) that B4n_1 sa- 
tisfies the following recurrence: 

(3.29) On+1 f fZ c4”,f3) pi B4,_4j+3 = 0, 
j=O 

with 
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pn :=(-1)” p-1 +&, , 

where S,, is the Kronecker delta. 
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