ENUMERATION OF RISES AND FALLS BY POSITION*

L. CARLITZ and Richard SCOVILLE
Duke University, Durham, N.C., USA

Received 22 June 1972**

Abstract

Let $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ denote a permutation of $Z_{n}=\{1,2, \ldots, n\}$. The pai: $\left(\pi_{i}, \pi_{i+1}\right)$ is a rise if $\pi_{i}<\pi_{i+1}$ or a fall if $\pi_{i}>\pi_{i+1}$. Also a conventional rise is counted at the beginning of π and a conventional fall at the end. Let k be a fixed integer ≥ 1. The rise π_{i}, π_{i+1} is said to be in a in a $j(\bmod k)$ position if $i \equiv j(\bmod k)$; similarly for a fall. The conventional rise at the beginning is in a $0(\bmod k)$ position, while the conventional fall at the end is in an $n(\bmod k)$ position.

Let $P_{n} \equiv P_{n}\left(r_{0}, \ldots, r_{k-1}, f_{0}, \ldots, f_{k-1}\right)$ denote the number of permutations having r_{i} rises in $i(\bmod k)$ positions and f_{i} falls in $i(\bmod k)$ positions. A generating function for P_{n} is obtained. In particular, for $k=2$ the generating function is quite explicit and also, for certain special cases when $k=4$.

1. Introduction

We consider all permutations $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ of $Z_{n}=\{1,2, \ldots, n\}$. The pair (π_{i}, π_{i+1}) from the permutation π is called a rise if $\pi_{i}<\pi_{i+1}$ or a fall if $\pi_{i}>\pi_{i+1}$. We also agree to count a conventional rise at the beginning of π and a conventional fall at the end. We will say that π contains a maximum whenever a rise immediately precedes a fai and that π contains a minimum whenever a fall immediately precedes a rise. We remark that the words peak and trough are sometimes used in place of maximum and minimum.

Let $A(r, s)$ be the number of permutations of Z_{r+s+1} with $r+1$ rises and $s+1$ falls. Then it is known [$3 ; 6$, Chapter 8] that

$$
\begin{equation*}
\sum_{r, s=0}^{\infty} A(r, s) \frac{r^{r} y^{s}!}{(r+s+\mathrm{i})!}=\frac{\mathrm{e}^{x}-\mathrm{e}^{y}}{x \mathrm{e}^{y}-y \mathrm{e}^{x}} . \tag{1.1}
\end{equation*}
$$

[^0]If we let $P(r, s, m)$ be the number of permutations of Z_{n} having r rises, s falls and m maxima, then we have [3]

$$
\begin{align*}
& \sum_{r, s: n} P(r, s, m) x^{\prime} y^{s} u^{m} \frac{2^{r+s-1}}{(r+s-1)!}=x+x y u \frac{\mathrm{e}^{U z}-\mathrm{e}^{V z}}{U \mathrm{e}^{V z}-V \mathrm{e}^{U z}} \tag{1.2}\\
& U=\frac{1}{2}\left(x+y+\sqrt{(x+y)^{2}-4 x y u}\right), V=\frac{1}{2}\left(x+y-\sqrt{(x+y)^{2}-4 x y u}\right) .
\end{align*}
$$

For a further refinement see [2].
Let A_{n} be the number of up-dowr permutations of Z_{n}. An up-down permutation is one in which rises and falls occur alternately. It is well known [4, pp. 105-112] that

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n} \frac{x^{n}}{n!}=\tan x+\sec x \tag{1.3}
\end{equation*}
$$

(Note that in enumerating up-down permutations, the conventional rise and fall are not counted.) Along this line, one of the authors [1] has found the generating functions for the number of permutations having k initial rises followed by one fali, this pattern continuing for as long as possible.

In this paper, we will discuss annther variation. Let k be a fixed integer ≥ 1. If $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ is a permutation of Z_{n}, we will say that the rise $\left(\right.$ or fall) $\left(\pi_{i}, \pi_{i+1}\right)$ is in a $j(\bmod k)$ position if $i \equiv j(\bmod k)$. We will say that the conventional rise at the beginning is in a $0(\bmod k)$ position and that the conventional fall at the end is in an $n(\bmod k)$ position. We may say more briefly that a rise in a $j(\bmod k)$ position is a $j(\bmod k)$ rise, and similarly for falls.

Let

$$
P_{n} \equiv P_{n}\left(r_{0}, \ldots, r_{k-1}, f_{0}, \ldots, f_{k-1}\right)
$$

be the number of permutations having r_{i} rises in $i(\bmod k)$ positions and f_{i} falls in $i(\bmod k)$ positions, $i=0,1, \ldots, k-1$.

For fixed k, we obtain the generating function

$$
\sum \lambda P_{n} x_{0}^{r_{0}} x_{1}^{K_{1}} \ldots x_{k-1}^{r_{k}^{K-1}} y_{0}^{f_{0}} y_{1}^{f_{1}} \ldots y_{k-1}^{f_{k-1}} \frac{t^{n}}{n!}
$$

in terms of certain $k \times k$ matrices.

For $k=2$, we give the generating function quite explicitly, verifying certain special cases obtained previcusly. For instance, the number $A_{2 n-1}$ of up-down permutations of $Z_{2 n-1}$ having the form

is obtained in agreement with (1.3).
For $k=4$, we consider the special case of the number $B_{4 n-1}$ of permutations of $Z_{4 n-1}$ having the form

We show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} B_{4 n-1} \frac{t^{4 n-1}}{(4 n-1)!}=\frac{\phi_{1}(t) \phi_{2}(t)-\phi_{0}(t) \phi_{3}(t)}{\phi_{0}^{2}(t)-\phi_{1}(t) \phi_{3}(t)} \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{i}(t)=\sum_{n=0}^{\infty} \frac{t^{4 n+i}}{(4 n+i)!} \quad(i=0,1,2,3) \tag{1.5}
\end{equation*}
$$

are the Olivier functions [5].
Finally we estimate $B_{4 n-1}$ for large n by fincirg all zeros of $\cos z \cosh z+1$. The result is

$$
\begin{equation*}
B_{4 n-1} \sim 4(4 n-1)!(2 / \gamma)^{4 n} \tag{1.6}
\end{equation*}
$$

where $\gamma=3.7502 \ldots$. This may be compared with the fact that

$$
A_{4 n-1} \sim 2(4 n-1)!(2 / \pi)^{4 n}
$$

The actual values and the estimates are given in Table 1. We can offer no intuively plausible argument implying that $A_{4 n-1} \geq B_{4 n-1}$.

Table 1.

n	A_{n}	$2(4 n-1)!(2 / \pi)^{4 n}$	B_{n}	$4(4 n-1)!(2 / \gamma)^{4 n}$
1	2	$1.97 \ldots$	2	1.94
2	272	$27 . .76 \ldots$	132	131.91
3	353792	$353791 \ldots$	84512	$84460 \ldots$

2. Calculation of the generating function

Suppose $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ is a permutation of Z_{n}. We will say that the rise (or fali) $\left(\pi_{i}, \pi_{i+1}\right)$ is in a $j(\bmod k)$ position whenever $i \equiv j(\bmod k)$. We define the position of the conventional rise at the beginning to be $0(\bmod k)$ and the position of the conventional fall at the end to be $n(\bmod k)$.

Let $k \geq 1$ be fixed. Let $P_{n}\left(r_{0}, \ldots, r_{k-1}, f_{0}, \ldots, f_{k-1}\right)$ be the number of permutations of Z_{n} having r_{i} rises in $i(\bmod k)$ positions and f_{i} falls in $i(\bmod k)$ positions, $i=0,1, \ldots, k-1$.

Let $M\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)$ denote the $k \times k$ matrix

$$
M\left(x_{6}, x_{1}, \ldots, x_{k-1}\right)=\left(\begin{array}{cccccc}
0 & x_{0} & 0 & \ldots & & 0 \tag{2.1}\\
0 & 0 & x_{1} & 0 & \ldots & 0 \\
\vdots & & & & & \vdots \\
0 & \ldots & & & 0 & x_{k-2} \\
x_{k-1} & 0 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

We set

$$
\begin{align*}
& R_{0}=M\left(x_{0}, x_{1}, \ldots, x_{k-1}\right), \\
& F_{0}=M\left(y_{0}, y_{1}, \ldots, y_{k-1}\right) . \tag{2.2}
\end{align*}
$$

To each permutation $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ of Z_{n} we assign the matrix

$$
\begin{equation*}
\phi(\pi)=R_{0} \cdot A_{1} \ldots A_{n-1} \cdot F_{0}, \tag{2.3}
\end{equation*}
$$

where $A_{i}=K_{0}^{\prime}$ if $\left(\pi_{i}, \pi_{i+1}\right)$ is a rise and $A_{i}=F_{0}$ if $\left(\pi_{i}, \pi_{i+1}\right)$ is a fall.
Theorem 2.1. The sum of the entries of the first row of $\phi(\pi)$ is

$$
x_{0}^{r_{0}} x_{1}^{r_{1}} \ldots x_{k-1}^{r_{k-1}} \cdot y_{0}^{f_{0}} \ldots y_{k-1}^{f_{k-1}}
$$

where $r_{i}\left(f_{i}\right)$ is the number of rises $(f a l l s)$ of π in position $i(\bmod k)$.
Proof. It is clear that any product of $m R_{0}$'s and F_{0} 's is a matrix having only one non-zero entry in each row. Furthermore, the non-zero entry in the first row is in column m (mod k), assuming the columns are numbered $0,1,2, \ldots, k-1$.

For n fixed, suppose $\phi(\pi)$ is defined by (2.3). Assume that the sum of the entries of the tirst row of $R_{0} A_{1}, \ldots, A_{j}$ is

$$
x_{0}^{r_{0}^{\prime}} x_{1}^{r_{1}^{\prime}} \ldots y_{k-1}^{f_{k-1}^{\prime}}
$$

where $r_{i}^{\prime}\left(f_{i}^{\prime}\right)$ is the number of rises (falls) in $i(\bmod k)$ positions up to the $j^{\text {th }}$ interval. This sum lies in the column numbe ed $j+1(\bmod k)$. Hence the only non-zero entry in the first row of $F_{0} A_{1} \ldots A_{j} A_{j+1}$ is

$$
x_{0}^{r_{0}^{\prime}} \ldots y_{k}^{f_{k-1}^{\prime}} \cdot a_{j+1}
$$

where $a_{j+1}=x_{k+1}$ if $A_{j+1}=R_{0}$ and $j \equiv h(\bmod k)$ or $a_{j+1}=y_{h+1}$ if $A_{j+1}=F_{0}$ and $j \equiv h(\bmod k)$. Since the assumption is true for $j=0$, we see by induction that the theorem is true.

Now suppose we have two $k \times k$ matrix-valued functions $R(t)$ and $F(t)$ satisfying

$$
\begin{align*}
& R^{\prime}(t)=F^{\prime}(t)=R(t) F(t) \\
& R(0)=R_{0}, \quad F(0)=F_{0} \tag{2.4}
\end{align*}
$$

Theorem 2.2. Let $P_{n}\left(r_{0}, r_{1}, \ldots, r_{k-1}, f_{0}, \ldots, f_{k-1}\right)$ be the number of permutations of Z_{n} havirg r_{i} rises and f_{i} falls in positions i (mod k) ($i=0, \ldots, k-1$). Then

$$
\sum_{n=1}^{\infty} \sum_{r_{i}, f_{i}} P_{n}\left(r_{0}, r_{1}, \ldots, f_{k-1}\right) x_{0}^{r_{0}} x_{1}^{r_{1}} \ldots y_{0}^{f_{0}} \ldots y_{k-1}^{f_{k-1}} t^{n} /(n!)
$$

is the sum of the entries of the first row of the matrix $R(t)-R_{0}$.

Proof. From Taylor's Theorem and the previous theorem it is enough to show that

$$
R^{(n)}(0)=\sum_{\phi(\pi)}
$$

where the sum is extended over all permutations of Z_{n}. But this is clear by induction since $R^{\prime}(t)=F^{\prime}(t)=R(t) F(t)$: the $(n+1)$! permutations of Z_{n+1} can be obtained by inserting $n+1$ in any interval of any permutation π of Z_{n}.

We now find a solution of the equations (2.4). Since $R^{\prime}=F^{\prime}$, we have $F=R+U$ with $U=F_{0}-R_{0}$. We get

$$
\begin{equation*}
R^{\prime}=R(R+U) \tag{2.5}
\end{equation*}
$$

Assume a solution of the form

$$
\begin{equation*}
R=-Q^{-1} Q^{\prime} . \tag{2.6}
\end{equation*}
$$

Since $Q \cdot Q^{-1}=1$, we have

$$
Q^{\prime} \cdot Q^{-1}+Q \cdot\left[Q^{-1}\right]^{\prime}=0
$$

so that

$$
\left[Q^{-1}\right]^{\prime}=-Q^{-1} Q^{\prime} Q^{-1}
$$

Hence (2.5) becomes

$$
Q^{-1} Q^{\prime} Q^{-1} Q^{\prime}-Q^{-1} Q^{\prime \prime}=\left(Q^{-1} Q^{\prime}\right)\left(Q^{-1} Q^{\prime}\right)-Q^{-1} Q^{\prime} U
$$

that is,

$$
\begin{equation*}
Q^{\prime \prime}=Q^{\prime} U \tag{2.7}
\end{equation*}
$$

Hence we may take $Q^{\prime}=\mathrm{e}^{t U}$ and

$$
\begin{equation*}
Q=U^{-1} \mathrm{e}^{t U}+K \tag{2.8}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
R=-\left(U^{-1} \mathrm{e}^{t U}+K\right)^{-1} \mathrm{e}^{t U}, \tag{2.9}
\end{equation*}
$$

where R^{\prime} is given by
(2.10) $\quad R_{0}=-\left(U^{-1}+K\right)^{-1}$.

From (2.9), we see that

$$
-U R^{-1}=\mathrm{e}^{-t U}\left(\mathrm{e}^{t U}+U K\right)=1+\mathrm{e}^{-t U} U K .
$$

Since $R_{0}^{-1}=-\left(U^{-1}+K\right)$ and $F_{0}-R_{0}=U$, we get

$$
U R_{0}^{-1}=F_{0} R_{0}^{-1}-1=-(1+U K),
$$

so that
(2.11) $U K=-F_{0} R_{0}^{-1}$.

Hence we have

$$
R_{0}^{-1} R=-\left(R_{0}-\mathrm{e}^{-t U} F_{0}\right)^{-1} U,
$$

so that

$$
R_{0}^{-1}\left(R-R_{0}\right)=\left(\mathrm{e}^{-t U} F_{0}-R_{0}\right)^{-1}\left(U-\left(\mathrm{e}^{-t U} F_{0}-R_{0}\right)\right),
$$

that is,

$$
\begin{equation*}
R_{0}^{-1}\left(R-R_{0}\right) F_{0}^{-1}=-\left(R_{0}-\mathrm{e}^{-t U} F_{0}\right)^{-1}\left(1-\mathrm{e}^{-t U}\right), \tag{2.12}
\end{equation*}
$$

or

$$
\begin{equation*}
R-R_{0}=R_{0}\left(\mathrm{e}^{-t U} F_{0}-R_{0}\right)^{-1}\left(1-\mathrm{e}^{-t U}\right) F_{0} . \tag{2.13}
\end{equation*}
$$

3. Special cases

If the matrices are one-dimensional, (2.13) becomes, setting $F_{0}=y$ and $R_{0}=x$,

$$
\begin{equation*}
\frac{r-x}{x y}=\frac{\mathrm{e}^{t y}-\mathrm{e}^{t x}}{y \mathrm{e}^{t x}-x \mathrm{e}^{t y}}, \tag{3.1}
\end{equation*}
$$

the symmetric generating function [3] for the Eulerian polynomials

$$
A_{n}(x, y)=\sum_{r+s=n} A(r, s) x^{r} y^{s}
$$

If $k=2$, formula (2.13) can be given more explicitly if we invert the matrix $\mathrm{e}^{-t U} F_{0}-R_{0}$. We have

$$
R_{0}=\left(\begin{array}{cc}
0 & x_{0} \\
x_{1} & 0
\end{array}\right), F_{0}=\left(\begin{array}{ll}
0 & y_{0} \\
y_{1} & 0
\end{array}\right), U=F_{0}-R_{0} .
$$

Since

$$
\mathrm{e}^{-t U}=\cosh =\cosh \tau-(U / \sqrt{ } \alpha) \sinh \tau
$$

where we have put

$$
\begin{equation*}
\alpha=\left(y_{0}-x_{0}\right)\left(y_{1}-x_{1}\right), \quad \tau=t \sqrt{ } \alpha, \tag{3.2}
\end{equation*}
$$

we have

$$
\begin{aligned}
& \mathrm{e}^{-t U} F_{0}-R_{0}=\left(\begin{array}{ll}
y_{1}\left(x_{0}-y_{0}\right) \alpha^{-\frac{1}{2}} \sinh \tau & y_{0} \cosh \tau-x_{0} \\
y_{1} \cosh \tau-x_{1} & y_{0}\left(x_{1}-y_{1}\right) \cdot \mathrm{x}^{-\frac{1}{2}} \sinh \tau
\end{array}\right), \\
& D=\operatorname{det}\left(\mathrm{e}^{-t U} F_{0}-R_{0}\right)=-x_{0} x_{1}+x_{0} y_{1} \cosh \tau+x_{\mathrm{i}} y_{0} \cosh \tau-y_{0} y_{1}
\end{aligned}
$$

and
$F_{0}\left(\mathrm{e}^{-t U} F_{0}-R_{0}\right)^{-1}=\frac{1}{D}\left(\begin{array}{lr}x_{0}\left(x_{1}-y_{1} \cosh \tau\right) & x_{0} y_{1}\left(x_{0}-y_{0}\right) \alpha^{-\frac{1}{2}} \sinh \tau \\ x_{1} y_{0}\left(x_{1}-y_{1}\right) \alpha^{-\frac{1}{2}} \sinh \tau & x_{1}\left(x_{0}-y_{0} \cosh \tau\right)\end{array}\right)$.
Also
$\left(e^{-t U}-1\right) F_{0}=\left(\begin{array}{ll}y_{1}\left(x_{0}-y_{0}\right) 0^{-\frac{1}{2}} \sinh \tau & y_{0} \cosh \tau-y_{0} \\ y_{1} \cosh \tau-y_{1} & y_{0}\left(x_{1}-y_{1}\right) \alpha^{-\frac{1}{2}} \sinh \tau\end{array}\right)$.

Hence for the sum of the entries of the first row of $R-R_{0}$ we get

$$
\left(y_{1}-x_{1}\right) x_{0} y_{1}\left(x_{0}-y_{0}\right) \alpha^{-\frac{1}{2}} \sinh \tau-x_{0} y_{0}\left(x_{1}+y_{1}\right)(\cosh \tau-1) .
$$

We state the result as a theorem.
Theorem 3.1. The generating function for the number $P_{n}\left(r_{0}, r_{1}, f_{0}, f_{1}\right)$ of permutations of Z_{n} having r_{0} even rises, r_{1} cdd rises, f_{0} even falls and f_{1} odd falis is given by

$$
\begin{gather*}
\sum_{n \geq 1} P_{n}\left(r_{0}, r_{1}, f_{0}, f_{1}\right) x_{0}^{r_{0}} x_{1}^{r_{1}} y_{0}^{f_{0}} y_{1}^{f_{1}} t^{n} / ? \tag{3.3}\\
=x_{0} y_{1} S / E+x_{0} y_{0}\left(x_{1}+y_{1}\right) C / E,
\end{gather*}
$$

where $r_{0}+r_{1}+f_{0}+f_{1}=n+1$ and

$$
S=\frac{t}{1!}+\frac{\alpha t^{3}}{3!}+\frac{\alpha^{2} t^{5}}{5!}+\ldots, \quad C=\frac{t^{2}}{2!}+\frac{\alpha t^{4}}{4!}+\frac{\alpha^{2} t^{6}}{\pi!}+\ldots
$$

$$
\begin{equation*}
E=1-\left(x_{0} y_{1}+x_{1} y_{0}\right) C, \quad \alpha=\left(y_{0}-x_{0}\right)\left(y,-x_{1}\right) . \tag{3.4}
\end{equation*}
$$

The first few terms are
(3.5) $\frac{t}{1!}\left(x_{6} y_{1}\right)+\frac{t^{2}}{2!}\left(x_{0} x_{0} y_{0}+x_{0} y_{1} y_{0}\right)$

$$
\begin{aligned}
& +\frac{t^{3}}{3!}\left(x_{0} y_{1}\right)\left(x_{0} x_{1}+2 x_{0} y_{1}+2 x_{1} y_{0}+y_{0} y_{1}\right) \\
& +\frac{t^{4}}{4!}\left(x_{0} y_{0}\right)\left(x_{0} x_{1}^{2}+6 x_{0} x_{1} y_{1}+5 x_{1}^{2} y_{0}+5 x_{0} y_{1}^{2}+6 x_{1} y_{0} y_{1}+y_{0} y_{1}^{2}\right) \\
& +\frac{t^{5}}{5!}\left(x_{0} y_{1}\right)\left(x_{0}^{2} x_{1}^{2}+13 x_{0}^{2} x_{1}+13 x_{0} x_{1}^{2} y_{0}+16 x_{0}^{2} y_{1}^{2}+34 x_{0} x_{1} y_{0} y_{1}\right. \\
& \left.\quad+16 x_{1}^{2} y_{0}^{2}+13 x_{0} y_{0} y_{1}^{2}+13 x_{1} y_{0}^{2} y_{1}+y_{0}^{2} y_{1}^{2}\right)+\ldots
\end{aligned}
$$

It is evident from (3.3) ar:d (3.5) that the numbers $P_{n}\left(r_{0}, r_{1}, f_{0}, f_{1}\right)$ furnish a refinement of the Eulerian numbers $A(r, s)$. This is somewhat clearer in the following tabular form:

1				
1	1			
1	$2+2$	1		
1	$6+5$	$5+6$	1	
1	$13+13$	$16+34+16$	$13+13$	1

We observe that if we interchange the x_{i} and y_{i}, (3.3) becomes

$$
\begin{aligned}
& \sum_{n \geq 1} P_{n}\left(f_{0}, f_{1}, r_{0}, r_{1}\right) x_{0}^{r_{0}} x_{1}^{r_{1}} y_{0}^{f_{0}} y_{1}^{f_{1} t^{n} / n!} \\
& \quad=x_{1} y_{0} S / E+x_{0} y_{0}\left(x_{1}+y_{1}\right) C / E .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
P_{n}\left(f_{0}, f_{1}, r_{0}, r_{1}\right)=P_{n}\left(r_{0}, r_{1}, f_{0}, f_{1}\right) \quad(i \text { even }) \tag{3.6}
\end{equation*}
$$

while

$$
\begin{equation*}
P_{n}\left(r_{0}+1, r_{1}, f_{0}, f_{1}+1\right)=P_{n}\left(f_{0}+1, f_{1}, r_{0}, r_{1}+1\right) \quad(n \text { odd }) . \tag{3.7}
\end{equation*}
$$

If we put

$$
\begin{aligned}
& P_{n}\left(r_{0}, r_{1} \mid f\right)=\sum_{f_{0}+f_{1}=f} P_{n}\left(r_{0}, r_{1} \mid f_{0}, f_{1}\right), \\
& P_{n}\left(r \mid f_{0}, f_{1}\right)=\sum_{r_{0}+r_{1}=r} P_{n}\left(r_{0}, r_{1} \mid f_{0}, f_{1}\right),
\end{aligned}
$$

we get

$$
\begin{array}{ll}
P_{n}\left(r_{0}, r_{1} \mid f\right)=P_{n}\left(f \mid r_{0}, r_{1}\right) & (n \text { even }), \\
P_{n}\left(r_{0}+1, r_{1} \mid f\right)=P_{n}\left(f \mid r_{0}, r_{1}+1\right) & (n \text { odd }) . \tag{3.8}
\end{array}
$$

The formulas (3.6), (3.7) can also be proved by a simple combinatorial argument, namely with each permutation $\pi=:\left(a_{1} a_{2} \ldots a_{n}\right)$ associate the complementary permutation $\pi^{\prime}=\left(b_{1} b_{2} \ldots b_{n}\right)$, where

$$
b_{i}=n-a_{i}+1 \quad(i=1, \ldots, n)
$$

As another special case we enumerate those permutations of $Z_{4 n-1}$ of the form

We have
(3.10)

$$
R_{0}=x\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad F_{0}=x\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right),
$$

$$
-U=x P, \quad P=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \tag{ren}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

We get

$$
\begin{equation*}
\mathrm{e}^{-U}=\sum_{i=0}^{3} \sum_{n=0}^{\infty} \frac{(x P)^{4 n+i}}{(4 n+i)!}=\sum_{i=0}^{3} P^{i} \phi_{i}(x) \tag{3.11}
\end{equation*}
$$

where the ϕ_{i} are the Olivier functions defined by

$$
\begin{equation*}
\phi_{i}(x)=\sum_{n=0}^{\infty} \frac{x^{4 n+i}}{(4 i n+i)!} \quad(i=0,1,2,3) \tag{3.12}
\end{equation*}
$$

Then we get

$$
\mathrm{e}^{-U} F_{0}-R_{0}=x\left(\begin{array}{rrrr}
-\phi_{3} & -1 & 0 & \phi_{2} \tag{3.13}\\
-\phi_{2} & 0 & 0 & \phi_{1} \\
-\phi_{1} & 0 & 0 & \phi_{0} \\
\phi_{0} & 0 & 0 & -\phi_{3}
\end{array}\right)
$$

$$
\begin{equation*}
D=\operatorname{det}\left(\mathrm{e}^{-U} F_{0}-R_{0}\right)=x^{4}\left(\phi_{1} \phi_{3}-\phi_{0}^{2}\right) . \tag{3.14}
\end{equation*}
$$

Now we can find $\left(M_{i j}\right)$ so that

$$
\begin{equation*}
\left(\mathrm{e}^{-U} F_{0}-R_{0}\right)^{-1}=\frac{x^{3}}{x^{4}\left(\phi_{1} \phi_{3}-\phi_{0}^{2}\right)}\left(M_{i j}\right) \tag{3.15}
\end{equation*}
$$

Note that

$$
\begin{equation*}
M_{21}\left(-\phi_{3}\right)+M_{22}\left(-\phi_{2}\right)+M_{23}\left(-\phi_{1}\right)+M_{24}\left(\phi_{0}\right)=0 . \tag{3.16}
\end{equation*}
$$

Furthermore, we have

$$
\left(\mathrm{e}^{-U}-1\right) F_{0}=x\left(\begin{array}{llll}
-\phi_{3} & 0 & 0 & \phi_{2} \tag{3.17}\\
-\phi_{2} & 0 & 0 & \phi_{1} \\
-\phi_{1} & 0 & 0 & \phi_{0}-1 \\
\phi_{0}-1 & 0 & 0 & -\phi_{3}
\end{array}\right)
$$

Hence from (2.13), (3.15) and (3.17) we get

$$
R-R_{0}=\frac{x^{3}}{D}\left(\begin{array}{llll}
M_{21} & M_{22} & M_{23} & M_{24} \tag{3.18}\\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{llll}
-\phi_{3} & \cdot & \cdot & \cdot \\
-\phi_{2} & \cdot & \cdot & \cdot \\
-\phi_{1} & \cdot & \cdot & . \\
-\phi_{0}-1 & \cdot & \cdot & \cdot
\end{array}\right) .
$$

so by (3.16) the entry in the first row and first column of $R-R_{0}$ is

$$
-M_{24}=\operatorname{det}\left(\begin{array}{rrr}
-\phi_{3} & 0 & \phi_{2} \\
-\phi_{2} & -1 & \phi_{1} \\
-\phi_{1} & 0 & \phi_{0}
\end{array}\right)=\phi_{1} \phi_{2}-\phi_{0} \phi_{3} .
$$

Altogether, then, we get
Theorem 3.2. The number $B_{4 n-1}$ of up-up-down-down permutations of $Z_{4, n-1}$ satis:ìes

$$
\begin{aligned}
\sum_{n=1}^{\infty} B_{4 n-1} \frac{x^{4 n-1}}{(4 n-1)!} & =\frac{\phi_{1}(x) \phi_{2}(x)-\phi_{0}(x) \phi_{3}(x)}{\phi_{0}^{2}(x)-\phi_{1}(x) \phi_{2}(x)} \\
& =\frac{2}{3!} x^{3}+\frac{132}{7!} x^{7}+\frac{\cup 4512}{11!} x^{11}+\ldots .
\end{aligned}
$$

Next we estimate $B_{4 n-1}$ for large n. We note that $\phi_{0}, \phi_{1}, \phi_{2}$ and ϕ_{3} are four linearly independent solutions of $f(4)=f$. Let $w=(1+i) / \sqrt{ } 2$. Then $\phi_{i}(w \sqrt{2} x)(i=0,1,2,3)$ are four linearly independent solutions of
(3.19) $\quad f^{(4)}=-4 f$.

Since $\phi_{0} \phi_{3}-\phi_{1} \phi_{2}=\left(\phi_{0}^{2}-\phi_{1} \phi_{3}\right)^{\prime}$ is also a solution of (3.19), and since $\phi_{0}(0)=1$, we see that

$$
\begin{equation*}
\phi_{0}^{2}(z)-\phi_{1}(z) \phi_{3}(z)=\frac{1}{2}\left[\phi_{0}(w \sqrt{2} z)+1\right] \tag{3.20}
\end{equation*}
$$

Let

$$
Q=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

It is easily verified that

$$
\begin{equation*}
\mathrm{e}^{a Q}=\phi_{0}(a)+\phi_{1}(a) Q+\phi_{2}(a) Q^{2}+\phi_{3}(a) Q^{3} \tag{3.21}
\end{equation*}
$$

so from $\mathrm{e}^{(a+b) Q}=\mathrm{e}^{a Q} \mathrm{e}^{b Q}$ we get

$$
\begin{equation*}
\phi_{0}(a+b)=\phi_{0}(a) \phi_{0}(b)+\phi_{1}(a) \phi_{3}(b)+\phi_{2}(a) \phi_{2}(b)+\phi_{3}(a) \phi_{1}(b) \tag{3.22}
\end{equation*}
$$

Setting $a+b=0$ we have

$$
\begin{equation*}
\phi_{0}^{2}-2 \phi_{1} \phi_{3}+\phi_{2}^{2}=1 \tag{3.23}
\end{equation*}
$$

Hence from (3.20) we get

$$
\begin{equation*}
\cosh z \cos z=\phi_{0}^{2}(z)-\phi_{2}^{2}(z)=\phi_{0}(w \sqrt{2} z) \tag{3.24}
\end{equation*}
$$

Theorem 3.3. Let $0<x_{1}<x_{2}<x_{3}<\ldots$ denote the positive solutions of $\cos x \cosh x+1=0$. Then any solution of
(3.25) $\quad \cos z \cosh z+1=0$
is of one of the forms $x_{n},-x_{n}, \mathrm{i} x_{n},-\mathrm{i} x_{n}$. Furthermore, if

$$
\begin{equation*}
f(x)=\frac{\phi_{1}(x) \phi_{2}(x)-\phi_{0}(x) \phi_{3}(x)}{\phi_{0}^{2}(x)-\phi_{1}(x) \phi_{2}(x)}=\sum_{n=1} B_{4 n-1} \frac{x^{4 n-1}}{(4 n-1)!}, \tag{3.26}
\end{equation*}
$$

then

$$
\begin{equation*}
B_{4 n-1}=4(4 n-1)!\sum_{j=1}^{\infty} x_{j}^{-4 n} \tag{3.27}
\end{equation*}
$$

Procf. First it is clear that $x_{n},-x_{n}, \mathrm{i} x_{n},-\mathrm{i} x_{n}$ are solutions of (3.22) and that $x_{n}-\frac{1}{2}(2 n+1) \pi \rightarrow 0$. On the square determined by the lines $x= \pm 2 n \pi, y= \pm 2 n \pi$, we see that

$$
|\cos z|^{2}=\cosh ^{2} y-\sin ^{2} x \geq 1
$$

(As a ratter of fact, $|\cos z| \geq 1$ for $|z|=2 n \pi$, but this is not needed here.) Thus we have

$$
1=|\cos z \cosh z+1-\cos z \cosh z| \geq|\cos z \cosh z|
$$

By Rouch 's theorem [7, p. 116], $\cos z \cosh z+1$ has the same number of zeros in the square as $\cos z \cosh z$, namely $8 n$. Hence we have accounted for all of them.

As for the second part of the theorem, we note that the denominator of f is entire of order i and that $-f$ is a logarithmic derivative. Hence from Hadamard's factorization theorem [7, p. 250] we obtain the resulâ.

If we take only the first term in the sum (3.27), we get

$$
\begin{equation*}
B_{4 n-1} \sim 4(4 n-1)!x_{1}^{-4: n} \tag{3.28}
\end{equation*}
$$

As pointed out by the referee, it follows from (3.26) that $B_{4 n-1}$ satisfies the following recurrence:

$$
\begin{equation*}
\beta_{n+1}+\sum_{j=0}^{n}\binom{4 n+3}{4 j} \beta_{j} B_{4 n-4 j+3}=0, \tag{3.29}
\end{equation*}
$$

with

$$
\beta_{n}=(-1)^{n} 2^{2 n-1}+\frac{1}{2} \delta_{n 0},
$$

where $\delta_{n 0}$ is the Kronecker delta.

References

[1] L. Carlitz, Permutations with prescribed patterns, Math. Nachr., to appear.
[2] L. Carlitz and R. Scoville, Enumeration of permutations by rises, falls, rising maxima and falling maxima, Arch. Math., to appear.
[3] L. Carlitz and R. Scoville, Generalized Eulerian numbers: combinatorial applications, J. Reine Angew. Math., to appear.
[4] E. Netto, Lehrbuch der Combinatorik (Teubner, Leipzig and Berlin, 1927).
[5] L. Olivier, Bemerkungen über eine Art von Funktionen, welche änhnliche Eigenschaften haben, wie die Cosinus und Sinus, J. Reine Angew. Math. 2 (1827) 243-251.
[6] J. Riordan, An introduction to combinatorial analysis (Wiley, New York, 1958).
[7] E.C. Titchmarsh, The theory of functions, 2nd ed. (Oxford University Press, London, 1939).

[^0]: * Supported in part by NSF grant no. GP-17031.
 ** Original version received 26 April 1972 .

