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Abstract, Let w = (my, ma, ..., m,) denote a permutation of Z, = {1,2,...,n }. The pai: (mj, Wiay)
is a rise if m; < mpy., or a fall if w; > my . Also a conventional rise is counted at the buginning of
mand a conventional fall at the end. Let & be a fixed integer 2 1. The rise mr;, n;,, is said to be ina
in aj (mod k) position if i =; (mod k); similarly for a fall. The conventional rise at the beginning
is in a 3 {mod k) position, while the conventional fall at the end is in an » (mod k) position.
Let P, =Py(rg; -ssTf—ys fo» s fg—y ) denote the number of permutations having r; rises in
i (mod k) positions and f; falls in 7 (mod k) positions. A generating function for P, is obtained.
In particular, for k = 2 the generating function is quite explicit and also, for certain special
cases when k = 4.

1. Introduction

We consider all permutations 7 = (7, 7,,..,m,) of Z, = {1,2,..,n}.
The pair (7;, 7;, ) from the permutation 7 is called a rise if m; < m;,, or
a fall if m; > m;,, . We also agree to count a conventional rise at the be-
ginning of m and a conventional fall at the end. We will sav that 7 con-
tains a maximum whenever a rise immediately precedes a fzii and that
7 contains a minimum whenever a fall immediately precedes a rise. We
remark that the words peak and trough are sometimes used in place
of maximum and minimum.

Let A{r. 5) be the number of permutations of Z, ., ; with r+1 rises
and s+ 1 fails. Then it is known [3; 6, Chapter 8] that

(1.1 ) A(r, s)

8=

Yrys: ex __ey
(r+s+i)! xe¥—ye*
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If we let P(r, s, m) be the number of permutations of Z,, having r rises,
s falls and m maxima, then we have [3]

JrHs-1 elz —eVz

1.2 2 P(r.s,m)x' Yy u® ———— =x+xyu ———
( nsn ( )Xy (r+s—1)! UeVz-yelz’

U= i(x +y+ \/&WM),W %(x+ym>.

For a further refinement see [2].

Let A, be the number of up-dowr. permutations of Z,,. An up-down
permutation is one in which rises and falls occur alternately. It is well
known {4, pp. 105—112] that

(1.3) 'Q}Anh—!—tanxi-secx.

(Note that in enumerating up-down permutations, the conventional rise
and fall are not counted.) Along this line, one of the authors [1] has
found the generating functions for the number of permutations having
k initial rises foilowed by one £ali, this pattern continuing for as long
as possible.

In this paper, we will discuss annther variation. Let & be a fixed in-
teger > 1. If # =(my, m,, ..., m,) is a permutation of Z, , we will say that
the rise (or fall) (m;, m;, ;) is in a j (mod k) position if i = j (mod k). We
will say that the conventional rise at the beginning is in a 0 (mod k) po-
sition and that the conventional fall at the end is in an »n (mod k) po-
sition. We may say more briefly that a rise in a j (mod k) position is a
j {(mod k) rise, and similarly for falls.

Let

Pn EPn(rO: erey rk._}_’ fOs ~"lfk—l)
be the nuinber of permutations having 7; rises in i (mod k) positions
and f; falls in i (mod k) positions, i =0, 1, ..., k—1.
For fixed £, we obtain the generating function

2ip, xi0 Xt x5 Y o

in terms of certain k X k matrices.
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For k = 2, we give the generating function quite explicitly, verifying
certain special cases obtained previcusly. For instance, the number
Ajp_y of up-down permutations of Z,, _; having the form

is obtained in agreement with (1.3).

For k = 4, we consider the special case of the number B4n 1 of per-
mutations of Z,,, _; having the form

VNN

We show that
a4 Do, -l 61(0) ¢ ()~ (1) 63(0)
1 @n-1)!  92(t)—9,(t) d5()
where
o t4n+i
(1.5) ¢,.(t)=n§) anin (i=0,1,2,3)

are the Olivier functions [5].
Finally we estimate By, _, for large n by finc.ng all zeros of
cos z cosh z + 1. The result is

(1.6) Byp_1~ Han—1)! (2/y)4n,
where v = 3.7502 ... . This may be compared with the fact that
Agp_q ~ 2(4n-1)! (2/m)*r .

The actual values and the estimates are given in Table 1. We can offer
no intuively plausible argument implying that Ay, | > By, -
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Table 1.
n A, 24n-1)! 2/m)4" B, 4(4n-1)! 2/t
1 2 1.97.. 2 1.94
7 272 2776 ... 132 131.91
353792 353791 ... 84512 84460 ...

2. Calculation of the generating function

Suppose 7 = (@, T, ..., T,) is a permutation of Z,,. We will say
that the rise (or fali) (m;, m;,,) is in a j (mod k) position whenever
i =j (mod k). We define the position of the conventional rise at the be-
ginning to be 0 (mcd k) and the position of the conventional fall at the
end to be n (mod kj.

Let k> 1 be fixed. Let P, (rg, ..., rx_1, fo» s fr—1 ) b€ the number
of permutations of Z, having r; rises in i (mod k) positions and f;
falls in i (mod k) positions, i =0, 1, ..., k1.

Let M(xy, x;,...,X;_y) denote the k X k matrix

0 x, 0 .. 0
0 0 x, O 0
Q.1 Mxg, Xq e Xg_1) =] ¢ :
0 . 0 X2
X300 6 .. 0 0
We set
Ry=M(xq,X1,...,X0_1),
2.2 0 =M(xg, %y %-1)

Fo =M@y, Y10 V1) -
To each permutation 7 = (m,, 7,, ..., 7, ) of Z, we assign the matrix
(2.3) $(m)=Ry-A; .4, 1 Fp,
where A; = K if (m;, m;, ) is a rise and A4; = F if (m;, m;, 1) is a fall.

Theorem 2.1. The sum of the entries of the first row of ¢(n) is
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ro xr1 "k~ I. fo fr—1
Xpo Xt ... x v vk

where r; (f;) is the number of rises (fzlls) of m in position i (mod k).

Proof. It is clear that any product of m R’s and F’s is a matrix having
only one non-zero entry in each row. Furthermore, the non-zero entry
in the first row is in column m (mod k), assuming the columns are num-
bered 0,1, 2,..., k—1.
For n fixed, suppose ¢(7) is defined by (2.3). Assume that the sum
of the entries of the tirst row of RgAy, ..., 4; is
r, r' I

Xox vk,
where r; (f7) is the number of rises (falls) in i (mod k) positions up to
the jth mtenal This sum lies in the column numbe ved j+ 1 (mod k).
Hence the only non-zero entry in the first row of Ky A4, ... A; 4;, is

xao ...y{k-l ° ai+1 ’
wherea;,; =xz, if Aj4; =Rg andj=h (mod k) ora;,y =y, if
A]-+ 1 =Fy and j = h (mod k). Since the assumption is true forj = 0, we
see by induction that the theorem is true.

Now suppose we have two k X k matrix-valued functions R(t) and
F(#) satisfying

R'(t)=F'()=R()F(t)

24 R(0) =R, F(0)=F,.

Theorem 2.2. Let P, (rg, ¥y, ... 7515 fo5 s Ji—1) De the number of per-
mutations of Z,, havirg r; rises and f; falls in positions i (mod k)
(i=0,...,k-1). Then

E P n(ro, rys oo - 1)x00x . yf°..y],;k_--11 " [(nY)

nlr[‘

s the sum of the entries of the first row of the matrix R(t)--Ry,.

Proof. From Taylor’s Theorem and the previous theorem it is enough
to show that
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R™©0)= 2 o(m),
where the sum is extended over all permutations of Z,,. But this is clear
by induction since R'(¢) = F'(t) = R(t) F(¢): the (n+ 1)! permutations
of Z,,, can be obtained by inserting n + 1 in any interval of any permu-
tationw of Z,,.
We now find a solutior of the equations (2.4). Since R’ = F', we have
F=R+U with U=F,-R,. We get
(2.5) R'=R(R+0U).
Assume a solution of the form
(2.6) =-g1 Q.
Since 0 + Q™1 =1 we have
Q-Q ' +Q 10711 =0,
so that
[e-'1'=-g"'Qo!.
Hence (2.5) becomes
glgelog-gle=w@'1g)@!Q)-0lQu,
that is,
2.7 0"=QU.
Hencz we may take Q' = e’V and
28 g=U1leV+Kk.
Hence we have
(295 R=—(U-'eV+K)!eV,

where £ is given by
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-1

42.10} R = J 1‘1’“1\}

Ry=—(U"
From (2.9), we see that
—UR1=etV (U +UK)=1+e" Y UK

Since Rg! = —(U~! + K)and F, —R, = U, we get
URG! =FyR;' —1=-(1+UK),
so that
(2.11) UK=-FyR;!.
Hence we hava
Rj1R=—R -V F) 1 U,
so that
Ry (R—R)=(etVFy —Ryy! (U~(e™"" Fy—R,)),
that is,
(2.12)  Ry' R-Ry)F;! =—(Ry—e 'V F)™ ! (1-e7Y),
or

(2.13) R-Ry =Ry (™ "VF—R) 1 (1-e""V)F, .

3. Special cases

If the matrices are one-dimensional, (2.13) becomes, setting Fy =y
and Ry =x,

r—x e —e¥
@a3.1) =

xy yetr—xgtv '’
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the symmetric generating function [3] for the Eulerian polynomials

A,(x,y)= 2 A(r, 5) x" yS .
r+s=n

If k = 2, formula (2.13) can be given more explicitly if we invert
the matrix e~V Fy—R. We have

0 XQ\ 0 Yo
RO = s FO , ll=F0'—RO .
X, 0/ yi 0

Since
e~ 'Y = cosh = cosh 7 —(U/v/a) sinh T ,
where we have put
3.2) a=Wy—x;) ¥ —x), T=Ha,
we have

/yl(xﬁ,myo)ors sinh7 yq cosh 7—xg
e—tUFO—'RO = 1 ’
Yy cosh 7—x, Yo (X1 =y}« ?sinhT

D=det(e 'V Fy—Ry)=—xgx, +xq¥; coshT+x; yo coshT—yy¥,

and

. . L] Xo(xy—y cosh7) xoyl(xo—yo)a"% sinh 7
(€T Fy—Ry) " =p

X1¥o(xy —yl)a‘% sich7 X1 (xg—yo cosh7)

Also

. Y1 (xo—-yo)a'% sinh7 Yo cosht—y,
(e -1F,

Vi cosh 17—y, yo(xl——yl)oz‘% sinh 7,
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Hence for the sum of the entries of the first row of R—R, we get
O1—x1)xo)1 (xo—yo)a‘i sinh7—xyyq (x; +y;) (cosh7--1).

We state the result as a theorem.

Theorem 3.1. The generating function for the number P, (ry, r;, fo. f1)

of permutations of Z, having r, even rises, r, cdd rises, f even falls

and f| odd falis is given by

(3.3) n§1 Py (ro. ry, fo. 1) X0 X7 y{;’y{l ",

=xo¥y SIE+xqyo(xy +yy)CE,

wherery +r, +fy +f; =n+1and

(3.4)
E= l'—(xOyl +x1y0)C, a=(yo*x0)(}'m —xl).

The first few terms are
t 12
(3.5) [1*6y1)F3i(%0X0¥ o TX0¥1Y0)
13
+37(x0Y 1 )Xo Xy +2xppy + 22Xy Vo)1)
14 2 2 2 2
+ 7iX0Y XX T +6x0X Yy +5x¥1yo + 5y +6X1 Y0V 1 tVo) )
5
+ 1‘5--,(3«?0y1)(x(z)xf+l3x(2)x1+13x0xfyo+l6x(2)yf+34x0xly0yl

+ 16xfy%+13x0y0y%+ 13x,y2y tyaviy+ ...

It is evident from (3.3) ar.d (3.5) that the numbers P, (ry, 1y, fo. f})
furnish a refinement of the Eulerian numbers A(r, s). This is somewhat
clearer in the following tabular form:
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1 1
1 2+2 1
1 6+5 5+6 1

1 13+13 16+34+16 13+13 1

We observe that if we interchange the x; and y;, (3.3) becomes
nZEl P, (fo. f1. To. 1y ) x50 X7 y{,oy{l " /n!
=x;YoS/E+xqyq(xy +y,)C/E.
it follows that
(3.6} P,(fo. f1, 79, 71) = Pp(rg. 1y, fo. F1) (i even),
while
3.7 Pyrotl,r, fo. it D =F,(fy+1,f1,rg. 11 +1)  (nodd).
if we put

Pulro.nIN=_ 2 Pulro.rilfo. 1)),
Pn(rlfo.f1)= E P,,("Q,’llfo,fl),
rotry=r

we get

Py(ro, rilN=P,(fir,, r) (n even) ,

3.8) ,

P (rg+ L,ry|f)=P,(flrg.ry+1) (n odd).
The formulas (3.6), (3.7) can also be proved by a simple combinatorial
argument, namely with each permutation 7 = (a,a, ... a,) associate the
complementary permutation 7' = (b, b, ... b,), where
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bj=n—-a; +1 (i=1,..,n).

As another special case we enumerate those permutations of Z,,, _ 1 of
the form

S

We have
01 0 O 0 0 0O O
RO_OOIOAp():xOOtOO,
0 00O 0 0 0 1
0 0 0 O 1 0 0O
(3.10)
01 0 0
~U=xP, p=( 0010
0 0 0-1
-1 0 0 O
Wéget
3 o0 (xP)4n+i 3 i
. “U= = PI ,
@1 e V=2 2 @n+)! Lo,
where the ¢; are the Olivier functions defined by
oo x4n+i
3.12 (x) = i=0,1.2,3).
(3.12)  ¢,(x) n);)o prw (i )
Then we get
—¢3 —'1 O ¢2
U o - - 0 O (0}
(3.13) e VUF,—R,=x| %2 1
oy 'y 0 o %o
o 0 0 ¢,

(3-14)  D=det(e"UFy—Ry) =x* (¢, 3—02) .
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Now we can {ind (M,-j) so that

x3 \
3.15 “UF R, ! = ——ro- (M) .
GAD R S L Gty —op
Note that
(3.16) M21(“¢3)+M22(—“¢2)+M23(_¢1)+M24(¢0)=0'

Furthermore, we have

—¢3 0 0 ¢

GBI @ V-DFy=x %2 0 0 9
° T g, 0 0 g1

b—10 0 -—g,

Hence from (2.13), (3.15) and (3.17) we get

My, My, Myz My, [ —¢3

318 R-Ry=x3" - = |
Do . . . —¢1
L ¢y 1

so by (3.16) the entry in the first row and first column of R—R, is

—¢3 0 )
My, =det| —¢, —1 ¢; |=6,0,—00; .
¢4 0 ¢

Altogether, then, we get

Theorem 3.2. The number By, _, of up-up-down-down permutations of
Z,y, . satisiies

o xtn=1 g (X)) (X)— 9 () 95 (x)
L B4n—l =

n=1 (4n-1)!  $3(x)—9,(x),(x)

2 132 64512

x11 4+ |
3! 7i 1!
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Next we estimate By, _; for large n. We note that ¢y, ¢,, ¢, and ¢,
are four linearly independent solutions of f(4) = f. Let w = (1+i)/v/2.
Then ¢;(w/2 x) (i = 0, 1, 2, 3) are four linearly independent solutions
of

(3.19) [@®=—4f.

Since ¢pg¢3—9, ¢, = (¢5—¢1¢3 )'is also a solution of (3.19), and since
$9(0) = 1, we see that

(3.20)  $2(2)—¢,(2)8;3(2) = 1 [Bp(wv/22) + 11.

Let
01 0O
0= 0 01 0)
0 0 0 1
1 0 C O

It is easily verified that

(3.21)  e®=¢y(a) +¢,(a)Q+¢,(@) Q% +¢3() 03,

so from e@*+2)Q = e9Q ebQ we get

(3.22)  ¢g(a+b) = ¢o(@)dg (b)+e; (@) (D)+dr(e)dy (D) +03(a)¢y (b).
Settinga + b = 0 we have

(3.23) 220,05 +¢3 =1.

Hence from (3.20) we get

(3.24) coshzcosz= ¢%(z)~¢%(z) =¢owv22).

Theorem 3.3. Let 0 < x; < x, < x3 < ... denote the positive solutions
of cos x cosh x + 1 = 0. Then any solution of

(3.25) coszcoshz+1=0

is of one of the forms x,, —x;, ix,, —ix,. Furthermore, if
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0 (x}92(x) —¢o(x)P5(x) _ B x4én-1
$Z(x)—¢, (x)9(x) n=1 1 gy’

(3.26) fx)=

then

(3.27)  Bsp_; =4(4n—1)!Zixj’4" :
]:

Proof. First it is clear that x,, —x,, ix,, —ix,, are solutions of (3.22)
and that x, —}(2n+ 1) 7 » 0. On the square determined by the lines
x =% 2nm, y =t 2nw, we see that

Icos z}2 = cosh? y—sinfx>1.

(As a matter of fact, |cos z| > 1 for |z| = 2nx, but this is not needed
here.) Thus we have

1=|coszcoshz+1 —cosz zoshz|> |cosz coshz|.

By Rouch*’s theorem {7, p. 1161, cos z cosh z + 1 has the same number
of zeros in the square as cos z cosh z, namely 8xn. Hence we have ac-
counted for all of them.

As for the second part of the theorem, we note that the denominator
of fis entire of order i and that —f is a logarithmic derivative. Hence
from Hadamard’s factorization theorem [ 7, p. 250] we obtain the re-
sult.

If we take only the first term in the sum (3.27), we get

(3.28) By, ; ~ 4dn—1)!x74

" As pointed out by the referee, it follows from (3.26) that B,,_, sa-
tisfies the following recurrence:

. n
(329) By +]§) (472) By Ban_4j43 =0,

with
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ﬁn - (—-1)" 22m-—l +%6n0 ,

where 8, is the Kronecker delta.
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