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SUMMARY

It is well established that epigenetic modulation of
genome accessibility in chromatin occurs during
biological processes. Here we describe a method
based on restriction enzymes and next-generation
sequencing for identifying accessible DNA elements
using a small amount of starting material, and use it
to examine myeloid differentiation of primary human
CD34+ cells. The accessibility of several classes of
cis-regulatory elements was a predictive marker of
in vivo DNA binding by transcription factors, and
was associated with distinct patterns of histone post-
translational modifications. We also mapped large
chromosomal domains with differential accessibility
in progenitors and maturing cells. Accessibility
became restricted during differentiation, correlating
with a decreased number of expressed genes and
loss of regulatory potential. Our data suggest that
a permissive chromatin structure in multipotent cells
is progressively and selectively closed during differ-
entiation, and illustrate the use of our method for the
identification of functional cis-regulatory elements.

INTRODUCTION

Cellular development and differentiation rely on an integration of

(static) genetic and (dynamic) epigenetic information (Bird, 2002;

Turner, 2001). The ‘‘epigenome’’ of the cell emerges from the

interplay between trans-acting factors, noncoding RNAs, chro-

matin modifiers and remodelers, and the preexisting state of

the chromatin template (Bernstein et al., 2007).

High-throughput approaches are essential tools for studying

the epigenome (Gargiulo and Minucci, 2009). High-resolution

maps of histone posttranslational modifications (PTMs), nucleo-

some positioning, and DNaseI hypersensitive sites (DHSs) have
466 Developmental Cell 16, 466–481, March 17, 2009 ª2009 Elsevie
been generated in lymphoid T cells (Barski et al., 2007; Boyle

et al., 2008a; Schones et al., 2008). In addition, binding sites

for several transcription factors (TFs) have been analyzed in

cell lines. These analyses revealed that the DNA primary

sequence is insufficient to determine whether a given factor

will be bound in vivo. Furthermore, the number of binding sites

for many TFs in living cell chromatin is considerably greater

than expected, leading to the difficulty of distinguishing nonfunc-

tional from bona fide cis-regulatory binding sites (Li et al., 2008).

Epigenetic mechanisms governing dynamic processes have

begun to be elucidated, studying in vitro differentiation of murine

and human embryonic stem (ES) cells. Human and murine hema-

topoietic stem and progenitor cells (HSPCs) provide a similarly

attractive framework for studying epigenetic transitions during

differentiation (Attema et al., 2007; Bottardi et al., 2003).

The accessibility of DNA in chromatin to exogenous nucleases

(usually DNaseI) is a distinguishing epigenetic mark of gene

regulatory elements (Elgin, 1988; Wu, 1980). The use of type II

restriction enzymes (REs) to probe chromatin on a single-locus

basis revealed the utility of this approach to map cis-regulatory

elements, transcription factor binding sites (TFBSs), and

domains of remodeled chromatin (Almer and Horz, 1986; Archer

et al., 1992).

Here we describe a method for specifically sequencing RE-

accessible regions from cell nuclei, and its application to map

the ‘‘nuclease-accessible epigenome’’ in human HSPCs and

their committed progeny. This analysis provided several insights

into the general structure of chromatin and the changes that

occur during the process of cellular differentiation, and a resource

for the identification of hematopoietic regulatory elements in

human cells.

RESULTS

High-Throughput Sequencing of Nuclease-Accessible
Sites
Nuclease-accessible site sequencing (NA-Seq) starts with the

treatment of isolated nuclei with appropriate REs to cleave
r Inc.
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Figure 1. Genome-Wide Analysis of Nuclease-Accessible Sites

(A) Outline of the NA-Seq assay.

(B) Scatter analysis of NAS libraries generated using NlaIII as RE: two sequential 454 runs of CD34� libraries (left; p < 0.001), CD34+ versus CD34� libraries

(middle; p < 0.001), and CD34+ versus the control library (naked DNA). The axes indicate the number of NASs within discrete 1.2 Mb genomic windows (data

points). Darker paint means higher density (associated Pearson correlation is indicated).
accessible sites, leaving an ‘‘in vivo mark’’ due to its sequence

specificity (Pingoud and Jeltsch, 2001). The combination of two

REs (HpaII and NlaIII) allows an extensive coverage of the genome

due to their different recognition motif (on average, one site every

<300 bp). Next, genomic DNA is fractionated in vitro using

a different enzyme (usually Sau3AI). Nuclease-accessible sites

(NASs) will thus carry the sticky ends from both enzymes. NASs

can be isolated by cloning, or by next-generation sequencing,

after ligation of biotinylated linkers thatenable the selective enrich-

ment and sequencing of DNA fragments carrying NlaIII and HpaII

sticky 50 ends (Figure 1A). To reduce background, reads lacking

the expected motif (CATG and CCG, for NlaIII and HpaII REs,

respectively; see Table S1 available online) were not further

analyzed.

We performed a pilot validation study using transformed cell

lines (not limiting in number; see Supplemental Results), and
Develo
then applied the procedure to primary human CD34+ HSPCs

(Morrison et al., 1995). We differentiated CD34+ cells along the

myeloid lineage by exposure to a cocktail of cytokines in vitro

(Piacibello et al., 1999). Cells lose the CD34 marker and acquire

myeloid-specific markers (CD34�/CD13+/CD33+); for brevity,

we refer to them as CD34� cells (Figure S1). As an experimental

control, we applied the same procedure to naked genomic DNA.

NAS libraries were obtained by considering only nonredundant

NlaIII and HpaII reads, and then merging multiple reads that iden-

tify a region <600 bp to represent one continuously accessible

stretch. We obtained 130,549 merged NASs in CD34+ cells and

338,316 in CD34� cells (the difference is due to the fact that we

performed two consecutive runs of the CD34� library), and

177,465 merged sequence reads in the control library. To provide

an immediate validation, we compared the distribution of NASs

in the libraries, using a scanning interval of 1.2 Mb across all
pmental Cell 16, 466–481, March 17, 2009 ª2009 Elsevier Inc. 467
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chromosomes. As expected, we obtained a near-linear correla-

tion between the distributions of NASs when comparing the two

runs derived from the same CD34� NlaIII library (r = 0.93; p <

0.001; Figure 1B). CD34+ and CD34� libraries showed also

a strong positive correlation (r = 0.81; p < 0.001); the decrease

of the correlation coefficient is a measure of differential chromatin

accessibility between CD34� and CD34+ cells, in a context of an

overall similarity. In contrast, the library derived from naked DNA

did not exhibit any significant correlation with the chromatin-

derived libraries (control versus CD34+ cells: r = �0.092; p > >

0.05), showing that thechromatin-derived librariesshareaspecific

accessibility landscape that is unrelated to the pattern of digestion

of naked DNA (Figure 1B).

NASs Identify Regions of Enhanced Accessibility
in Primary Cells
We validated our NAS libraries using two approaches: (1) exper-

imental validation and (2) comparison of our NAS libraries with

available data sets of accessible DNA elements.

To confirm that NASs derive from stretches of highly remod-

eled chromatin, we performed qPCR-based DNaseI assays

(McArthur et al., 2001). We measured the sensitivity to DNaseI

treatment of a cohort of 51 DNA regions from CD34+ and control

libraries (representative of both data sets; see Table S2). The vali-

dation was performed on CD34+ cells derived from different

donors, providing indications of the biological variability of the

accessible DNA elements identified (see Discussion). Chro-

matin-derived NASs were found to be more sensitive to mild

DNaseI treatment, if compared to control (Figure 2A). In fact,

80.3% of the NASs tested by real-time PCR (41/51) showed

a marked sensitivity to DNaseI, either equivalent or higher to

several positive control regions (Table S2; see in Figure 2A the

CD34 gene-associated NASs found highly accessible in CD34+

and not in CD34� cells). Overall, the NAS and control populations

were found to be significantly different, comparing average

sensitivity to DNaseI degradation (t test for independent

samples, unequal variance, t = �9.64, f.d. = 90; p < < 0.01; Fig-

ure 2A), and in a receiving operator curve analysis (ROC

analysis: area under the curve = 0.905; Z = 13.86; p < < 0.01;

Figure 2B). Together, these analyses demonstrate the high

sensitivity and specificity of the NA-Seq libraries generated in

primary cells.

We further characterized the structural properties of NASs

using principal component analysis. Three discrete groups

were partitioned according to their quantitative accessibility to

DNaseI (Figure 2C). These results extend to a genome-wide

analysis the demonstration of the existence of differential

degrees of accessibility, as previously seen at a single-locus

level (McArthur et al., 2001).

Next, we compared CD34+ and CD34� NASs with previously

published data sets. NA-Seq can identify DHSs shared with

T cells (Boyle et al., 2008a), as well as FAIRE sites in fibroblasts

(genomic elements accessible in formaldehyde crosslinked

chromatin) (Giresi et al., 2007). NASs are also enriched in tran-

scription start sites (TSSs), expected to be accessible to exoge-

nous nucleases (see Supplemental Results).

Our validation is therefore consistent with the expectation that

NASs in our assay preferentially mark accessible loci in the

genome.
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NASs Are Associated with Specific Histone PTMs
Reflecting Their Functional Activity and Developmental
Potential
To correlate accessibility with histone PTMs, we selected z90

CD34+ NASs representative of promoters and nonpromoter

regions, and analyzed them by quantitative chromatin immuno-

precipitation (qChIP) for the presence of the nine best-character-

ized PTMs (Consortium et al., 2007). To overcome the limitation

in cell number a myeloid progenitor cell line (U937) was used,

and the accessibility of the selected NASs was experimentally

verified by DNaseI qPCR.

Promoter regions and hypersensitivity to DNaseI tend to group

together in an unsupervised clustering analysis, and are associ-

ated with di- and trimethylation of H3 lysine 4 (H3K4me2-me3),

acetylated H3 (H3K9Ac and H3panAc), and dimethylation of

H3 lysine 79 (Figure 3A). This pattern of PTMs (termed a ‘‘euchro-

matic island’’) was previously reported as a determinant for Myc

binding to its target genes (Guccione et al., 2006); our results

now extend this signature to the whole spectrum of NAS-con-

taining promoters. We also noticed a small cluster of CD34+

NASs that was targeted by more repressive marks in U937 cells,

resulting in a strongly reduced accessibility to DNaseI (Figure 3A,

cluster 3; Figure 3D).

Furthermore, a subset of intergenic NASs simultaneously

scored positive for euchromatic marks (H3/H4ac and H3K4me),

accessibility to DnaseI, and the heterochromatic mark H3K27me3

(Figure 3A). In ES cells, the coexistence of activating and repres-

sing marks was associated with a group of developmentally regu-

lated genes, as well as the large domain containing the HoxA

genes, named ‘‘bivalent’’ (Bernstein et al., 2006). Figure 3B shows

an example of colocalization between H3K4me2 and H3K27me3

at an NAS in the intragenic region of the Pak3 gene, observed

also in resting T cells (Figure 3C), in agreement with a report

showing co-occurrence of the bivalent mark in additional cell

types other than ES cells (Barski et al., 2007).

To identify developmentally relevant genes, we generated gene

expression profiles in CD34+ and CD34� cells, and selected

NAS-associated genes with low expression levels in CD34+ cells

and either strongly upregulated or further silenced in CD34� cells

(i.e., poised for activation). Interestingly, these include >30% Pol-

ycomb target genes and bivalent promoters from ES cells

(Figure S2). H3K4me3, H3K4me2, H3K27me3, and RNA poly-

merase II were then immunoprecipitated from CD34+ cells, and

the state of seven of those promoters was analyzed (Figure 3E).

We simultaneously found H3K4me3 and H3K27me3 at 2/7

promoters (validated by sequential ChIP; data not shown), indi-

cating that accessible promoters of genes expressed at a low

level include, but are not limited to, bivalent promoters. Interest-

ingly, 7/7 promoters showed high levels of H3K4me2. In several

cases, we noticed a pattern of H3K4me2 high/H3K4me3 low

that is reminiscent of the H3K4me2+/H3K4me3� pattern previ-

ously found at lineage-specific gene promoters poised for activa-

tion, and associated with multilineage commitment in murine

hematopoietic progenitors (Orford et al., 2008). This finding lends

support to the hypothesis that similar subsets of genes may exist

in primary human hematopoietic progenitors.

Together, our data clearly correlate distinct combinatorial

patterns of histone PTMs with a structural and functional feature

of the genome: its accessibility.
r Inc.
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Figure 2. NASs Are Sites of Increased Genomic Accessibility in Vivo

(A) DNase PCR assay: CD34+ and CD34� cell nuclei were digested with DNaseI or left untreated, and the indicated genomic regions were amplified by PCR. Acces-

sibility represents theamountofamplicons recovered.Left:barplot showingone DnaseI-resistant locus (N2),one intergenicCD34+NAS (N87), andaCD34+NASwithin

the CD34 gene. Error bars represent the standard deviations of three independent experiments. Right: kernel density plot showing the comparison of 51 NASs from

CD34+ NASs and 51 sites from control libraries (t test for independent samples, unequal variance, p < < 0.01). One representative experiment (out of three) is shown.

(B) ROC plot of the data in (A) (right panel).

(C) Principal component analysis of data in (A) (right). Partitioning used two components (accessibility at high and low doses). Data points are summarized in the inset

(D1, high sensitivity; D2, medium sensitivity; D3, low sensitivity). Known regulatory elements in the groups are shown in the right panels: HS of the TCRa LCR, and HS1

and HS2 from the b-globin LCR. N2 was used as a calibrator.
Developmental Cell 16, 466–481, March 17, 2009 ª2009 Elsevier Inc. 469
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Figure 3. NASs Are Associated with Euchromatic Histone Marks

(A) Clustering analysis of histone marks (boxes A and B) at 90 NASs identified in the CD34+-derived library (boxes 1, 2, and 3). The histogram shows NAS acces-

sibility measured in U937 cells (P/R-9 clone) by DNase PCR. ChIPs in P/R-9 cells were performed using the nine antibodies indicated, and normalized to the

nonimmunoprecipitated DNA and to the relative H3 occupancy. The yellow and blue labels indicate whether NASs are promoters or not. The color-coded

heat map represents recoveries of DNA for each NAS in each qChIP.

(B) NASs located in the intragenic region of PAK3, associated with H3K4me2 and H3K27me3 PTMs, show moderate accessibility in the DNaseI PCR assay. NCL

and the HoxB8 promoter served as positive controls for qChIPs.

(C) UCSC genome browser view of the PAK3 NAS in mature CD4+ lymphocytes (Barski et al., 2007).

(D) Colocalization of H3K27me3 and H3K9me3 impairs DNaseI accessibility in P/R-9 cells of NAS number 1899, accessible in CD34+ cells. Error bars represent

standard deviations of three independent experiments.

(E) NASs at promoters of poised genes in CD34+ cells are associated with H3K4me2. In the left panel, qChIP results for the indicated PTMs are reported for the

promoter regions of seven genes (HRK, NLF1, HLF, CRhBP, FLJ14213, pPP1R16B, and NPR3, from left to right) associated with NASs in CD34+ cells poorly

expressed, overlapping PcG target (Bracken et al., 2006) bivalent promoters in human embryonic stem cells (hES) (Pan et al., 2007), and regulated in CD34�
cells. NCL (H3K4me3+/H3K27me3�) and N2 (H3K4me3�/H3K27me3+) served as controls (right panel). Note the low levels of PolII associated with these

promoters, consistent with their low levels of expression in CD34+ cells.
470 Developmental Cell 16, 466–481, March 17, 2009 ª2009 Elsevier Inc.
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NA-Seq Identifies Elements Involved in Tissue-Specific
Gene Regulation and Expression
To evaluate the hypothesis that NA-Seq may be an appropriate

methodology to identify functional regulatory elements, we per-

formed (1) a bioinformatic and experimental evaluation of puta-

tive enhancer function by nonpromoter NASs, and (2) a correla-

tive analysis of gene expression state with accessibility of its

cognate locus.

We first made use of a data set of validated mammalian

enhancers (http://enhancer.lbl.gov; Visel et al., 2007). We found

119/446 enhancers (26.7%) in our data set, and thus predicted to

be functional in hematopoietic cells. We then identified a large

subset of extremely evolutionarily conserved DNA stretches

overlapping NASs, and among those, 123 out of 481 ultracon-

served elements (UCEs), large-sized regions with the highest

degree of conservation across species (Bejerano et al., 2004).

To investigate their functional potential in hematopoietic cells,

we cloned a subset of these regions upstream of the firefly lucif-

erase gene driven by the SV40 minimal promoter, and assayed

reporter activity in two hematopoietic cell lines. Of the tested

regions, 5/7 (71.4%) had a considerably increased luciferase

gene activity, whereas 2/2 UCEs not present in our data set of

NASs failed to transactivate (Figure 4A).

Additionally, we found that 6096 NASs colocalize with distal

H3K4me1 peaks recently described in HSPCs (Cui et al.,

2009). Peaks of H3K4me1 are a distinctive feature of enhancers

(Heintzman et al., 2007). Remarkably, 4434 NASs (72.6%) over-

lapping with H3K4me1 showed high sequence conservation

across species, including the HS2 enhancer of the globin LCR

and a distal enhancer of the PU.1 gene (Steidl et al., 2007).

To determine whether NASs identify tissue-specific elements,

we checked the transcriptional state of those genes associated

with NASs at their promoters. Promoter accessibility correlates

with higher transcription than the average expression of all

detectable transcripts in both cell types (p < < 0.01; Figure 4B),

confirming that transcriptionally active regions are enriched

in the NAS libraries. A similar comparison starting from the

naked DNA-derived library did not show significant differences

(Figure 4C).

To establish a quantitative relationship between NASs and

gene expression, we subdivided all genes transcribed in

CD34+ cells (or CD34� cells; data not shown) into ten groups,

according to their expression level. Groups of genes with the

highest level of expression (tenth decile) presented an NAS in

their promoter area more frequently than moderately transcribed

genes (seventh decile; Figure 4D). In all cases, we observed

enrichment in NASs in the promoter region of expressed genes

when compared with the naked DNA-derived library, even for

poorly expressed genes (second decile; Figure 4D). The average

increase in expression observed for NAS-associated genes in

hematopoietic cells is cell-type specific, because in unrelated

cell types (for which the accessibility state is unknown), we could

detect a much weaker (and not significant) increase in average

expression (Figure 4C).

Interestingly, those genes identified in CD34+ cells by an asso-

ciated NAS in their promoter regions were transcribed at the

highest rate in CD34� cells (Figures 4B and 4C). Furthermore,

genes expressed at a very low level in CD34+ cells are specifi-

cally regulated during differentiation, and include Polycomb
Develo
target genes and genes involved in lymphoid development and

function, and hence not linked to myeloid differentiation

(Figure S2). Together with the observation that genes not actively

elongating may be marked by H3K4me3 (Guenther et al., 2007),

our data support the view that genome accessibility is not only

a feature of active genes but also of genes poised for activation.

NASs Are Prevalent at Intergenic Sites,
and Are Observed in Repetitive Elements
NASs are significantly located in ‘‘intergenic’’ sites by using the

annotation settings previously employed by the ENCODE project

(c2 = 3371.4, 2 d.f., 59.7%, CD34+; 63.1%, CD34�; 54.6%,

naked; p < < 0.001; Figure 5A).

In line with their ascribed regulatory role (previous section),

intergenic NASs may also correspond to unannotated gene

promoters, sites of noncoding transcription, and repeated DNA

sequences. Given the much higher fraction of nonaccessible

repetitive elements in the genome (e.g., centromeric repeats),

the higher accessibility of a limited subset of repeated DNA

elements may be indicative of a functional role. Independently of

the RE used, the repeated sequences overrepresented in our

libraries (35%–38%; Table S1) are almost exclusively composed

of transposon repeats and Alu repeats (Figure 5B). We also found

enrichment for satellite repeats, by weighted analysis of their

abundance (not shown). Notably, only unmethylated repeats can

be cleaved by the DNA methylation-sensitive HpaII, which usually

targets nucleosome-free CpG islands (Tazi and Bird, 1990).

The role of Alu repeats in gene regulation is becoming increas-

ingly more clear (Chen et al., 2008a). Alu elements carrying the

DR2 consensus sequence (RARE) can bind RARa in vivo (Laper-

riere et al., 2007). Accordingly, NASs at these RARE-containing

Alu repeats can bind the nuclear receptor RARa (Figure S3).

Unlike transposons (Bernstein et al., 2006), accessible RARE-

containing Alu repeats are found associated with developmen-

tally regulated and lineage-specific genes (e.g., Figure 5C).

Taken together, our data suggest that repeated elements are

not accessible by chance, and support a role for Alu repeats in

regulating the activity of nuclear receptors.

Accessibility Predicts Transcription Factor Occupancy
We hypothesized that the identification of NASs could be a predic-

tive tool in the analysis of TF binding to cis-regulatory elements. As

a test case, we exploited the existence of a previously reported

genome-wide study of binding sites of the insulator-binding

protein CTCF (Kim et al., 2007). Functional CTCF binding sites

are shared in 67% of cases among primary fibroblasts (IMR90

cells) and a hematopoietic cell line (Kim et al., 2007). We searched

for CTCF binding sites that colocalize with NASs identified in

CD34+ or CD34� cells and found a highly significant overlap

between these two data sets (total nonredundant sites: 5098,

p < < 0.01; Figure 6A), suggesting an enrichment of CTCF binding

sites in our NAS libraries, as previously found at DHSs (Xi et al.,

2007). To avoid the limitation in cell number of primary cells, we

confirmed the binding in vivo of CTCF by qChIP in KG1 (CD34+)

and U937 (CD34�) cell lines. All (27/27) of the predicted CTCF

binding sites scored positively in qChIP, providing strong

evidence for all 5098 identified NASs being associated with func-

tional CTCF binding sites (Figure 6B; data not shown). For

example, CTCF binds at the upstream region of both HoxA7 and
pmental Cell 16, 466–481, March 17, 2009 ª2009 Elsevier Inc. 471
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Figure 4. NASs Correlate with Active Gene Expression

(A) Reporter constructs containing conserved noncoding sequences (CNSs) overlapping with CD34+ NASs were used for luciferase assays in KG1a cells. HS2 is

the b-globin LCR enhancer (NASs in CD34+) used as positive control; an enhancer-free vector (pGL3) and nonaccessible CNSs served as negative controls.

Asterisks mark CNSs/NASs that scored positive also in 32D murine hematopoietic progenitor cells.

(B) The 2361 transcripts occurring near NASs in CD34+ and CD34� cells (<2.5 kb in either direction from the TSS) had an average expression higher than the full

set of transcripts (Mann-Whitney test; p < < 0.01).

(C) The average expression level of genes associated with NASs—within the indicated data set—was normalized by the average expression value of all other genes,

and this ratio compared with the relative ratios in nonrelated cell-type expression profiles (from the GEO database). Naked DNA is provided as negative control;

asterisks label significantly different values (ANOVA; p < 0.05). The highest average is highlighted with a red line, the following highest average with a gray line.

(D) Total number of NASs and their distribution surrounding the promoter for genes expressed in CD34+ cells was shown according to the decile of expression in

the different panels (tenth decile being the highest). For each decile, the average normalized level is shown above the relative panel.
472 Developmental Cell 16, 466–481, March 17, 2009 ª2009 Elsevier Inc.
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HoxA9 genes in correspondence with NASs in CD34+ cells, and in

several cell lines in correspondence with DHSs (Figure S4B).

Strikingly, the presence of NASs provides a solid prediction of

cell-type-specific CTCF binding. We found 2316 CTCF binding

sites predicted by computational analysis though not bound by

CTCF in IMR90 cells (Figure 6A) (Kim et al., 2007), and located

within NASs identified in CD34+ (1345) and CD34� (1428) cells.

qChIP analysis confirmed functional binding of CTCF in 19/22

candidate sites (86.3%; Figure 6B). The binding of CTCF to

a selection of putative binding sites was also confirmed in

primary CD34+ cells (Figure 6C). In contrast, the sole bioinfor-

matic prediction resulted in CTCF binding in only two out of

ten cases (20%).

Among tissue-specific CTCF binding sites, potential insulator

sequences are found, such as region 46 (Figures 6B and 6C;

showing CTCF binding in KG1a, U937, and CD34+ cells) that is

most likely insulating thecodingsequenceof the TFHlf (downregu-

lated in CD34� cells) from the transactivation driven by transcrip-

tion of a myeloid-specific gene, Mmd (upregulated in CD34� cells;

Figure 6C).

To identify an independent example of TF occupancy concor-

dant with the detection of NASs, we examined a subset of

neuronal-specific genes showing NASs in their promoters but

a low level of expression in CD34+ cells. Neuronal genes are

negatively regulated in nonneuronal cells through the zinc finger

TF NRSF (Ballas et al., 2005). We found that 232/2217 (10.4%)

CD34+ NASs, but not control sites, overlap with a previously

published data set of NRSF target promoters, obtained in Jurkat

T cell leukemia cells (Johnson et al., 2007). These NASs act

presumably as silencers in the hematopoietic compartment,

and qChIP analyses in KG1a and CD34+ cells confirmed NRSF

binding to 11/12 (91.2%) promoter regions (Figure 6D). In

contrast, we found evidence of NRSF binding in only 1 out of 15

cases (6.7%) when bioinformatic prediction was used as the

sole predictor of NRSF binding to regions not containing NASs

(Figure 6E). Intriguingly, a known NRSF target gene (Agpat5)

showing higher NRSF binding in CD34+ cells than in cell lines

(Figure 6E; number 7), is transcribed at higher levels than other

NRSF targets in hematopoietic cells, and is induced in CD34�
cells, suggesting a role in myeloid differentiation (Figure S5).

Taken together, these results show that one structural feature

of the genome (accessibility) provides a global picture of protein

binding for several classes of transcription factors (including

repressors).

CD34+ NAS Libraries Are Enriched for Transcription
Factor Binding Sites
We searched for TFBS occurrence in CD34+ and CD34� chro-

matin libraries. We found enrichment of TFBSs within ±600 bp

of each NAS (Figure S6A). The overall density of TFBSs in

CD34+ NASs was higher than in CD34� cells, supporting the

idea of a differentially accessible epigenome in cells endowed

with multilineage potential (CD34+) relative to the committed

state (CD34�; Figure 6F).

Analysis of individual TFBSs revealed a specific enrichment of

binding sites for certain factors inCD34+cells (FigureS6B).Among

those TFBSs enriched in CD34+ cells we found AP-2, which plays

a role in the maintenance of an undifferentiated state in mammary

progenitors, and therefore could play a similar role in hematopoi-
Develo
etic cells (Jäger et al., 2003). In some cases, TFBSs were enriched

in both cell types, suggesting a broader role in hematopoietic cells,

such as the transcription factor NF-Y (Table S5). To confirm that

NF-Y is active in hematopoietic cells, we made a bioinformatic

prediction of NF-Y binding in our NAS libraries and could detect

a strong enrichment for NF-Y binding in all the loci we tested by

qChIP in KG1 or U937 cells (7/7; Figure S7). In the absence of

accessibility, 0/6 predicted binding sites showed enrichment for

NF-Y, further confirming and extending the validity of our predic-

tive approach to forecast DNA-binding proteins that may act as

regulators of cellular differentiation (Figure S7).

Global Changes in Chromatin Accessibility Occur during
Myeloid Differentiation
Hematopoietic cells display gross differences in their nuclear

structure and chromatin compaction at each step of maturation,

highlighting the occurrence of global changes in chromatin orga-

nization during differentiation (Löffler et al., 2004).

We therefore decided to look at the dynamics of genome

accessibility in CD34+ cells triggered to myeloid differentiation.

In our gene expression profile, maturing CD34� cells express

a decreased number of genes compared to CD34+ cells, though

at a higher extent (Figure S8). Importantly, CD34� cells showed

strongly decreased accessible promoter regions compared to

CD34+ cells (Figure 5A; c2 = 878.9, 2 d.f., p < < 0.001), and like-

wise the accessibility of the annotated CpG islands (CD34+ cells:

1203/2492, 48.3%; CD34� cells: 869/2492, 34.9%; data not

shown). This analysis suggests that CD34+ cells present a broad

subset of genes awaiting full activation.

To identify genomic regions showing differential accessibility

between CD34+ and CD34� cells, we compared all paired

frequencies of NA-Seq libraries with high statistical confidence

(p < 0.001) using a genomic window of 1.2 Mb that allowed us

to overcome potential limitations imposed by the differential

degree of sequencing saturation (Figure 1C; see statistical

procedures in Supplemental Experimental Procedures). To

locate these domains precisely, we set a 10 kb sliding window

approach and 307 regions were found undergoing statistically

significant changes in accessibility (Figure S9; p < 0.001) ranging

from 510 kb up to 5 Mb and representing 10.7% of the total

genome (see Figure 7A for representative regions; Tables S8

and S9). Of these regions, 191 showed higher accessibility in

CD34+ cells, and 116 were found more accessible in CD34�
cells. No significant changes were found comparing two runs

from the same NAS library (Figure S10). The smaller number of

accessible domains found in CD34� cells suggests that cells

being committed to a differentiated state along one specific

lineage restrict their chromatin accessibility globally, consistent

with our results discussed above (Figure S8; Figure 5A).

Next, we constructed a map by weighted differences of chro-

mosomal distribution of the domains accessible in CD34+ and

CD34� cells (Figure 7B). Intriguingly, these domains were non-

randomly distributed in the genome and most chromosomes

showed reduced accessibility during differentiation, with the rele-

vant exceptions of chromosomes 1, 9, 15, 17, and 19 (Figure 7B).

To characterize these loci, we analyzed whether the genes that

are contained within the differentially accessible domains (2047

in CD34+ cells and 737 in CD34� cells) can be linked functionally

by means of Gene Ontology categories (GO) and ingenuity
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pathway analysis (IPA). Genes contained in CD34+ open

domains are predicted to be mainly involved in metabolic activity,

but also in T cell and death receptor signaling (Figure S11). Genes

associated with open domains in CD34� cells were, instead,

strongly enriched (p < 0.01) for nuclear receptor signaling and

retinoid metabolism (Figure S11). Consistently, these genes

encode for different molecular classes of proteins: CD34+-

accessible domains contain genes mainly involved in signal

transduction, whereas genes included in CD34� open domains

were significantly enriched for TFs (Figure 7C).

To explore the possibility that large-scale changes in genome

accessibility correlate with clustered gene activation (known to

occur during hematopoietic differentiation; Kosak et al., 2007),

we focused on chromosome 19 (chr.19), which showed a marked

increase in accessibility during differentiation.

CD34+- and CD34�-derived NAS libraries (using NlaIII as the

nuclease probe) were hybridized on a high-resolution DNA

array representing the entire nonrepetitive fraction of chr.19.

Despite the different technology, we retrieved also in this

case a higher fraction of accessible regions in CD34� cells

(e.g., Figure 7A, right). Next, we identified clusters of coregu-

lated genes. Most of these coregulated regions containing three

or more genes were found upregulated in CD34� cells (Table

S10). Importantly, one out of four gene clusters coregulated in

chr.19 was part of one of the chromatin domains identified as

more accessible in CD34� cells (Figure 7D). None of the core-

gulated genes (Dpy19, Ankrd27, and Nutd19) was previously re-

ported as involved in myeloid differentiation. Additionally, we

found in this accessible domain genes relevant to cell-cycle

progression (Ccne1) and hematopoietic development, such as

Cebpa and Cebpg, encoding TFs involved in granulocytic

differentiation and deregulated in acute myeloid leukemias

(Rosenbauer and Tenen, 2007).

To investigate whether the newly identified domain is coordi-

nately regulated in other cellular contexts, we used an estab-

lished model of myeloid differentiation of a leukemia cell line.

NB4 cells express the leukemia-associated fusion protein

PML/RARa: retinoic acid (RA) treatment leads to PML/RARa

degradation, triggering terminal differentiation (Di Croce et al.,

2002). Analysis of expression levels of five genes located in the

domain revealed that three of them were induced following

RA treatment (Figure 7D). Therefore, the analysis of one open

domain (1) identifies a gene cluster coregulated during differen-

tiation of different cell types; (2) suggests that coordinate

opening of chromatin and clustered gene activation may occur

at several locations during hematopoietic differentiation; and

(3) provides a roadmap of genomic ‘‘hot spots’’ to be further

investigated functionally.

Collectively, our results show that NA-Seq is suitable for

uncovering large-scale changes in accessibility and that—

indeed—global changes in chromosomal organization are

a frequent event observed during myeloid differentiation (and

probably other biological processes).
Develo
DISCUSSION

Several novel findings emerge from the present work: (1) the

feasibility of profiling the nuclease-accessible epigenome

(including but not limited to ‘‘hypersensitive sites’’) of both trans-

formed and primary cells using REs; (2) the use of information on

accessibility to derive notions on the regulatory circuitry imposed

on individual loci, and on the genome more broadly; (3) the asso-

ciation between distinct patterns of histone PTMs and DNA

accessibility; (4) the discovery—and most notably, their location

in the genome—of large-scale transitions in the accessibility of

chromosomal domains during cell-fate specification in hemato-

poiesis; and (5) the relevance of these transitions in imposing

spatially constrained patterns of gene regulation during normal

differentiation and in leukemic cells.

Mapping Chromatin Accessibility Using NA-Seq Offers
a Window on Genome Regulatory Circuitry
We propose that chromatin accessibility to exogenous nucle-

ases offers a synthetic view of nuclear structure, and highlights

genomic regions where regulatory processes take place. Acces-

sibility mapping is uniquely poised to present ‘‘snapshots’’ of the

regulatory DNA in a given cell, at a given stage, in a sensitive and

cost-effective way.

The use of REs abates the background noise frequently found

in high-throughput studies using nonspecific nucleases (Boyle

et al., 2008a) (Crawford et al., 2004). Sticky-end-mediated iden-

tification of NASs allows the use primary cells (available in limited

number).

We believe that NA-Seq should be considered as a specific

way of looking at chromatin rather than an alternative to

DNase-Seq (see also Supplemental Discussion). In fact, NA-

Seq identifies elements with no bias for gene promoters (see

Supplemental Results), presumably owing to its high signal-to-

noise ratio, whereas DHSs are preferentially associated with

promoter regions (Boyle et al., 2008b; Crawford et al., 2006).

Remarkably, functional enhancers tend to lie at considerable

distances from promoters (Carroll et al., 2006).

Nuclease sensitivity provides a continuous pattern of digestion

and a measurement of relative, rather than absolute, sensitivity

(Hebbes et al., 1994; Weintraub and Groudine, 1976). DHSs

represent the highest peak of this continuous state, but regions

of extended nuclease sensitivity related to the presence of

regulatory elements and of functional events (transcription, in

the first place) have been described in most of the systematic

studies of single genomic regions reported so far (Hebbes

et al., 1994; Lawson et al., 1982). In this study, we have confirmed

and extended on a genome-wide scale the original observation

that these areas are optimally suited to RE analysis.

Our initial results are consistent with the view that nuclease-

accessible elements are in most cases functional elements,

because several NASs (though located in intergenic regions)

may behave as enhancer regions, or bind the CTCF ‘‘insulating’’
Figure 5. Distribution of NASs in CD34+ and CD34� Cells

(A) Relative enrichment for NASs within each library was calculated by c2 distributions.

(B) Classes of repeats accessible in CD34+ and CD34� cells.

(C) UCSC view of clustered Alu repeats containing the retinoic acid responsive element (RARE; orange vertical lines) close to genes involved in different molecular

functions. NASs containing Alu repeats in CD34+ and CD34� cells are also indicated.
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factor. We have shown using several examples, including canon-

ical TFs (NF-Y), insulator-binding factors (CTCF), and transcrip-

tional repressors (NRSF), that in the vast majority of cases

analyzed, accessibility of chromatin is coupled to actual binding

of TFs to DNA. We propose therefore that for a characterization

of any cell state, in terms of occupancy of regulatory DNA by TFs,

it is possible to achieve in one single test (accessibility) coupled

to DNA sequence analysis the visualization (with an excellent

approximation) of the entire pattern of DNA binding of TFs (the

‘‘regulome’’). The finding that the neuronal gene repressor

NRSF binds to NASs is of great interest (Figure 6D), confirming

on a genome-wide scale the finding that a few previously

analyzed NRSF binding sites are hypersensitive in cell types

other than neurons (Loo and Rine, 1994). It is possible that to

maintain stable repression of neuronal genes in loci where

heterochromatin formation (although more stable and less

expensive in terms of energy) would affect surrounding genes,

cells have evolved mechanisms to control their expression in

a manner that is compatible with maintenance of an accessible

state. Furthermore, we found that also a specific family of acces-

sible repeats (Alu) can bind TFs such as RARa. The limited

number of accessible and unmethylated repeated elements

discovered using NA-Seq might suggest a functional role in

genome regulation.

One important nuclear function (gene expression) has been

clearly linked to the presence of accessible chromatin. We

have confirmed that transcriptionally active regions (like gene

promoters) are being selected in our assay, in a tissue-specific

manner (Figure 4C; see examples in Figure S12).

Importantly, weobserved quantitative differences in the number

of promoters accessible in CD34+ and CD34� cells. More imma-

ture CD34+ cells—endowed with multilineage potential—have

a statistically significant higher number of accessible promoters

(including CpG islands) than in vitro differentiated myeloid cells.

Cell-type-specific gene ontology analyses reveal that accessible

promoters in CD34+ cells are more consistently associated

with developmental pathways and with hematopoiesis than in

CD34� cells (Figure S2); these observations might be related to

the relevance of instructive signals for the ‘‘multipotent’’ CD34+

cells to start differentiation along specific lineages, whereas

CD34� cells (which are restricted in their fate) need to execute

selected transcriptional programs.

One possible explanation for the higher number of accessible

promoters in less differentiated cells is the coexistence of both

activating (H3K4me2/3) and repressive histone marks on

specific gene promoters (H3K27me3). This ‘‘bivalent’’ signature

in ES cells is believed to maintain chromatin in a poised state
Develo
for activation (Bernstein et al., 2006). Bivalent promoters exist

in CD34+ cells (Cui et al., 2009), and we show that they are

accessible to nucleases. We also showed that genes previously

associated with lineage commitment in mouse multipotent

progenitors bearing the histone PTMs H3K4me2+/H3K4me3�
(Orford et al., 2008) may exist and be accessible in HSPCs

(Figure 3D).

Notably, we report that also NAS nonoverlapping promoters

can be simultaneously associated with ‘‘bivalent’’ histone

PTMs, in agreement with a large study of histone PTMs in

CD4+ cells, where a number of enhancers can be concurrently

associated with DHSs, high levels of expression of their associ-

ated genes, and the repressive histone mark H3K27me3 (Wang

et al., 2008). Indeed, TF binding (e.g., CTCF) and H3K27me3

were not necessarily mutually exclusive (Chen et al., 2008b).

One potential explanation for these data is that one single repres-

sive modification (like the Polycomb-dependent H3K27me3) may

not be sufficient to counteract chromatin accessibility; indeed,

we observed greatly reduced accessibility in the cases of over-

lapping H3K27me3 and H3K9me3 (Figures 3A and 3D).

Cellular Differentiation Is Associated with Large-Scale
Transitions in Genome Accessibility
Higher-order chromatin structures and their dynamics during the

execution of various nuclear processes are poorly characterized,

due to the relative lack of appropriate methods (Fraser and Bick-

more, 2007). To this end, the ability of NA-Seq for measuring

differential accessibility is of particular value.

NA-Seq allowed us to define specific chromosomal domains

of differential accessibility between CD34+ cells undergoing

myeloid-lineage commitment (Figure S9). Several pieces of

evidences in our study suggest that the structural organization

of the genome within ‘‘blocks’’ reflects their developmental role

and potential (see also Figure S2). Some of the differentially

accessible domains identified in this study may be linked to

clustered gene regulation, usually observed in hematopoietic

differentiation (Kosak et al., 2007). However, our data suggest

that large-scale changes may not solely reflect clustered gene

activation. Other chromosomal dynamics may be dictating

changes in nuclear architecture over time: multistep mecha-

nisms regulating the interactions between distinct chromatin

loci that occur prior to gene activation (Spilianakis et al.,

2005), and additional events other than gene expression

such as DNA replication (Farkash-Amar et al., 2008) and repo-

sitioning among chromosomal territories (Takizawa et al.,

2008).
Figure 6. Different Classes of Transcription Factors Bind NASs In Vivo

(A) Venn diagram showing the overlap between CTCF binding sites in human fibroblast IMR90 cells (light blue), CD34+ and CD34� NASs (orange), and in silico

predicted CTCF motifs (blue). The number of actual CD34+ and CD34� NASs containing a CTCF site is reported in the accompanying table.

(B) qChIP analysis of CTCF occupancy in KG1a cells. Vertical dashed lines separate the indicated groups. Enrichments were normalized to the levels of input

chromatin, before immunoprecipitation. ChIP with an antibody against hemagglutinin (HA) served as negative control.

(C) A selection of CTCF sites from the second and third groups was validated by ChIP in primary CD34+ cells.

(D) Schematic representation of a candidate CD34+/CD34� tissue-specific insulator (number 46). The heat map shows the normalized mRNA levels for HLF and

MMD during myeloid differentiation.

(E) Promoter regions of neuronal genes validated by qChIP in KG1a and primary CD34+ cells for NRSF binding. The vertical dashed line separates the indicated

groups. N2 and HA served as negative controls. Error bars in KG1a and CD34+ cells represent standard deviations in three and two independent ChIP exper-

iments, respectively.

(F) Enrichment of TFBSs in CD34+ or CD34� NASs using a positional weight matrix. Note the higher density of TFBSs observed in CD34+ cells (arrow).
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Figure 7. Characterization of Differentially Accessible Chromatin Domains

(A) (Top) Schematic representation of the 1.2 Mb window scanning in 10 kb steps along each chromosome the frequency of NlaIII NASs in CD34+ and CD34�
cells (NlaIII distribution along the genome is nonbiased). The red smoothed track is the unifying p value resulting from the c2 test. Below, a UCSC genome browser

view of a region of increased accessibility in CD34+ cells (left) in chr.21, and a region showing increased accessibility in CD34� cells (right) in chr.19. CD34+ NASs

(green) and CD34� NASs (blue) are reported. Note in the 300 kb inset that the TSS of each gene is accessible in both cell types. In the right panel, we also report

the DNA microarray hybridization of independent CD34+ and CD34� NAS libraries (NAS array, dark green and violet track), showing patterns of accessibility

consistent with NA-Seq results.

(B) Chromosomal distribution of regions with differential accessibility between CD34+ and CD34� cells. Weighted difference of the number of accessible regions

per chromosome at p < 0.01. Chromosomes with a higher number of regions more accessible in CD34+ versus CD34� cells are ranked and then plotted with

a positive value on the y axis. The X chromosome was not included in the analysis.

(C) Top categories (vertical axis) obtained using molecular function annotation of DAVID for genes present in differentially accessible chromatin domains present

in CD34+/CD34� cells. The horizontal axis reports the p value.
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NA-Seq as a Tool to Study Epigenomic Regulation
in Development and Disease
From these studies, we conclude that mapping chromatin

accessibility constitutes a fundamental tool for the study of the

epigenome, and will help to tackle several unresolved issues.

One important consideration to account for when studying the

epigenome of human primary cells is that, in principle, these cells

may be heterogeneous between donors. Although our own study

does not directly address this point, we note that the genome-

wide accessibility landscape observed during differentiation of

CD34+ cells is unlikely to change significantly among individuals

because of the stringent statistics employed. In addition, exper-

imental validation analyses performed on samples from indepen-

dent donors showed highly consistent results among samples.

Nevertheless, it remains possible that accessibility of specific

loci may differ among individuals, as a consequence of genetic

and epigenetic variations.

Global changes in gene expression accompanied by chromatin

reorganization must also occur in biological processes other than

cellular differentiation, including tumorigenesis. Our technology

could potentially be applied to the integration of regulated gene

transcription and chromatin dynamics also in response to other

stimuli, notably oncogene activation. The limited background of

NA-Seq experiments suggests that next-generation sequencing

approaches could in principle be used to compare chromatin

accessibility for several cell types in a single experiment. This

represents an important opportunity for epigenomic studies.

EXPERIMENTAL PROCEDURES

A detailed description of experimental methods and materials can be found in

Supplemental Data. All raw and processed data are being deposited at the

UCSC genome browser at http://genome.ucsc.edu and the Gene Expression

Omnibus at http://www.ncbi.nlm.nih.gov/geo (accession number GSE11092).

Crossanalyses of all data sets were conducted by using the UCSC table

browser, and can be readily accessed for use there.

Cell Culture

Primary cells were obtained from healthy donors (stimulated with G-CSF)

according to local ethical guidelines. A total of seven donors was used to

derive independent samples for the experiments. CD34+ cells were isolated

from leukaphereses using the EasySep magnetic positive selection procedure

(StemCell, Vancouver, BC, Canada). Cell purity was confirmed by FACS anal-

ysis, and revealed a purity of >98% (Figure S1A).

Preparation of NAS Libraries

Isolated nuclei were incubated at 37�C for 1 min, and then treated with 1/10th

v/v of NlaIII or HpaII (New England Biolabs, 50,000 units/ml) for 5 min at 37�C.

The reaction was stopped by addition of EDTA (25 mM). 454 adaptor oligonu-

cleotides were ligated to the DNA fragments and subjected to the 454 ampli-

fication/sequencing protocol (Margulies et al., 2005). The modified 454

adaptor sequences were prepared from the A and B adaptor sequences em-

ployed by standard 454 technology, but contained either an NlaIII or HpaII

recognition sequence on the A adaptor and a Sau3A or NlaIII recognition

sequence on the B adaptor.
Develo
Motif Search for Transcription Factor Binding Sites

The method to identify the location of TFBSs was employed previously (Levy

and Hannenhalli, 2002), using positional weight matrices found in TRANSFAC

7.4 (Matys et al., 2003).

DNaseI PCR and qChIP Assays

qPCR DNaseI analyses of NASs derived from the various libraries was carried

out as described (McArthur et al., 2001). qChIP was performed by standard

procedures: protocol details and primary antibodies are included in Supple-

mental Experimental Procedures. Genomic region primers used and outcomes

of DNaseI PCR, qChIP, and reporter assays are listed in Supplemental Tables.

Software

Pathway analysis was performed using Ingenuity Pathway Analysis software

(http://www.ingenuity.com). Molecular categories were analyzed using DAVID

(http://www.david.niaid.nih.gov).

SUPPLEMENTAL DATA

SupplementalData include21figures,11 tables,SupplementalResults,Supple-

mental Discussion, Supplemental Experimental Procedures, and Supplemental

References and can be found with this article online at http://www.cell.com/

developmental-cell/supplemental/S1534-5807(09)00076-8.
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