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Abstract

The data-driven identification of fuzzy rule-based classifiers for high-dimensional

problems is addressed. A binary decision-tree-based initialization of fuzzy classifiers is

proposed for the selection of the relevant features and effective initial partitioning of

the input domains of the fuzzy system. Fuzzy classifiers have more flexible decision

boundaries than decision trees (DTs) and can therefore be more parsimonious. Hence,

the decision tree initialized fuzzy classifier is reduced in an iterative scheme by means of

similarity-driven rule-reduction. To improve classification performance of the reduced

fuzzy system, a genetic algorithm with a multiobjective criterion searching for both

redundancy and accuracy is applied. The proposed approach is studied for (i) an arti-

ficial problem, (ii) the Wisconsin Breast Cancer classification problem, and (iii) a

summary of results is given for a set of well-known classification problems available

from the Internet: Iris, Ionosphere, Glass, Pima, and Wine data.
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1. Introduction

As a result of the increasing complexity and dimensionality of classification

problems, it becomes necessary to deal with structural issues of the identifi-

cation of classifier systems. Important aspects are the selection of the relevant

features and the determination effective initial partition of the input domain [1].
Moreover, when the classifier is identified as part of an expert system, the

linguistic interpretability is also an important aspect which must be taken into

account. The first two aspects are often approached by an exhaustive search

or educated guesses, while the interpretability aspect is often neglected. Only

recently people recognized the importance of all these aspects [2,3], which

makes the automatic data-based identification of classification systems that are

compact, interpretable and accurate, a challenging topic.

We propose fuzzy logic rule-based classifiers to handle the interpretability
aspect. Fuzzy logic helps to improve the interpretability of knowledge-based

classifiers through its semantics that provide insight in the classifier structure

and decision making process. Fuzzy logic, however, is not a guarantee for

interpretability, as was also recognized in [2,3]. Real effort must be made to

keep the resulting rule-base transparent [4–6]. For this purpose, two main

approaches are followed in the literature: (i) selection of a low number of input

variables in order to create a compact classifier [4,7], and (ii) construction of a

large set of possible rules by using all inputs, and subsequently use this set to
make a useful selection out of these rules [6,8]. Often genetic algorithms are

applied for this rule-selection. In both approaches, further model reduction

can obtained by generalization and/or similarity-driven set-reduction tech-

niques [3].

For high-dimensional classification problems, the initialization step of the

identification procedure of the fuzzy model becomes very significant. Common

initializations methods such as grid-type partitioning [8] and rule generation on

extrema initialization [6], result in complex and non-interpretable initial models
and the rule-base simplification and reduction step become computationally

demanding. To obtain compact initial fuzzy models fuzzy clustering algorithms

[4] or similar but less complex covariance-based initialization techniques [7]

were put forward, where the data is partitioned by ellipsoidal regions (multi-

variable membership functions). Normal fuzzy sets can then be obtained by an

orthogonal projection of the multivariable membership functions onto the

input–output domains. The projection of the ellipsoids results in hyperboxes in

the product space. The information loss at this step makes the model sub-
optimal resulting in a much worse performance than the initial model defined
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by multivariable membership functions. However, gaining linguistic inter-

pretability is the main advantage derived from this step.
To avoid problems associated with the described approaches, a crisp deci-

sion-tree-based initialization technique is proposed. This proposal is motivated

by the high performance and computational efficiency of the existing decision

tree generation methods that are effective in the selection of the relevant features

and initial partitioning of the input domain [9]. The application of decision and

regression trees for the initialization of fuzzy and neural models has been al-

ready investigated by some researcher. In [10] a decision tree was mapped into a

feedforward neural network. A variation of this method is given in [11] where
the decision tree was used for the input domains discretization only. This ap-

proach was extended with a model pruning method in [12]. In [13], the decision

tree was applied to initialize radial-basis functions for a neural network, because

feedforward neural networks are expensive to train, and the abundance of their

parameters may render the training procedure inefficient if the training set is

small. This method was based on the placement of radial-basis functions to

the center or the edge of the rectangular regions defined by the decision tree. The

complexity of the resulted model can be controlled by the complexity of
the decision tree [13] or by the number of the added basis functions [14]. As

radial-basis functions are functionally equivalent to fuzzy inference systems

[15,16], this approach is identical to LOLIMOT [17] that initializes fuzzy models

from regression trees. A similar approach is the simple fuzzification of the de-

cisions in the regression tree. This results in a fuzzy CARTmodel [18], where the

antecedent part of the fuzzy model is build up from fuzzy inequalities.

Our approach differs from the previously presented methods in two main

issues:
Initialization of the fuzzy system. Contrary to other methods, the crisp binary

decision tree is transformed into a fuzzy system without any approximation

error by a one-to-one mapping. This is possible because the proposed fuzzy

classifiers utilize trapezodial membership functions. The membership functions

are chosen during the initialization in such a way that they are equivalent to

crisp sets. The initial fuzzy system is therefore equivalent to a crisp rule-based

classifier, which is only an alternative representations of the decision tree.

No tuning of the fuzzy system. Most methods for transformation of DTs into
fuzzy systems deteriorate the classification. Usually a tuning step is necessary

to recover the accuracy. This often leads to increased complexity of the fuzzy

classifier due to the addition of rules and/or fuzzy sets to compensate for this

negative transformation effect. The proposed initialization approach does not

introduce an approximation error, such that there is no need to increase the

complexity of the fuzzy model.

DT-based classifiers perform a rectangular partitioning of the input space,

while fuzzy models generate non-axis parallel decision boundaries [19]. Hence,
the main advantage of rule-based fuzzy classifiers over crisp DTs is the greater
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flexibility of the decision boundaries. Therefore fuzzy classifiers can be more

parsimonious than DTs and one may conclude that the fuzzy classifiers, based
on the transformation of DTs only [17,18], will usually be more complex than

necessary. This suggest that the simple transformation of a DT into a fuzzy

model may be successfully followed by model-reduction steps to reduce the

model’s complexity and improve its interpretability. We propose rule-base

optimization and simplification steps for this purpose. Hence, to obtain a

parsimonious and interpretable fuzzy classifiers the following approach is

taken. First the initial fuzzy classifiers is obtained by an exact transformation

of the decision tree. Then we apply similarity-driven rule-base simplification
algorithm [3] and a genetic algorithm (GA)-based parameter optimization in an

iterative way to improve the classification accuracy and compactness, while

ensuring the transparency classifier.

In the sequel, we focus on the decision tree based initialization step. For the

second step, the classifier tuning, several notes are given while the details can be

found elsewhere [7]. Section 2 explains the structure of the fuzzy classifier. In

Section 3, the transformation of decision trees to fuzzy models is discussed. The

model simplification techniques are reviewed in Section 4. Section 5 considers
several classification problems. The proposed approach is studied for a two-

class artificial geometric problem, followed by the Wisconsin Breast Cancer

classification problem, and subsequently, a summary of results is given for a set

of well-known classification problems available from the Internet: Iris, Iono-

spehere, Glass, Pima, andWine data. Finally, conclusions are given in Section 6.

2. Structure of the fuzzy classifier

The fuzzy rule-based classifier consists of fuzzy rules that describe the Nc

classes in the given data set. The rule antecedent defines the operating region of

the rule in the n-dimensional feature space and the rule consequent is a crisp

(non-fuzzy) class label from the set gi 2 f1; 2; . . . ;Ncg:
Ri : If x1 is Ai1 and . . . xn is Ain then gi; i ¼ 1; . . . ;M ; ð1Þ

where M is the number of rules, n is the number of features,~xx ¼ ½x1; x2; . . . ; xn�T
is the input vector, gi is the ith rule output and Ai1; . . . ;Ain are the antecedent

fuzzy sets. The and connective is modeled by the product operator allowing for

interaction between the propositions in the antecedent. Hence, the degree of

activation of the ith rule is calculated as:

bið~xxÞ ¼
Yn
j¼1

AijðxjÞ; i ¼ 1; 2; . . . ;M : ð2Þ

The output of the classifier is determined by the winner takes all strategy, i.e.

the output is the class related to the consequent of the rule that has the highest

degree of activation:
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y ¼ g	i ; i	 ¼ arg max
16 i6M

; bi: ð3Þ

The certainty degree of the decision is given by the normalized degree of firing

of the rule:

CF ¼ bi	=
XM
i

bi: ð4Þ

3. Initialization of the fuzzy classifier by a decision tree

3.1. Construction of decision trees

Throughout the paper, binary decision trees are applied to create the initial
classifier rule-base. A binary decision tree consists of two type of nodes: (i)

internal nodes having two children and (ii) terminal nodes without children.

Each internal node is associated with a decision function to indicate which

node to visit next. Each terminal node represents the output of a given input

that leads to this node, i.e., in classification problems each terminal node

contains the label of the predicted class (Fig. 1).

The decision tree construction algorithms generate decision trees from a setD

of cases. Theses algorithms partition the data set D into subsets D1;D2; . . . ;DM

by a set of testsTwith mutually outcomes T1; T2; . . . ; TM , whereDi contains those

cases that have outcome Ti. The C4.5 [9] is such an binary decision tree gener-

ating algorithm and is applied in the following. For numeric (continuous) at-

tributes the attribute test is written as xj < t. The t-thresholds are selected based
on a splitting criterion. The default splitting criterion used by C4.5 is the gain

ratio, as an information-based measure that takes into account different

probabilities of the outcomes. The gain ratio is explained as follows. The re-

sidual uncertainty about the class to which a case in D belongs can be expressed
as:

InfoðDÞ ¼ 

XM
j¼1

pðD; jÞ � log2ðpðD; jÞÞ; ð5Þ

where pðD; jÞ denotes the proportion of classes in D that belong to the jth class.
The information gained by a test is strongly effected by the number of out-

comes and is maximal when there is one class in each subset Di:

GainðD; T Þ ¼ InfoðDÞ 

XM
i¼1

jDij
jDj � InfoðDiÞ; ð6Þ

where jDij denotes the cardinality of the Di data set.
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On the other hand, the potential information obtained by partitioning a set

of cases is based on knowing the subset Di, into which a case falls. This split
information is:

SplitðD; T Þ ¼ 

XM
i¼1

jDij
jDj � log2

jDij
jDj

� �
; ð7Þ

Fig. 1. Example of a binary decision tree: (a) Binary decision tree. (b) The decomposed features

space.
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which tends to increase with the number of outcomes of a test. The gain ratio

criterion assesses the desirability of a test as the ratio of its information gain to
its split information. The gain ratio of every possible test is determined, and

among those with at least average gain, the split with maximum gain ratio is

selected [9]. The recursive partition strategy results in trees that are consistent

with the training data. In practical applications, data contains often noise,

which leads generally to too complex trees. Hence, most decision tree con-

struction methods prune the initial tree by identifying sub-trees that contribute

only a little to the predictive accuracy by replacing these by a leaf.

3.2. Transformation of the decision tree into a fuzzy model

Binary trees can be represented in terms of crisp logical rules, where each

concept is represented by one disjunctive normal form, and where the ante-

cedent consists of a sequence of attribute value tests, e.g., xj < 5. As attributes

can appear more than once in a tree, the attribute value tests partitions the

input domains of the classifier into intervals. These intervals can be represented
by crisp characteristic sets, and the operating region of the rules are formulated

by and connective of these domains.

These crisp characteristic sets are the extremum case of trapezoidal fuzzy

membership functions, lij, that are often used to describe fuzzy sets AijðxjÞ:

lijðxj; a; b; c; dÞ ¼ max 0;min
x
 a
b
 a

; 1;
d 
 x
d 
 c

� �� �
: ð8Þ

Thus, decision trees can be represented by fuzzy rules with trapeziodal

membership functions. For example, the rectangular region of class 2, de-

fined by the depicted decision tree (Fig. 1) can be represented by the fuzzy
rule:

R1 : If x1 is A11 and x2 is A12 then g1 ¼ 2; ð9Þ

where A11 and A12 are defined as l11fx1; 2; 2; 5; 5g and l12fx2; 0; 0; 5; 5g, re-
spectively.

The previous considerations can be generalized to form an algorithm that

can be used for the transformation of decision trees into initial fuzzy systems.

1. i ¼ 1; . . . ;M .

2. Select a terminal node of the DT defines Di data set.

3. Collect the attribute value tests Ti related to the chosen terminal node.

4. The Ti attribute value tests define a hypercube that contains the Di data set

and can be used to formulate the ith rule and define the characteristic points

of the fuzzy sets.
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4. Reduction and tuning of the initialized fuzzy classifier

4.1. Motivation for the model reduction

The crisp decision tree is thus transformed into a crisp rule base with the

same structure as the fuzzy rule base that we have in mind. There are basically

two reasons for the transformation from the crisp decision tree/rule-base into a

fuzzy rule-base: (i) fuzzy classifiers in comparison with crisp classifiers contain

additional information about the certainty degree of the classifier decision (4)

and (ii) fuzzy systems can easily define non-axis parallel decision boundaries,
while DTs always approximate such systems in a step-wise manner [19]. An

example is given in Fig. 2. As this figure suggests, for an accurate approxi-

mation of a non-axis parallel class, many crisp decision rules are needed, while

a fuzzy model with two rules provides a perfect solution:

R1 : If x1 is A11 and x2 is A12 then g1 ¼ 1;

R2 : If x1 is A21 and x2 is A22 then g2 ¼ 2:
ð10Þ

As it is shown in Fig. 2, the obtained membership functions overlap. Because

of the interpolation effect of the fuzzy inference between overlapping, non-

rectangular fuzzy sets, the resulted classification boundary can be smooth and

non-axis parallel. These advantageous properties of fuzzy systems makes the

fuzzy rule-based classifier much more parsimonious than crisp decision trees.

This suggests that the transformation of a DT into a fuzzy model should be

followed by a series of rule-base simplification and membership function
tuning steps. In the following subsection it will be shown that the algorithm

starts from rectangular membership functions extracted from the DTs. These

rectangular membership functions are parameterized as extreme cases of trape-

zoids, and then tuned by using genetic algorithm to provide optimal non-axis

parallel decision boundaries.

4.2. Reduction and tuning algorithm

In the previous subsection, it was shown that the fuzzy model obtained from

the binary decision tree, may contain unnecessary complexity since fuzzy

classifiers are able to define non-axis-parallel decision boundaries while crisp
decision trees cannot. An iterative optimization-model reduction method is

proposed to reduce the classifier while maintaining the accuracy. The accuracy

usually decreases in each reduction step but can be regained to some extent by

tuning the membership functions. A genetic algorithm (GA) is applied to tune

the antecedent membership functions [20]. The user has to decide how much

accuracy loss allows for a certain gain in transparency.
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Reduction of the fuzzy classifier is achieved by a rule-base simplification

method based on a similarity measure to quantify the redundancy among the

fuzzy sets in the rule-base and subsequent set-merging [3]. A similarity measure
based on the set-theoretic operations of intersection and union is applied:

SðAij;AkjÞ ¼
jAij \ Akjj
jAij [ Akjj

; ð11Þ

Fig. 2. Solution of a linearly separable classification problem by a decision tree and a fuzzy model:

(a) The classification problem and the approximate decision boundary of a crisp rule-based system.

(b) Membership functions of the fuzzy model that gives a perfect classification.
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where j � j denotes the cardinality of a set, and the \ and [ operators represent

the intersection and union, respectively. If SðAij;AkjÞ ¼ 1, then the two mem-
bership functions Aij and Akj are equal. SðAij;AkjÞ becomes 0 when the mem-

bership functions are non-overlapping. During the rule-base simplification

procedure similar fuzzy sets are merged when their similarity exceeds a user-

defined threshold h 2 ½0; 1� (h ¼ 0:5 is applied). Merging reduces the number of

different fuzzy sets (linguistic terms) used in the model and thereby increases

the transparency. The similarity measure is also used to detect ‘‘don’t care’’

terms, i.e., fuzzy sets in which all elements of a domain have a membership

close to one. If all the fuzzy sets for a feature are similar to the universal set, or
if merging led to only one membership function for a feature, then this feature

is eliminated from the model. The complete rule-base simplification algorithm

is given in [3].

This method has been extended with an additional rule pruning step, where

rules that are only responsible for a few number of classifications are deleted

form the rule-base, because these only cover exceptions or noise in the data.

This pruning is based on the activity of the rules measured by the sum of the

certainty degree (4). The proposed rule-base simplification method is illustrated
in Fig. 3.

The combination of the parameter optimization and rule-base simplification

algorithm resulted a three-step modeling scheme (Fig. 4).

After the DT-based initialization phase, in the model reduction phase the

GA is forced to emphasize the redundancy in the model to increase the number

of the possible removable fuzzy sets and rules as proposed in [7,21]. To reward

similarity during the iterative process, the misclassification rate is combined

with a similarity measure in the GA objective function. The achieved redun-
dancy is then used to remove unnecessary fuzzy sets in the next iteration. In the

Fig. 3. Simplification of the fuzzy classifier.
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fine-tuning step, the combined similarity among fuzzy sets was penalized to

obtain a distinguishable term set for linguistic interpretation. The tradeoff

between similarity rewarding-penalizing results in the following multiobjective

function to be minimized by the GA:

J ¼ ð1þ kS	Þ �MCE; ð12Þ
where MCE represents the mean classification error of the model, S	 2 ½0; 1� is
the average of the maximum pairwise similarity that is present in each input,

i.e., S	 is an aggregated similarity measure for the total model, and the

weighting function k 2 ½
1; 1� determines whether similarity is rewarded (k < 0)

or penalized (k > 0).
The absolute value of k determines the trade-off between the similarity ob-

jective and the accuracy. Normally some experience is necessary to decide

about a good value, however the final results seems to be not highly sensitive

for the exact value. Generally, good results were obtained with jkj values in the
range ½0; 2� [22].

Details of the applied real-coded GA can be found in [4]. The GA was

applied with a population size L ¼ 40, number of chromosomes nC ¼ 10, do-

main parameters a1 ¼ 25% and a2 ¼ 25% and number of generations T ¼ 50
in the final optimization and T ¼ 100 in the complexity reduction step. The

threshold k ¼ 1 for redundancy searches and k ¼ 
1 in the final optimization.

Fig. 4. Scheme of the complete DT identification approach.
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The threshold for set merging was h ¼ 0:5 and h ¼ 0:8 for removing sets similar
to the universal set (‘‘don’t care’’ terms).

5. Performance evaluation

In order to examine the performance of the proposed identification method

a set of examples is presented in this section. The first example is an artificial

problem with geometrical data to demonstrate the capabilities of the algo-

rithm. The second more detailed example is the Wisconsin Breast Cancer
classification problem, which is a benchmark problem from the literature. Fi-

nally, a comparative study based on a set of well-known multidimensional

classification problem is presented. This study is performed to evaluate the

performance of the proposed method for several problems varying in com-

plexity, e.g., an increasing number of classes and features.

5.1. Example 1: Geometrical data

A simple two-dimensional two-class geometric classification problem has

been defined to investigate the capabilities of the proposed classifier generation

algorithm. The domain of class two is represented by the shaded area of Fig. 5.
The training and the testing set were generated by taking 1000 and 500 uni-

formly distributed samples in the ½0; 10� � ½0; 10� domain.

Fig. 5. The geometric classification problem.
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An initial decision tree was generated by the C4.5 algorithm. Because of the
non-axis parallel decision problem, a complex tree resulted with 20 internal and

11 terminal nodes as shown in Fig. 6.

Because of the large number of parameters and the noise-free conditions, the

performance of the resulted tree was excellent, the recognition rate was 99.9%

on the training set and 99.2% on the test set. However, as can be seen from Fig.

6, the resulted model is not really transparent.

To enhance interpretability and compactness, the resulted decision tree is

transformed into a fuzzy model and the previously presented model optimi-
zation-pruning algorithm has been applied. Surprisingly, after two rule-base

reduction and optimization step, the following simple rule-base resulted:

R1 : If x1 is A11 then g1 ¼ 1;

R2 : If x1 is A21 and x2 is A22 then g2 ¼ 2:

This model has zero missclassifications and the generated membership func-
tions are close to their idealistic shape as is shown in Fig. 7.

This simple example showed that in certain situations, because of the su-

perior approximation capabilities of fuzzy systems over crisp classifiers, fuzzy

models generated based on DTs can be significantly reduced. Therefore, DT-

based identification algorithms that simply fuzzify the decision boundaries

[13,15,17] does not use the advantages of fuzzy systems in an optimal way.

Fig. 6. Decision tree generated by C4.5 for the geometric problem.
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Fig. 7. Membership functions for the geometric classification problem: (a) The obtained mem-

bership functions. (b) The idealistic solution.

14 J. Abonyi et al. / Internat. J. Approx. Reason. 32 (2003) 1–21



5.2. Example 2: The Wisconsin Breast Cancer classification problem

The previous case study showed that it is possible to obtain a good

rule structure by the proposed rule fuzzification–simplification–optimization

procedure. However, the real advantage of the DT-based initialization was not

shown. This will be done by the following real classification problem.

The Wisconsin Breast Cancer data (WBCD) is available from the University

of California, Irvine (URL: http://www.ics.uci.edu/�mlearn/). The aim of the

classification is to distinguish between benign and malignant cancers based on

the available nine measurements: x1 clump thickness, x2 uniformity of cell size,
x3 uniformity of cell shape, x4 marginal adhesion, x5 single epithelial cell size, x6
bare nuclei, x7 bland chromatin, x8 normal nuclei, and x9 mitosis (data shown
in Fig. 8). The attributes have integer value in the range ½1; 10�. The original
database contains 699 instances however 16 of these are omitted because these

are incomplete, which is common with other studies. The class distribution is

65.5% benign and 34.5% malignant, respectively.

The performance of the classifiers was measured by 10-fold cross validation.

The data divided into 10 sub-sets of cases that have similar size and class
distributions. Each subset is left out once, while the other nine are applied for

the construction of the classifier which is subsequently validated for unseen

cases in the left-out subset.

The advanced version of C4.5 gives missclassification of 5:26% on 10-fold

cross validation (94.74% correct classification) with tree size 25� 0:5 [23]. An

example for such a DT is shown in Fig. 9, where the DT classifier has 7 ter-

minal and 12 internal nodes.

Fig. 8. Wisconsin Breast Cancer data: 2 classes and 9 attributes (Class 1: 1–445, Class 2: 446–683).
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The constructed decision trees were transformed into fuzzy models as pro-

posed in Section 3. The number of the fuzzy sets becomes less than the number

of the attribute value test of the decision tree because there is more than

one interval test for some of the input domains. For instance, the previously

presented decision tree (Fig. 9) resulted in a fuzzy model with seven rules and

11 tarapezoidal membership functions.

The model reduction procedure for this initial fuzzy model was started. The
first similarity-driven simplification step led to a reduction with four fuzzy sets.

In addition, the rules that had a contribution of less than five percent were also

deleted. Thereafter the reduced classifier with three rules and four membership

functions was optimized with the GA using the objective function given in (12).

The obtained classifier was again subjected to the similarity-driven simplifi-

cation, and the reduced classifier with again one fuzzy sets less was optimized

again in 100 GA iterations in the fine-tuning phase. Finally, a very transparent

and compact fuzzy model resulted with a recognition rate of 96.5%.

R1 : If x1 is A12 and x2 is A16 then Class ¼ 1;

R2 : If x1 is A22 then Class ¼ 2:

Comparing the fuzzy sets in Fig. 10 with the data in Fig. 8 shows that the

obtained rules are highly interpretable.

The 10-fold validation experiment showed 96.82% average classification
accuracy, with 94.29% as the worst and 100% as the best performance. This is

really good for such a small classifier as compared with previously reported

results. The Wisconsin Breast Cancer data are widely used to test the effec-

Fig. 9. Decision tree generated by C4.5 for the WBCD problem.
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tiveness of classification and rule extraction algorithms (Table 1). As the error

estimates are either obtained from 10-fold cross validation or from testing the

solution once by using the 50% of the data as training set, the results given in
Table 1 are only roughly comparable.

Nauck and Kruse [5] combined neuro-fuzzy techniques with interactive

strategies for rule pruning to obtain a fuzzy classifier. An initial rule-base was

made by applying two sets for each input, resulting in 29 ¼ 512 rules which was

reduced to 135 by deleting the non-firing rules. A heuristic data-driven learning

method was applied instead of gradient descent learning, which is not appli-

cable for triangular membership functions. Semantic properties were taken into

account by constraining the search space. They final fuzzy classifier could be

Fig. 10. The resulted membership functions by using the proposed modeling scheme.

Table 1

Classification rates and model complexity for classifiers constructed for the Wisconsin Breast

Cancer problem

Author Method ] Rules ] Conditions Accuracy

Setiono [25] NeuroRule 1e 1 4 97.36%

Setiono [25] NeuroRule 1f 4 4 97.36%

Setiono [25] NeuroRule 2a 3 11 98.1%

Pe~nna-Reyes and Sipper [24] Fuzzy-GA1 1 4 97.07%

Pe~nna-Reyes and Sipper [24] Fuzzy-GA2 3 16 97.36%

Nauck and Kruse [5] NEFCLASS 2 10–12 95.06% \

This paper DT based FC 2 3-4 96.82% \

\ denotes results from averaging a 10-fold validation.
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reduced to two rules with five to six features only, with a misclassification of

4.94% on 10-fold validation (95.06% classification accuracy).
Rule-generating methods that combine GA and fuzzy logic were also ap-

plied to this problem [24]. In this method the number of rules to be generated

needs to be determined a priori. This method constructs a fuzzy model that has

four membership functions and one rule with an additional else part. Setiono

[25] has generated similar compact classifier by a two-step rule extraction from

a feedforward neural network trained on preprocessed data.

As Table 1 shows, our fuzzy rule-based classifier is one of the most compact

models in the literature with such high accuracy.

5.3. Example 3: Comparative study

This section is intended to provide a comparative study based on a set of

multidimensional classification problem to present how the performance and

the complexity of the classifier is changing though the tuning procedure. The

chosen Iris, Ionosphere, Glass, Pima and Wine data, coming from the UCI

Repository of Machine Learning Databases (http://www.ics.uci.edu), are ex-

ample of classification problems with different complexity, e.g., large and small

number of features and classes (see Table 2).

During the experiments, the performance of the classifiers were measured
by fivefold cross validation. For all classification problems, the initial fuzzy

classifier, constructed from a decision tree, was reduced by the presented

similarity-driven simplification procedure. Thereafter, the reduced classifier

was optimized in 50 GA generations with the GA using the objective function

given in Section 4 to enhance performance and similarity. The obtained clas-

sifier was again subjected to similarity-driven simplification, and the reduced

classifier, was again optimized in 50 GA-iterations. In this step, the distin-

guishability of the fuzzy sets is preferred (k < 0). This step is followed by a fine-
tuning phase that consists of 200 GA-iterations (k > 0). This model building

procedure was monitored by logging the number of the rules, the conditions,

and the performance of the classifiers. As Table 3 shows, with the use of the

proposed technique, extremely transparent and compact fuzzy classifiers were

Table 2

Complexity of the classification problems

Problem ] Samples ] Features ] Classes

Iris 150 4 3

Ionosphere 351 34 2

Glass 214 9 7

Pima 768 8 2

Wine 178 13 3
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obtained. During the tuning phase, the number of rules and conditions in the

rule-base have been decreased by 50%, while the classification performance has

been improved or slightly decreased. This effect is much bigger than the effect

of the standard transformation technique [13] to the model complexity and

performance.

Concluding, the generated fuzzy classifiers have a comparable performance

as those of recently ones, but they are much more simple and transparent

[8,26].

6. Conclusions

A decision-tree-based initialization of fuzzy rule-based classifiers is proposed

for high-dimensional classification problems. The initial model is derived by

means of the C4.5 algorithm which is a crisp binary decision tree algorithm.

Contrary to other DT-based initialization methods, an exact transformation
technique is applied to obtain the initial fuzzy classifier, which is subsequently

reduced and optimized in a iterative scheme by means of similarity-driven rule-

reduction and a genetic algorithm with a multiobjective criterion searching for

both redundancy and accuracy.

The proposed approach is demonstrated for an artificial problem and the

Wisconsin Breast Cancer. Subsequently, a summary of results is given for

several classification problems known from literature: Iris, Ionosphere, Glass,

Pima, and Wine data. The geometrical classification example demonstrated
the superior approximation capabilities of fuzzy systems over crisp classifiers.

This indicates that decision-tree-based identification algorithms that fuzzify the

decision boundaries and subsequently tune the accuracy by adding rules, do

not make optimal use of the fuzzy system structure and lead to unnecessary

complex fuzzy classifiers. Moreover, it is shown that a proper rule structure is

obtained by the proposed rule-fuzzification, rule-simplification and rule-opti-

mization procedure. The obtained classifier are very compact and well inter-

pretable while the accuracy is still comparable to the best results reported in the

Table 3

Classification rates (Acc.) and model complexity (] Rules and ] Conditions) for the fuzzy (FC) and

the initial decision tree (DT) classifiers

Problem ] Rules DT ] Rules FC ] Conditions

DT

] Conditions

FC

Acc. DT Acc. FM

Iris 4.6 3 7.2 4 95.46% 96.11%

Ionosphere 12.2 3.4 56.6 10.2 91.53% 86.47%

Glass 23 19.2 110.8 90.8 68.32% 66.03%

Pima 24.4 11.2 104.8 40 73.31% 73.05%

Wine 5.6 3.6 14.4 8.8 90.69% 91.22%

Results of fivefold validation.
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literature. The proposed approach could be also used in the regression tree

based identification of Takagi–Sugeno fuzzy models, that is one of the topic of
our future research.
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