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The results of Donsker and Varadhan on the probability of large deviations for empirical 
measures (or occupation measures) of uniformly ergodic Markov processes are extended. Usually 
the large deviation results are formulated in the weak topology on the set of probability measures. 
We extend this to the topology which is generated by the integrals over bounded measurable 
functions. 
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1. Introduction and notations 

In recent years there has been a growing interest in large deviations for empirical 
measures, especially for Markov processes (see e.g. [2, 3, 6]). Usually, the results 
are stated for the weak topology on the space of probability measures and Feller 
properties are assumed. It is shown here that parts of the results can be extended 
by taking the finer ~'-topology which is generated by the integrals over bounded 
measurable functions and no Feller properties are needed. In the i.i.d, cases this 
has been done by Groeneboom, Oosterhoff and Ruymgaart [5]. The present paper 
is an extension of their methods to some Markovian situations. The w-topology 
appears to be the natural one at least for uniformly ergodic Markov processes. 
Results for topologies finer than the weak one have also been obtained by 
G~irtner [4]. 

We fix some notations: 
If (S, re) is an arbitrary measurable space, we write A(S) or As for the set of 

probability measures on S. The ~'-topology on A(S) is induced by the mappings 
A (S) ~/z ~ / ~  (A), A ~ re. It is clear that, for a n y f  e b~' (the set of bounded measurable 
functions), Sfd/z is ~'-continuous in/z. These mappings also generate a tr-field ~s.  
In general, ~s  is not the Borel-field of A(S). If, however, S is a Polish space then 
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~s  is the Borel-field of  the weak topology on A(S) .  If /x,  v ~ A(S)  then the relative 

ent ropy of  v with respect t o / z  is defined by 

log du i f u < ~ ,  
h ( u l g ) =  

otherwise. 

Let E be a f xe d  Polish space, the state space of  the Markov  chain,  with Borel-field 

and  let P be a Markov  transi t ion kernel  on (E, ~). We write pn for the n-th 

iterate of  P. Let (E ' ,  ~ ')  be a second Polish space, k a fixed natural  number  />2 

and K be a Markov kernel  from E k to E ' .  We write O = E~ox E '~ with the product  

o--field ~d (No = N u {0}). Xn, n ~ No, are the project ions  O--> E and ~:n, n ~ N, the 

project ions 12 --> E' .  We also wr i te /~  = E k × E' with produc t  tr-field ~. I f  u e A ( E )  

then we define the probabi l i ty  measures P~ on (I2, ~ )  by 

P~(Ao x A~ x-  • • x An x E x .  • • x BI x-  • • x Bn_k+ 2 X E' X" • ") 

= f u(dxo)P(xo, dx1)"""  P(x,-1,  dxn )K( (xo , . . . ,  Xk_l) , dyl)  
J 

x K ( ( X l , . . . ,  xk), d y E ) ' ' ' K ( ( x n - k + I , . . . ,  X,), dYn-k+2) 

x 1Ao(Xo) 1A,(X~)' '" 1 An (xn)l  B,(Y~) " " " 1 B,,_k_:(Yn-k+2) (1.1) 

A; ~ ~f, Bi ~ ~'. We write Px for P~ .  Xo, X~, X 2 , . . .  is the usual Markov chain with 

t ransi t ion kernel P and starting measure u. Of  course, se~, ~2 , . . .  is in general not  

Markovian  but  Xn = (Xn-k+~, . . . ,  Xn, ~n-k+2) is a Markov chain with state space 

/~ and  t ransi t ion k e r n e l / 3  given by 

/3 ( (X l , . . . ,Xk ,  a ) ,  A1 ×" " " XAk × B) 

=IA'×'"×Ak-1(X2'''''Xk) I P(Xk, dy)K((x2 ,x3 , . . . ,Xk ,  y) ,B) .  (1.2) 
.I  A k 

Our main assumpt ion is the following recurrence condi t ion:  

(1.3) There is a s ta t ionary probabi l i ty  measure  7r on (E, ~)  for P such that  P 

has a t ransi t ion densi ty p with respect to 7r which is b o u n d e d  and  bounded  away 

from 0. 
Let Ln :I2--> A(E ' )  be the empirical  measure of  the st-chain, i.e. 

n j= l  

Ln is clearly ~ -  ~E,-measurable.  We describe now the correct Donske r -Varadhan  

entropy which governs the large deviat ion behav ior  of  Ln. First some notat ion.  

I f / z  ~ A(/~) then  we write /2 for the marginal  measure on E k, ix1 ~ A(E k-~) for 

the marginal  o f /2  on the first k -  1 componen t s  and / z2~  A(E k-~) for the marginal  
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on the last k -  1 components.  We also write Ao(/~) = {/~ ~ A(/~)" p~ =/z2}. If k ~> 2 
then the Donsker-Varadhan entropy function I :  A( /~ )~  [0, o0] is defined by 

i ( tz)  = { ooh(l ' t l l~®P®K) ifotherwise.tZ ~ A°(/~)' 

Here 

( tZ l®P®K)(A  x B x C) = fA×B I.~(dx)P(x, dy)K((x, y), C). 

I f /~ e A (E ' )  then we define 

I( /z)  = inf{17(v): z,3 = lz}, where v3 is the marginal on E'.  

If A c  za(E') then I (A)  = inf{I(/z):/~ cA}. 

(1.4) Remark. We always assume k I> 2. This is no restriction because a Markov 
kernel K from E to E '  can trivially be extended to a kernel from E x E to E' ,  just 
by letting it be independent  of the first factor. 

Our main result is the following. 

(1.5) Theorem. I f  (1.3) is satisfied and A is a measurable subset of A(E') then, for 
all v ~ A(E),  

(i) l iminf 1 log Pv(Ln e A) I> - I ( in t~  A), 
n--~. OO n 

1 
(ii) limsup - log Pv(L~ ~ A) ~< - / ( e L  A) 

n,--I. OO n 

This theorem especially applies to the situation where k=2,  E =E'  and 
K((x, y), A) = 1A(y). This gives a r-topology version of the discrete time results of 
[2]. Indeed, in this case I( /z)=inf{h(~,[ /~1®P):  v e A(E2): vl = ~,2 =/~} which via 
theorem (2.1) of [3] is precisely the Donsker-Varadhan entropy as it has been 
defined in [2]: 

I ( ~ )  = - i n f  l o g - -  d~  
u U 

where the infinimum is taken over all measurable positive functions with log u e b~. 
The theorem also applies to continuous time processes: 

Let X,, t/> 0, be a time homogenous Markov process which is defined on a 
probabil i ty spaces (~,  ~ ,  Px), x e E, and which has state space E starting measure 
8x and transition kernels/~,, t~>0, i.e. Px(XoeA)  = 1A(X) and fi,(x,A) is a regular 
conditional probability for for all s,t>---O. Furthermore, we 

assume 

(1.6) X has paths in D[0,  oo) the space of functions [0, oo)~ E which are fight 

continuous and have left limits. 
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(1.7) /31 satisfies (1.3). 

We now take E ' =  D[0, 1], P =/31, k = 2 and K ( ( x ,  y), A) a regular version of 
the conditional distribution Px (3~ I to,, a = y). Here x I t0,, l is the X path restric- 
ted on the time interval [0, 1]. 

Let ~ :A(D[0,  1])-->A(E) be defined by 

~( /z)(A)  = 1A( f (s ) )  ds / z  (df).  
[o,1] 

a/, is measurable and r-continuous. 
Constructing Px and L, as above, we have that the Px-distribution of gt(L,)  is 

the same as the Px-distribution of 

L. = -  8 ~  ds. 
n 

Therefore, we immediately obtain 

(1.8) Theorem. Under the conditions stated above one has, for  x ~ E and measurable 

subsets A ~ A ( E ), 

(i) liminf 1 log  ~x(L. ~ A) > ~ - I ( i n t . a ) ,  
/ I - ~  O0 n 

(ii) limsup 1 log Px(L ,  ~ A)  <~ - I ( c l ,  A). 
t l  -*  OO n 

Here I(B)=inf{I(/ .~): /z  ~ B}, I(tz) =inf{I(~,): ~ ( v )  =/z}. 

(1.9) Remark. In [2] Donsker and Varadhan proved similar statements assuming a 
Feller property where int A and cl A have to be taken in the weak topology. Their 
entropy functional is given by 

/DV(/Z ) = - i n f  [ Lu dt~. 
u J U 

Here L is the infinitesimal generator and the infimum runs over nonnegative functions 
in the domain of the generator which are bounded and bounded away from 0. But 
then it is clear that Iov = I- SO (1.8) gives a z-topology version of their results. This 
especially applies to diffusions on compacta. 

Sometimes it is useful to have the statements of (1.5) (or (1.8)) for random 
elements in A (E')  which differ slightly from Ln. So let L" be measurable mappings 
O--> A(E') .  The following result will be useful in a forthcoming paper on maximum 
entropy principles. 

(1.10) Proposition. If, for  some sequence o f  positive real numbers e. -> O, I] L,( to)  - 

L" ( to ) ][~ ~< enfor all to where I] ]]~ denotes the total variation norm then the statements 

(i) and (ii) of  (1.5) remain true for  L ' .  
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The proof of (1.10) is straightforward and omitted. 
We will give the proof of theorm (1.5) for k = 2. This simplifies somewhat the 

notation. The extension to cover the case of arbitrary k is straightforward. 

2. Properties of the entropy 

Let ~={eS:  ge  b~}. 

(2.1) Lemma. Iftz e Ao(/~ ) then I(~)  = -infu~¢Slog Pu/u dl.~. 

Proof. From Theorem (2.1) of [3], we have 

-inf,,~ f log~dtz=inf{h(O[iz®/5): Q~A(E2), Q,=Q2=I.L} (2.2) 

(Qi are the two marginals of Q on/~).  
Let/~ s A (/~) with I(/x ) < oo (especially br s Ao(/~) and/z ,~/.~ 1 ® P ® K ) we con- 

struct Q*s  A(/~ 2) minimizing the right side of (2.2). 
Let/z(A[ pl = x) be a regular conditional distribution for/x conditional on the 

projection Pl on the first factor E of/~. We define Q*e A(/~ 2) by 

Q*(Ax B)= IA tz(d°t)tz(Bl pl=P2(°t))' 

where P2 is the projection on the second factor. Q* is well defined as /z ~ Ao. 
Q*,t/z®/5, Q*I=Q*=lz and p(x,y)=(dtz/d(l, qQP®K))(y)  is a version of 
(dQ*/d(/z ® P))(x, y). By Theorem (3.1) of [1], Q* minimizes the right side of (2.2). 
But 

h(Q* [/x ®/5) = h(/z {/z~® P® K ). 

It remains to show that if the right side of (2.2) is finite then I(/z)<oo. Indeed, in 
this case, there exists Q ~ A (/~2) with Q~ = Q2 =/z and h(Q[tz ®/5) < ~. Therefore, 
Q,~/ ,®/5 and this implies /~1=/z2. The second marginal of/z®/5 on /~ is then 
just ~ ® P ® K .  Therefore, ~ >  h(Ql/z®/5)-- TM h(tzll.~® P® K). So the lemma is 
proved. [] 

(2.3) Corollary. [ :  A(/~)-> [0, oo] is convex and ~'-lower semicontinuous. [] 

(2.4) Lemma. For any positive real number r, {/z e A(E): I(/z) <~ r} is ~'-compact. 

Proof. Let 152 be the iterate of/5 and, for/z e A (/~), 

I(2)(ix) = - inf f log/52u d/.~ 
u ~  J U 

=--inf[fu~Lj log-~-dtz/52u +flog d l< 2i( ). 
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The stationary measure for /5  is ~ = ~r@ P ®  K and 152 has a transition density/~<2) 
with respect to -~ which is bounded and bounded away from 0, say 

c < . ~ ( 2 ) ( x , y ) ~ l / c ,  c>O,  x,y~E,. 

So 

i(2)(ix)=inf{h(Qlix®/52): Q e  A(/~2), Q1 = Q2 = Ix} 

I> log c+  inf{h(Qix ® ~)" Q e A (/~2), Q~ = Q2 = Ix} 

= log  c+  h(ix ]'~). 

Therefore, {ix" I(ix)~< r}c  {IX: h(ixl ~ ) <~2r - log  c}. By Lemma 2.3 of [5] the right 
side is r-compact. From (2.3) one sees that {ix: I(ix) <--- r} is r-closed. So it is 
compact. [] 

Now l e t f ~  b~'  (f" E'--> R). From Corollary (2.3) and (2.4) one immediately sees 
that there exists Ix* e Ao(/~) with 

(2.5) 

Our next task is to give some information about the structure of Ix*: 

(2.6) Proposition. For any IX* satisfying (2.5) there exists g ~ b~ with 

dix*/d(ix* @ P@ K)(xl, x2, tz)= const, exp(f(a) + g(xl)-g(x2)) 

((Xl, X2, O~) E E x E x E ' = / ~ ) .  

ao s .  

We need some preparations. 

(2.7) Lemma. IX1* is equivalent to ~. 

Proof. Ley IX~=(1-e)IX*+e(crQP®K) ( ee [0 ,1 ] ) .  Then IX',~IX~®P®K and 
q" =dix~/d(IX~Q P® K) is positive for e > 0 .  An easy computation shows that 
A(e) = h(ix ~ I I X [ ® P ® K )  is differentiable on (0, 1) and 

d A ( e ) - 1  [ f logq~d(~r®PQK)-h( ix~ l i x~QP®K)]  
de 1 - e  

,S <<_ logq~d(Tr®P®K). (2.8) 
1--e 

We first show that 

limsup,~o S l°g+ q,d(~r® P® K) <oo. (2.9) 
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To see this, let A,(x) = {(y, a)  e E x E': q~(x, y, a) >t 1}, x e E. Then 

f log q~ d ( c r ® P ® K )  

= fE "n'(dx)(P®K)(x, A~(x)) 

x Ia P(x, dy)K((x, y), da)  l°g + q~(x, y, ,',,) 
,(x) (P®K)(x,A~(x)) 

<~ fe zr(dx)(P®K)(x,A,(x))log+(f P(x'dy)K((x'y)'da)q~(x'Y'a)) 
(P®K)(x,A~(x)) 

But ~ (P®K)(x, d(y, a))q~(x,y, a ) =  1, so 

f log+ q" d( OPOK) -f  ~r(dx)(P®K)(x,A~(x)) 

x log((P® K)(x, A~(x))) 
<~l/e. 

So (2.9) is proved. 
As/Z* ~/Z* ® P ® K and/Z* =/z* it follows that/z* ,~ 7r. Assume now that/z * ~ or. 

Then there exists A e ~ with or(A) > 0,/Z*(A) = 0. We then have/Z*(E x A x E') = 0 
but (/z* ® P® K)(E x A x E ' ) >  0. It follows that q~ (x, y, a)-~ 0 on a set of positive 
¢r® P ®  K measure. Therefore, from Fatou's lemma, 

liminf,~o f log-  q ~ d(cr @ P ® K)  = ~ .  

Together with (2.9) and (2.8) this proves that if/z~* ~ ¢r then 

d 
limsup A(e) = - ~ .  

e$0 ~EE 

But this clearly contradicts the maximality property of/z*. [] 

Proof of (2.6). Let g e b~ satisfy S g d /z*=  0 and S (q~°Pl- ~°P2)g d /z*= 0 for all 
q~ e b~g where Pi, i = 1 ,  2, are the projections /~--> E. If le I is small enough then 
d/z ~ = (1 + eg) d/z defines an element in Ao(/~). 

d f d/z* de h(/Z~I/Z~®P®K)[~-~°= l O g d ( / z , ® p ® K )  g d/z*. 

Therefore, we see that 

ff(l°g d(/z*®d/Z*P® K) -fop3)gd/z*=O for all such g. 

(~entmm v o o r  Wis~mde qm 
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Here P3 is the p r o j e c t i o n / ~ -  E'.  The Hahn-Banach  theorem implies that 

d/.** 
log d ( / .~*®P®K)  f°P3 

is in the Ll(tz*) closure ~ of {1, ~oopl-~oop2: ~o~ bY}. Let/2* be the marginal of 

IZ* on E x E and let ~o be the L1(12") span of the functions ~o(x~) - ~o(x2), ~o e bK 
is just the span of 1 and ~oOp where/5"/~ ~ E x E is the projection. 
As h(/z* [g*® P@ K)  < co we have h (g*  J/z*® P) < oo and so h(~Z* [g *® zr)< oo. 

But h ( u [ ~ * ® c r )  is minimized over z, with //lm-/J2~---/L61 * by z , = ~ * ® g * .  From 

Theorem 2.2 of [1] it follows that IZ*®/~*~t2*. On the other hand,  from h(iz*® 

IZ* J/x*® or) < ~ we conclude that h ( ( l z * ® l z * ) ® K J l . ~ * ® P ® K )  < ao and so/z* ,~ 
(/z~*®/.~*)®K and the re fo re /2* ,~*®/Zl* .  Therefore/Zl*®/z~*--iZ*. But by (2.7) 
~r - /~*  and therefore all thinkable a.e.-notions coincide and the null  sets do no 
longer bother us. 

Any element v e qdo is an a.e. limit of elements of  the form ¢(x~) - ¢(x2). As a.e. 
refers also to a product measure, it is easy to see that v is of the form, too. Therefore, 

d/z*/d(/z* ® P ®  K)  = const, e x p ( f  op3 + ¢ op~ - ~0 op2 ). 

By integrating over P ® K  one sees that q~ is bounded. [] 

Let g" E ' e R  a be a bounded measurable function. If  x ~ R d, we write 

s(x)=inf{IOz):  A(E'),fgdjz=x}. 
(2.10) Lemma. s is convex and lower semicontinuous. 

Proof. Convexity is clear. Let x,--> x ~ R  a and liminf,_,oo s (x , )<oo .  By selecting a 

subsequence, we may assume that lim,_,oo s (x , )  exists and is <oo. By using the 
semicontinous property of I and the fact that {/x: I(tz) <~ r} is z-compact for 0 < r < oo 

there exis t /z ,  ~ A(/~) with 

.[(/-/'n) = S(Xn), f g d/,t,n.3 = xn. 

We can assume tha t /z ,  converges to a g e A(/~) and S g d/z3 = Xo By the semicon- 

tinuity of  I the lemma follows. D. 

Let 

s .=  E g(6). j=l  

As a consequence of (2.6), we obtain the following result. 
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(2.11) Corollary. I f  z ~ R a, then 

lira ( l / n )  log [~(e <z's">) = sup((z, x ) -  s(x)). 
n--~  OO X 

((., • ) is the Euclidean inner product. 
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Proof. We write 

f (e ' )=(z,g(e ')) ,  e '~E' .  

Let/~* be an element of A(/~) which maximizes J f  d /~*-  I(/z*). According to (2.6) 
there exists ~o ~ b~ with 

Then 

d/.~*/d(/z*® P ®  K) = C exp((gop3, z)+ ~oopl - ~, op2). 

~:,,(exp((z, Sn)) 

= f v(dxo)P(xo, dxl)K((xo, Xl), dc~l)" • 0 

x P(Xn-l, dx.)K((X._l ,  Xn), dan) exp (z, g(%)) 
j 1 

= C-" f v(dxo)P(xo, dxO" • • K((Xn-b Xn), da,.) 

rl  

xexp(cc(x,.)-~o(xo)) 1-[ [C exp((z,g(aj))-~p(x~)+q~(x~_~))]. 
j = l  

Therefore, 

C - n  e-211~ll,o<~ iF~(e<Z,S, >) <~ C -n  e211~ll~o. 

Here II ~ I1~ is the sup-norm of q~. 
It follows that 

lira 1 log ~:~(e <z's->) = - l og  C 
n .-I. OO n 

= [ (z, g) d~* - T(~,*) 
J 

[] =sup((z,x)-s(x)). 
x 
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3. Proof of Theorem (1.5) 

Let g, s, S, be defined as in the last section. 

(3.1.) Proposition. I f  A c R a is measurable, then 

1 
(i) limsup - log P~(S, /n  ~ A) <<- - s ( c l (A) ) ,  

n~OO n 

1 
(ii) l i m i n f -  log P,,( S,,/ n ~ A) >>- - s ( in t (A) .  

t l  "-~ OO n 

Here s(B)  = infx~B S(X) and int and cl refer to the interior and closure in the usual 
topology. 

Proof. (i) Follows from (2.11) and Lemma 1.1 of [4]. I f  

O(z) =sup((z, x ) -  s(x) ) 

satisfies a differentiability property then we could apply the Lemma 1.2 of  [4] to 

prove (ii) of  our proposition. To show that G is differentiable does not appear  to 

be easy. Instead of doing this we establish (ii) directly by using the subadditivity 

technique which has been introduced by Lanford in the theory of large deviations. 

This technique has also been used by Stroock in [6]. 

If  U is an open subset of R d and e > 0, we write U ~ for the e-neighborhood of 

U and U, for {x~ U: y ~  U holds for all y with l y - x l < e } .  Clearly ( U ' ) ~  D U. 
Let c > 0 be such that c <~ p(x, y) <~ 1/c for all x, y 6 E. I f  A c R d we write a , (A)  = 

log P~(S , /n  ~ A). Let now U c R d be open and convex. If  n, m ~ N then 

a.,+,,,(U) t> log P~(S.+m+l/(n + m) ~ U(,,+,.)-,) 

n 1 " m 1 .+,,,+l 
~> log P,, X f ( ~ )  + - -  X 

n + m  ns=l n + m  m s=,,+2 

~>log c+ a,,( U20,+.,)-,)+ ar,,( U2(,,+,,,)-l). 

Replacing U by U 2°'+m)-' we have 

a,,( U) + am( U) <~ a,~+m( U2(n+m)-') + log(1) .  

We apply this to n = m = 2 k, k ~/~1, and obtain 

2-ka2k( U) <~ 2--k-l a2k+'( u2-k) + 2-k-1 l og (1 )  

Iterating this inequality, we obtain 

2--k--la2k+' ( U (2 2 )) -- 2 log 

U(2-k÷,-2-k-~)). 2-k-Z-11og(l~. ~ 2--k--l--l a2k+l+l( 
\ c /  

f(Cs) U:(.+m)-,) 
(3.2) 

(3.3) 
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Therefore 

/ ~ k ( U )  = lim 2--k--t a2k+'( U (2-k+'-2-k-l+t)) 
i ..~ oo 

exists and furthermore 

2 - k - l  a2t+t( U(2-k+'-2-k-t+t)) ~ ~k( U)-l- 2 - k - !  log(~)  

Clearly Ak(U)/> )t k+,(U). So we define 

A (U) = limk Ak(U) 

and 

(3.4) 

and U be an arbitrary convex open neighborhood of x. Given e > 0, we choose a 

u, IA (E)+ 8 > 0 ,  convex neighborhoods V~ o f x i  and k such that 1 s , 8 
g(x,)[ < e. If I is large enough then 

[2 -k-la2k+t ( VI 2-k+t-2-k-I+')) 4t- .~(Xi) { < 2e. 

An argument similar to the one leading to (3.3) gives 
- - k - l - - ,  , ~ , 8 2-em-'a2k+,+,(U) I> 2 a2k*'÷,(-~V, +5V2) 

2 log c 
>~ Y~ 2-t- t- 'a,+k((V~)2-~-,)  2k+,+,. 

i = 1  

- ( 2 - k + l  2 - - k - l - - l )  
If k, I are large enough ( V / 6 ) 2  - k - / ~  V i - . Letting I o t a  we conclude that 

ak(U) >~ ½)tk(V,) +lAk(V2)/> ---~.~ ( x , ) -  ~.~(x2)-4e. 

Therefore g(x) ~ ½g(x,) +½g(x2). 
Let A be open and x e A. We choose e > 0 and an open convex neighborhood U 

of x in A with U 3~ c A. For large enough k we have 

;re(U) = lim 2-k-~a2~+'( U ~2-~+'-2-~-'÷*)) 
l + o o  

~< liminf 2- ma2,. ( U ~). 

Therefore 

- g(x) <~ liminf 2-"a= .. ( U ~ ). 
m-~oo  

If r e N, let 

ai2k+i-l: ai ~ {0, 1}, k ¢ N}. 
i = ,  

g(x) = -inf{A ( U)" U ~ x, U open convex}. 

g(x)/> 0 and g is lower semicontinuous by the construction. We claim that ~ is convex. 
Let 

x=½x, +½x2, x, R d 
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A repeated application of (3.2) yields that, for any r ~ N, 

-g(x) <~ l iminf  n-l a,,( U2~). 
n ---~ o o  

n E  N r 

Using the boundedness of g we obtain 

l iminf  n-la,( U 3~)/> l iminf  n-~a,(U2~). 
?1 --*, OO ?1 ---> OO 

n ~  N ~  

Therefore, 

l iminf  n-~a.(A) >I -g(A). 
?1---> o 0  

(3.5) 

It remains to prove that s = g. 

Let now A be compact and e > 0 be given. If x ~ A we choose a convex open 
neighborhood Ux of x with -g(x)>~A(Ux)-e if  g(x)<oo and A(Ux)<~-l/e if  

m g(x) = oo. Then A c  [-Jj=l U~i for suitable points x l , . . . ,  x,, and from (3.7) 

max logl:  
m l ~ j ~ m  \ c /  

for all k, so 

l imsup 2-'a2-,(A)<~ max A(Ux,). 
m l < ~ j ~ m  

Keeping in mind the definition of Ux and letting e-~ 0 one concludes that 
(3.6) For A compact, 

l imsup 2-"a2,,, (A) <~ -g(A). 
m 

Using (3.5) and (3.6), a standard argument gives, for z ~ •a, 

l i r a  2 - "  log [E,,(exp((z, $2,,,)))= su~(((x, z ) -g (x ) ) .  

Together with (2.11) and the inversion formula for Legendre transforms (see e.g. 
[6, Theorem (7.15)]) this proves s = g. [] 

Proof of (1.5). (i) We consider subdivisions of E '  into finitely many disjoint measur- 

able sets. The set of such subdivisions is denoted by Z. Z is a directed set under  

the ordering y >  y'  (3/, y ' ~ Z )  if an only if  y is a refinement of y'. If  y ~ Z  and F 
is a measurable subset of za(E') then we set Fv={tz:  there exists ~,~F with 
v(Ai)=lz(Ai) for all Ai~ y}. Clearly F~DF. The set {(v(A0,  . . . ,  v(Aa)): u~F} 
where {A1,. • . ,  A d }  ---- y is a subset of R d. Its closure is denoted by Fv. 

We now apply the proposition (3.2) to f (x )= (1A,(X), •. •, lAd(X)) and obtain 

1 1 ) 
l imsup -- log P,,(L,, e F)  ~< limsup - log IP,, f ( ~ )  s F~, 

n~cX) r /  n ~ o o  /,/ j ~ l  

s (  = 
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This holds for all 3' ~ Z. Therefore 

1 
l imsup - l o g  P~(L~ ~ F )  ~< - s u p  I (cL  Fv). 

n--,oo /I ~ / ~  

It remains to show that 

sup I (c l .  Fv) = I(cl~ F).  
3,E-~ 

If this were false then there would exist r < I(cl  F )  and I(cl(Fv)) ~< r for all 3' ~ Z. 
To any y ~  we can choose v, e cl(F~) with I(v,)<~ r. By the z-compactness of 

{v: I(v)<~r} there exists a cluster point v of the net {vv: 3,¢,~}. By the semi- 

continuity property of I we have I (v)  <~ r. If we show that v s eL(F)  then this would 
lead to a contradiction. If  v~ c l , (F)  then there is a neighborhood U(v) of the form 

{ p : l t z ( A , ) - v ( A , ) J < 8 ,  i = l , . . . , d }  where y = { A ~ , . . . , A a } ~ . Z  and U(v)c~F= 
O. But we find a y ' >  3' with v~,,¢ U(v)  and vv, e cl(Fv,)c cl(Fv). This leads to 
U(v) c~ F # O,  a contradiction. 

(i i)  The statement is void if  I ( in t ,  F )=oo .  We, therefore, assume I ( i n b F ) < o o .  

For given e > 0 we choose v ~ int,  F with I(v)<~ I ( in t ,  F ) +  e and then a neighbor- 

hood U(v)  of v, U(v)  c inbF,  of the form 

U(v)= {iz: l t z (A , ) -  v(A,)J< 8, i= l , .  . ., d } where A , ~ ' .  

We again put 

f = ( 1 A l , - - - ,  lad) 

From (3.2) (ii) we obtain 

l iminf  1 log P~(Ln 

and V={x ad. i = l , . . . , d } .  

As e > 0 is arbitrary, this proves the theorem. 

(an ) 
F)  t> l iminf  1 log P~ n ~1 ,,-,oo n f ( 6 ) ~  V 

>t - I ( v )  > / - I ( i n t ~  F )  - e. 

[] 
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